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Abstract

Understanding commonsense reasoning is one of the core
challenges of AI. We are exploring an approach inspired by
cognitive science, called analogical chaining, to create cog-
nitive systems that can perform commonsense reasoning. Just
as rules are chained in deductive systems, multiple analogies
build upon each other’s inferences in analogical chaining.
The cases used in analogical chaining — called common sense
units — are small, to provide inferential focus and broader
transfer. Importantly, such common sense units can be
learned via natural language instruction, thereby increasing
the ease of extending such systems. This paper describes an-
alogical chaining, natural language instruction via microsto-
ries, and some subtleties that arise in controlling reasoning.
The utility of this technique is demonstrated by performance
of an implemented system on problems from the Choice of
Plausible Alternatives test of commonsense causal reasoning.

Introduction and Background

Developing systems capable of commonsense reasoning,
the kinds of inferences and knowledge that come naturally
to humans, is a central goal of Al research (Davis & Mor-
genstern, 2004). Many commonsense reasoning models
have been proposed, from logical inference over general,
first-principles axioms (e.g. Davis, 1990; Lenat, 1995) to
simulation (e.g. Battaglia et al., 2013). We believe analogi-
cal reasoning is a promising approach for modeling com-
monsense reasoning, for three reasons. (1) Analogical rea-
soning can work with partial knowledge and so is useful in
the absence of a fully articulated general theory. (2) Analog-
ical generalization provides a mechanism for combining and
learning from experience. (3) Analogies can import whole
relational structures from a single case, generating multiple
inferences at once, rather than one inference per rule.

Here we show how cases for reasoning by analogy can be
learned through natural language interaction with a person
and used in a system that repeatedly uses analogy to reason
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about a situation, including considering alternative out-
comes and explanations. We begin with a review of the
Companion cognitive architecture, its language system, and
the structure-mapping models and Cyc-derived ontology
used. We describe Analogical Chaining (AC), where multi-
ple analogical retrievals elaborate a situation, enriching its
description and providing plausible predictions and expla-
nations. We show how cases can be learned through natural
language interaction with a person and used by AC to an-
swer commonsense reasoning questions. We describe how
inferences can be naturally segmented by context for the
consideration of alternatives, and close with a discussion of
challenges and future work.

Background

The Companion cognitive architecture (Hinrichs & Forbus,
2014) has analogical reasoning as a core cognitive capacity.
Companions work interactively with and alongside humans.
A Companion’s setup varies by task, with different agents
performing different components of reasoning (language
processing, analogical retrieval, problem-solving, etc.).

Natural Language Understanding and the Cyc Ontology
We use the Explanation Agent Natural Language Under-
standing system (EA NLU, Tomai & Forbus 2009) for lan-
guage understanding. EA NLU produces hierarchical parse
trees using Allen’s bottom-up chart parser (Allen 1994). At
the leaf nodes of the trees (individual words or compound
phrases), subcategorization frames are retrieved and used to
generate choice sets. Interpretations are formed by automat-
ically selecting consistent sets of choices (Barbella & For-
bus 2016). Coreference resolution merges different refer-
ences to the same underlying token.

EA NLU uses a simplified English syntax, roughly that of
elementary school materials. We use simplified syntax to fo-



cus on semantic breadth, the range of ideas that can be ex-
pressed in the underlying representation, over syntactic
breadth, the range of surface forms that can be processed.
EA NLU uses Discourse Representation Theory (Kamp &
Reyle 1993), implemented via microtheory inheritance, to
construct a full semantic description of sentence content.
This allows us to handle negation, implication, quantifica-
tion, and counterfactuals, using nested discourse representa-
tion structures (DRSes). Once language processing is com-
plete, these DRSes are converted to standard CycL repre-
sentations and scoped by microtheries.

We use an ontology derived from Cyc (Lenat 1995). Our
knowledge base contains over 110,000 concepts and over
33,000 relations, constrained by over 4 million facts. These
are largely drawn from ResearchCyc, but our group has sup-
plemented them with semantic and lexical information and
support for qualitative and analogical reasoning and learn-
ing. Knowledge is partitioned into over 41,000 microtheo-
ries, which can be linked via inheritance relationships to
form logical environments to support and control reasoning.

Using ResearchCyc representations allows us to leverage
the several person-centuries of work that has gone into its
development and reduces the risk of tailorability, as does us-
ing natural language inputs.

Analogy and the Structure-Mapping Engine
Analogy is an important reasoning and decision-making
tool, and humans use past experiences for understanding and
decision-making (Markman & Medin 2002). The Structure-
Mapping Engine (SME, Forbus et al. 2016) is a computa-
tional model of analogy and similarity based on Gentner’s
structure mapping theory (Gentner, 1983). SME takes in two
structured, relational cases and computes up to three map-
pings between them. A mapping includes correspondences
between the cases, candidate inferences suggested by it, and
a similarity score. If a candidate inference involves an entity
not in the other case, that entity is hypothesized as a skolem.
Running SME across every case in memory would be pro-
hibitively expensive, and implausible for human-scale
memories. MAC/FAC (Forbus et al. 1995) retrieves cases
that may be helpful for analogical reasoning from a case li-
brary, without relying on any indexing scheme. It takes in a
probe case like those used by SME as well as a case library
of other such cases. MAC/FAC efficiently generates re-
mindings, which are SME mappings, for the probe case with
the most similar case retrieved from the case library.

Common Sense Units

We hypothesize that experience, both direct and acquired
from others, is carved up into small, coherent pieces, and
combined via analogical generalization to create probabilis-
tic structures (via SAGE, McLure et al. 2015). These gener-
alizations are not rules, but when applied by analogy can be-
have like rules. They are a stand-in for experience in reason-
ing by analogy about novel situations.
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It has been argued that much of human abduction and pre-
diction might be explained by analogy over experiences and
generalizations constructed from them (Forbus 2015). In
Analogical Chaining (AC, detailed next), analogical retriev-
als are repeatedly performed, each time incorporating into
the probe case previous inferences. Retrieved cases could be
specific situations or larger structures, like scripts (Schank
& Abelson 1977) and frames (Minsky 1974), if they match
the situation well. However, we also propose that experience
is factored into Common Sense Units (CSUs), cases larger
than single facts and smaller than frames or scripts. A CSU
is the set of facts surrounding a particular common plausible
inference. CSUs relate types of events or entities with their
causes or effects. One CSU for love might encode that if one
person loves another, they will strive for positive outcomes
for that person, while another might encode that people are
more forgiving of their loved ones’ flaws than of strangers’.

CSUs are intended to be smaller than situations, making
them more compositional. Such cases are predictive when
the precursor matches the current situation, and explanatory
when the outcome matches the current situation. Since they
include fewer statements they are less specific (in the model
theory sense), and more likely to match to a wide range of
cases, than a larger case containing even more non-overlap-
ping information.

Current Work

Analogical Chaining for Commonsense Reasoning

Many prior models using analogy have treated analogical
reasoning as a one-shot process, where a single analog is re-
trieved and used, or replaced by another if unsatisfactory.
AC, on the other hand, uses the elaboration of a situation by
analogy to retrieve yet more analogs, similar to how chain-
ing in logical inference works.

Figure 1 shows the implementation of Analogical Chain-
ing used here. A Companion has a case library of CSUs that
is a stand-in for some of the commonsense knowledge a hu-
man gains over their lifetime. Natural language descriptions
are read in using EA NLU and stored in the knowledge base.
The system uses the current situation as a probe for
MAC/FAC over the case library. If no mapping is produced,
it seeks another reminding, without cases that were rejected
or previously used. Cases are rejected if they do not generate
candidate inferences or if match constraints are violated.
Match constraints require certain entity types to align in
within-domain mappings and constrain the search space, but
the system operates (but less efficiently) without them. If a
mapping is found, any candidate inferences are asserted into
an inference context, along with statements indicating what
category any skolems belong to. Inferences are placed in
separate contexts based on the facts they are drawn from,
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Figure 1: Analogical Chaining Workflow for Answering COPA Questions

and separately from the case because there is no guarantee
that they are correct. Another retrieval is then performed,
with the probe being the union of the target and the inference
contexts. As the MAC/FAC retrieval determines the case to
be reasoned with, Analogical Chaining performs Best-First
Search, with the SME score being the evaluation function.

If no information was added to the case, the previously
retrieved analog is suppressed to prevent looping. When in-
ferences are made, previously rejected CSUs are freed up
for future retrieval in case they might build off the previous
inferences. The process repeats until an answer has been
found (for a question-answering task) or there are no more
inferences to carry over into the target case. The current sys-
tem is specialized to answer 2-choice multiple choice ques-
tions like those from the Choice of Plausible Alternatives
(COPA, Roemmele et al., 2011) test of commonsense rea-
soning, but this is an easily changed implementation choice.
If the system fails to get an answer, instead of giving up, it
prompts the human user for a relevant CSU, expressed as a
natural language microstory, to help it to get the answer. Mi-
crostories are short (1-3 sentence) pieces of text which con-
vey relationships that can be used as a CSU. These are read
by EA NLU and added to the case library.

There are several potential advantages to this model.
Cases can be dynamically added to the case library and used
immediately. AC enables both inference about what is pre-
sent in the case (filling in implicit relational links) and ab-
ductive explanations and predictions for the case.

Analogy can go awry as well — no reasoning system with
imperfect information and finite resources can always guar-
antee valid results. In particular, cases whose structure con-
sists of mostly common abstract relations can seem applica-
ble to a large variety of situations. Yet AC should provide a
compression of the inference space, in terms of the number
of inferences completed per step and fewer inappropriate
branches explored, compared to logical chaining. The trade-
off is that AC is neither logically sound nor complete.
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Inferences in AC are asserted into new contexts which in-
herit from those that contain the facts from which the infer-
ences are drawn. The following example illustrates the pro-
cess and shows the potential pitfalls of analogical retrieval.
COPA training question 390 asks: “The truck crashed into
the motorcycle on the bridge. What was the result of this?”
The answer choices are that the motorcyclist died, or that the
bridge collapsed. The system started by making several ex-
tremely unlikely hypotheses that few humans would make:
perhaps there was an airplane involved in the crash, and fur-
thermore perhaps the airplane crashed due to a malfunction.
In a new context it then considered that the crash may have
been caused by the truck falling from something, before re-
turning to the first context to speculate about the causes of
the hypothesized airplane’s malfunction. Only after taking
these inferences as far as it could and finding them fruitless
did it retrieve the CSU indicating that if a motorcycle is in-
volved in a crash, the motorcyclist may die (Figure 2).

These initial inferences illustrate how analogical retrieval
can go awry: the retrieved cases share several general struc-
tural predicates (about movements) with the extracted de-
scription of the case, and therefore appear to MAC/FAC to
be the most useful case. Once the system hypothesized an
airplane, it built on that hypothesis as much as it could. The
CSU that allows the system to solve the question, however,

{ Question: Truck crashes into Motorcycle J

l

1: Airplane . 5 6: Motorcyclist
{ involved? J [3'"“”8"' died?

2: Airplane 5: Truck was 7: Answer J

malfunction? dropped? Found

4: Crucial component
malfunction?

Figure 2: Inferences for COPA question 390



largely does not share structures or entity types with the de-
scription: it concerns a motorcyclist (not mentioned in the
question) and death. Postulating an airplane crash only in-
volved the system introducing one new entity, the airplane,
(and once it did, it kept going down that path), whereas find-
ing the right answer involved introducing two: the motorcy-
clist and the event of their death. A larger number of exam-
ples, generalized through SAGE, might help avoid these
problems by emphasizing that motorcycles are often associ-
ated with motorcyclists, but rarely with airplanes.

To test whether AC could be a viable reasoning tech-
nique, an initial implementation of analogical chaining used
CSUs whose representations of entities and events were
generated by EA NLU, but whose causal representations
were hand-edited (at the time of the initial implementation,
EA NLU generated flatter causal representations less useful
to SME, Figure 3, top). This initial AC system solved 6/7
questions from the COPA training set selected for linguistic
simplicity and because several relied on a common piece of
knowledge, to illustrate reuse. For the 7 question, EA NLU
generated an additional answer fact that prevented the sys-
tem from realizing it found an answer. The system was also
able to reason its way to a plausible explanation for the in-
correct answer to several questions, but selected the correct
answer since it required fewer inference steps. AC was nec-
essary since finding every solution required two or three
analogies, and several reused the same piece of knowledge!'.

Having demonstrated AC could be useful under ideal cir-
cumstances (i.e., using CSUs made to express the desired
information in CycL), we turn to enabling the system to
scale up and acquire the knowledge necessary for chaining
without requiring hands-on intervention by an expert on in-
ternal representations. By enabling natural language instruc-
tion of CSUs, we demonstrate how a Companion using AC
can incrementally add to its case base through natural lan-
guage interaction with a human user. This provides further
evidence that AC is a viable commonsense reasoning tech-
nique, and provides an avenue for an AC system to scale up
its usable knowledge without system experts. To do so, we

(isa airplane2569 Airplane)

(isa malfunction2378 Malfunction)

(isa crash2668 ViolentCollision)
(primaryObjectMoving crash2668 airplane2569)
(objectHarmed crash2668 airplane2569)
(causes-EventEvent malfunction2378 crash2668

(isa airplane2569 Airplane)

(isa malfunction2378 Malfunction)
(causes-PropProp

(and (isa airplane2569 Airplane)

(isa malfunction2378 Malfunction))

(isa crash2668 ViolentCollision)
(primaryObjectMoving crash2668 airplane2569
(objectHarmed crash2668 airplane2569)))

(and

Figure 3: “The airplane malfunctioned. This caused the airplane
to crash.” Top: the old EA NLU output. Bottom: the new, more
structured EA NLU output.

! The initial implementation using hand-edited CSUs is described in (Blass
& Forbus 2016). That implementation did not support interactive natural-

extend EA NLU to produce more relational structure from
causal statements at the discourse level, where it previously
generated flat representations less useful to SME.

Natural Language Instruction of CSUs

Addressing the knowledge acquisition bottleneck is crucial,
since any knowledge-rich reasoning technique, including
AC, will not scale if all knowledge has to be hand-repre-
sented. But if most knowledge can be acquired via natural
language interaction, potentially any native speaker be-
comes a teacher, and crowds can be recruited to add CSUs.

This is not an easy task. Any system that takes in natural
language and outputs representations for analogy requires
three things: lexical and grammatical coverage of inputs, the
ability to derive accurate semantics for that input, and the
ability to construct the appropriately nested, structured, re-
lational representations that are useful for analogy. The first
two are the subject of ongoing research. The last requires
representations to be structured, with nested relational struc-
tures where appropriate.

We tweaked EA NLU to generate nested causal structures
for the following two simple narrative patterns expressing
cause and effect: “<Cause>. This causes <effect>." and “If
<cause>, then <effect>.” EA NLU’s coreference resolution
system already automatically resolved the word “this” at the
beginning of a sentence to the DRS for the previous sen-
tence; we changed the causal representations generated by
EA NLU to result in descriptions where large structures
cause each other, instead of ones where only a token for one
event causes the token for another (Figure 3). Note that
while the second pattern expresses a rule in natural
language, its underlying semantics as understood by EA
NLU can be used by SME as a case from which to reason.

We note that while this work relies heavily on NLU, the
goal is not to improve the NLU system. Our goal is to scale
up case learning for analogical reasoning; the NLU system
is a means to an end. We therefore supplement EA NLU’s
capabilities only when its limitations become obstacles
(usually when a word is missing). In the course of
performing this research we also added support for some
previously unknown words, fixed bugs in two grammar
rules, and extended dialogue management to enable
Companions to request, process, and store microstories
appropriately. Vocabulary and grammar limitations are the
primary reason we are currently limited in the number of
COPA questions we can tackle.

Eight COPA questions our system previously did not
attempt can now be solved using CSUs input in English with
the above two constructions (the system can now solve
14/15 questions, p<0.01). Two examples illustrate the
strengths and potential pitfalls of our approach.

language instruction and asserted all inferences into the same inference
context.



(isa candidatel ElectoralCandidate)
(isa vote2 Voting)

(beneficiary vote2 candidatel)
(performs vote2 one3)

(not (isa one3 Person)

(causes-PropProp
(and (isa candidatel ElectoralCandidate)
isa vote2 Voting)
performs vote2 one3)
beneficiary vote2 candidatel)
not (isa one3 Person))
not (isa vote3 Vote)
possesses candidatel vote3)))

(
(
(
(
(and (
(

(isa candidated4 ElectoralCandidate)
(possesses candidate4 vote5
(not (isa vote5 Vote)

(causes-PropProp
(and (isa candidate4 ElectoralCandidate)
(possesses candidated4 vote5)
(not (isa vote5 Vote)))
(isa lose6b LosingAConflict)
(isa election7 Election)
(loser election7 candidated)
(doneBy lose6 candidate4)
(loss lose6 election7)))

(and

Figure 4: Left: “No one votes for a candidate. This causes the candidate to have no votes.” Right: “A candidate has no votes. This causes
the candidate to lose the election.” The question contains the antecedents of the causal statement on the left, which the system uses to infer
the consequents of that statement. These match to the antecedents of the causal statement on the right, which the system uses to infer the

answer to the question.

COPA question 6 in the COPA reads: “The politician lost
the election. What was the cause of this?” Either “He ran
negative campaign ads” or “No one voted for him.” No
previously ontologized CSUs were applicable; after failing
to retrieve a useful case, the system now prompts the user
for a microstory. Two were provided: “No one votes for a
candidate. This causes the candidate to have no votes.” and
“A candidate has no votes. This causes the candidate to lose
the election.” In reading the first, EA NLU understood the
different uses of “votes” and generated appropriate
representations (Figure 4). Note that the microstory used
“candidate” rather than “politician”, which resulted in
different underlying representations. Neither CSU alone
was sufficient to answer the question, but with both, the
system was able to correctly answer the question using AC.

There were ways in which we had to adapt our language
to EA NLU’s capabilities. For example: COPA question 146
reads: “The navy bombed the ship. What happened as a
result?” Either “The ship crashed into the pier” or “The
ship’s debris sunk into the ocean”. Again, two CSUs were
provided: “A ship has debris. This causes the debris to sink
in the sea.” and “George bombed a car. This causes the car’s
debris to exist.” These CSUs illustrate challenges inherent
in the current system. The first case, about sinking debris, is
not strictly true (except perhaps according to a naive
understanding): gravity, being in fluid, and a lack of
buoyancy determine whether debris from a ship will sink.
This illustrates that, language aside, the onus of accuracy is
on the teacher. If one teaches a computer something false, it
may have no trouble believing it. Both CSUs use awkward
phrasing, illustrating the challenge of using that linguistic
construction: without phrasing the stories this way, EA NLU
generates the flatter representations that are not useful to
SME.

Related Work

MoralDM (Dehghani et al., 2008) took in natural-language
descriptions of problems (moral dilemmas) and solved them
by analogy to previously seen cases. The cases used to solve
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these dilemmas were large, highly alignable cases, not the
simple CSUs we have described, and problems were solved
in a single mapping rather than through a repeated process.

Natural language instruction for game learning has been
performed in Companions (Hinrichs & Forbus 2014) as well
as in the SOAR team’s robot ROSIE (Kirk & Laird 2016),
which can learn multiple games via interactive natural lan-
guage instruction from users. ROSIE’s NLU system is
closely tied to physical properties observable by the robot,
which enables it to learn attributes and simple spatial rela-
tions by interaction. Other fruitful work on natural-language
instruction has been done in robotics, but most systems use
keywords to identify instructions (e.g., Klee 2015) or deter-
mine semantics using statistical methods run over a large
training set of commands (e.g. Bisk et al 2016, Cantrell et
al. 2012), which do not have EA NLU’s semantic breadth.

Genesis (Winston 2014) is a story understanding system
that takes commonsense inference rules expressed in tem-
plated English and uses them to understand stories in simple
English. It represents those stories as graphs of events and
relations; these representations can be used for reasoning by
analogy to other stories. As far as we know, multiple stories
in Genesis have not been used to chain together sets of in-
ferences. Though the rules it uses are expressed in templated
English, they are implemented as logical rules, rather than
relational structures to be mapped via analogy.

The closest prior work to AC is derivational analogy, as
implemented in the PRODIGY architecture (Veloso & Car-
bonell 1993). Though this work used multiple analogies,
each ultimately involved hand-crafted logically quantified
knowledge, which could itself be used to do the reasoning.
CSUs start as natural language, and AC does not require a
complete and correct domain theory. Additionally, unlike in
PRODIGY, CSUs are stored and retrieved in AC without
information about how they were previously used.

Much Al research on commonsense reasoning has relied
on formal logic and deductive inference (Davis 1990). Ab-
duction (Hobbs 2006) uses logically quantified domain the-
ories to provide reasonable explanations for situations based
on those theories. Abductive reasoning generally takes the



form of having a rule “P therefore Q”, observing Q, and hy-
pothesizing that perhaps P occurred, explaining Q. Abduc-
tion and other formal logic approaches rely on using large
numbers of logically quantified axioms. CSUs are not logi-
cally quantified and so do not require an expert to generate
them, and applying them by analogy does not require a com-
plete formal domain theory.

The Goldilocks Principle (Finlayson & Winston 2005),
using cases that are neither too small nor too large in ana-
logical matching, helped inspire our thinking about CSUs.

Discussion and Future Work

Discussion

We have shown that a Companion can take in natural-lan-
guage stories illustrating a commonsense principle or exam-
ple, extract reasonably accurate semantic representations of
that story, and immediately use SME over those representa-
tions in analogical chaining. As of this writing we can solve
14 of the 15 COPA QA pairs for which EA NLU currently
extracts accurate semantic representations, given the simpli-
fied syntax the language system supports. Of the 500 ques-
tions in the COPA training set, 285 contain colloquial or id-
iomatic phrases (i.e., “going through a hard time”); of the
nearly 2200 words used in the training set, 56 are not in EA
NLU’s lexicon and another 1136 lack semantic representa-
tions. These counts do not include words with multiple
meanings for which EA NLU does not have all the necessary
semantics, (i.e., ‘buckle’ in the sense of “knees buckling”
rather than “belt buckle”), nor compound phrases whose
constituent semantics are known but have different mean-
ings together (i.e., profits “level off”’). COPA questions
make occasional use of metonymy (“the children ran
through the sprinkler”, instead of “through the water from
the sprinkler”), which results in different representations
than those assumed by a human reader. There are also cer-
tainly some syntactic patterns in the test which we currently
cannot currently handle, but we have not quantified these
gaps. EA NLU’s limited lexical and semantic knowledge, as
well as the instructor’s ability to describe a case accurately
within those limitations, are the main obstacles to scaling up
natural language instruction for analogical chaining.
Scaling this system up relies on EA NLU continuing to
improve, an ongoing and active project (since MAC is data-
parallel and FAC is limited to 3 cases, MAC/FAC should
scale). While simplified syntax may suffice for microstories,
it is important to be able to understand a range of questions
in their original forms. Determining what knowledge is re-
quired and providing microstories which express it to enable
AC to solve a given question takes is fairly quick if EA NLU
understands the QA pairs and the microstories. Diagnosing
and fixing the gaps in EA NLU’s knowledge, however, add
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a significant amount of time to the process, which is why we
currently attempt so few of the COPA questions. Nonethe-
less, as the goal of this work is not to improve the NLU sys-
tem, its limitations do not detract from our conclusion that,
to the extent that the system understands the language pro-
vided, an NLU system that generates structured semantic
representations can be used to incrementally add to and scale
up a case library for analogical reasoning. EA NLU’s capac-
ities are already sufficient for the simple form of natural lan-
guage instruction shown here; as the system improves, so
will the range of useful linguistic constructions (and the
range of COPA questions that can be attempted).

Future Work

As stated, improving EA NLU is an ongoing project. In ad-
dition, we intend to implement the capacity to perform some
disjointness reasoning. AC still considers some fairly
strange alternatives; preventing AC from considering things
that contradict what it already knows will be helpful to avoid
fruitless or nonsensical paths and get to answers faster. Also,
while performing retrievals over the union of inference con-
texts allows AC to use separate inferences in concert to as-
sert new ones, it should instead be retrieving over sets of
consistent inference contexts, which disjointness reasoning
would enable. Incorporating the answer options into the rea-
soning process could help guide reasoning and avoid the
fruitless inference paths such as those presented in Figure 2.
As the CSU library grows, the relevance of retrieved cases
may change, but it is impossible to know without a large
library of CSUs. It is also possible that as the number of
CSUs grows, the heuristic of selecting the correct answer
using the shortest inference chain may need to be revisited.
We are also developing guidelines for microstories to
maximize compositionality. When training the system, we
do not want to simply give it the answer directly, but want
to provide knowledge that will be generally useful in similar
situations. For example, question 165 asks what happens
when a baby pulls its mother’s hair: the baby burps, or the
mother grimaces. We could solve this directly by simply
providing a microstory where hair-pulling leads to wincing,
but this doesn’t help the system actually understand the sit-
uation. Instead, we gave it two microstories: “George pulls
Tom’s hair. This causes Tom to be hurt” and “Mark is hurt.
This causes Mark to grimace.” While one can debate how
much the system truly understands, a representation that al-
lows it to conclude that pain, not only #4is pain, will lead to
grimacing, leads to more general, reusable knowledge.
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