
Cognitive Science 42 (2018) 1110–1145
Copyright © 2017 Cognitive Science Society, Inc. All rights reserved.
ISSN: 0364-0213 print / 1551-6709 online
DOI: 10.1111/cogs.12574

Representing, Running, and Revising Mental Models:
A Computational Model

Scott Friedman,a,b Kenneth Forbus,b Bruce Sherinc

aSmart Information Flow Technologies (SIFT), Minneapolis
bQualitative Reasoning Group, Northwestern University

cSchool of Education and Social Policy, Northwestern University

Received 15 May 2016; received in revised form 16 September 2017; accepted 17 October 2017

Abstract

People use commonsense science knowledge to flexibly explain, predict, and manipulate the

world around them, yet we lack computational models of how this commonsense science knowl-

edge is represented, acquired, utilized, and revised. This is an important challenge for cognitive

science: Building higher order computational models in this area will help characterize one of the

hallmarks of human reasoning, and it will allow us to build more robust reasoning systems. This

paper presents a novel assembled coherence (AC) theory of human conceptual change, whereby

people revise beliefs and mental models by constructing and evaluating explanations using frag-

mentary, globally inconsistent knowledge. We implement AC theory with TIMBER, a computational

model of conceptual change that revises its beliefs and generates human-like explanations in com-

monsense science. TIMBER represents domain knowledge using predicate calculus and qualitative

model fragments, and uses an abductive model formulation algorithm to construct competing

explanations for phenomena. TIMBER then (a) scores competing explanations with respect to previ-

ously accepted beliefs, using a cost function based on simplicity and credibility, (b) identifies a

low-cost, preferred explanation and accepts its constituent beliefs, and then (c) greedily alters pre-

vious explanation preferences to reduce global cost and thereby revise beliefs. Consistency is a

soft constraint in TIMBER; it is biased to select explanations that share consistent beliefs, assump-

tions, and causal structure with its other, preferred explanations. In this paper, we use TIMBER to

simulate the belief changes of students during clinical interviews about how the seasons change.

We show that TIMBER produces and revises a sequence of explanations similar to those of the stu-

dents, which supports the psychological plausibility of AC theory.
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1. Introduction

Constructing causal explanations about physical phenomena—and revising explanations

in light of new information—is a ubiquitous process in our cognitive development and

formal education. This plays an important part in the larger cognitive process of concep-
tual change, where new beliefs and representations are adopted in the presence of con-

flicting beliefs. Unfortunately, we lack large-scale computational models of the mental

representations and processes involved in our conceptual change. This is not for lack of

empirical results in the cognitive science literature: Solid research empirically documents

students’ misconceptions (e.g., Clement, 1982; diSessa et al., 2004; Hestenes et al., 1992;

Ioannides & Vosniadou, 2002; McCloskey, 1983; Vosniadou & Brewer, 1992, 1994) and

identifies instructional interventions that help repair them (e.g., Brown & Clement, 1989;

Chi et al., 1994; Vosniadou et al., 2007). Psychological theories have been proposed to

explain conceptual change (e.g., Carey, 1985, 2009; Chi, 2008; diSessa, 1993; Ohlsson,

2009; Posner et al., 1982; Vosniadou, 1994), but each has gaps, for example, not specify-

ing how knowledge is represented or how competing theories coexist or how explanations

are constructed.

Constructing theories and computational models of human conceptual change are grand

challenges for Cognitive Science. We address three principle aspects of this challenge in

this paper:

1. Representing people’s knowledge about physical phenomena and dynamic systems.

2. Organizing this knowledge such that gaps, misconceptions, and inconsistencies can

exist, yet explanations are still locally coherent (i.e., internally consistent and

usable to explain new and previous phenomena).

3. Flexibly revising knowledge and explanations in light of new information.

This paper describes (a) a novel theory of human conceptual change, (b) an implemen-

tation of the theory with an integrated computational model, and (c) empirical results

comparing the computational model to human novices learning about seasonal change.

We describe these contributions next and relate them to other theories of conceptual

change.

1.1. Outline of assembled coherence theory

We present the assembled coherence (AC) theory of human mental models and con-

ceptual change. AC theory hypothesizes that people’s mental models consist of interlock-

ing pieces, including spatial relations, temporal relations, qualitative influences, and a

hierarchical ontology of categories. These pieces are globally incoherent (i.e., they do not

necessarily share common assumptions or representations; Friedman & Forbus, 2010,

2011) and globally inconsistent (i.e., two or more beliefs might be logically contradictory;

Friedman & Forbus, 2010). People make sense of the world by assembling subsets of

fragmentary knowledge into one or more coherent mental models that explain particular
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behaviors, each with a distinct set of assumptions and causal structure. People evaluate

competing explanations for likelihood, simplicity, and agreement with other beliefs. They

then identify their best rationale for the phenomenon, which we call a preferred explana-
tion. They associate the mental model (i.e., assumptions and causal structures) of the pre-

ferred explanation(s) with the phenomenon being explained, and they retain this

association for subsequent reuse. Consequently, people may be aware of multiple coher-

ent models and mechanism-based explanations for different phenomena, but they may

regard them with different degrees of preference, and these preferences can change over

time. When asked to explain a phenomenon or solve a problem they have explained

before, they utilize fragments—or the entirety—of the mental model associated with the

preferred explanation for that phenomenon.

Under AC theory, people have a reuse bias to leverage assumptions and causal struc-

ture from previous, preferred explanations within new explanations (Friedman & Forbus,

2010, 2011). This increases coherence (i.e., reduces complexity, reduces the number of

assumptions, and increases shared causal structure) across all preferred explanations for

different phenomena. If someone has already committed to a mental model that has pro-

ductively explained and predicted diverse phenomena, it has high practical utility. The

reuse bias promotes coherence across the learner’s knowledge, but it also leads to en-
trenchment in mental models and assumptions, proportional to how pervasively they sup-

port preferred explanations. This means that merely suggesting an alternative account of

the world is unlikely to promote deep conceptual change in a learner; rather, conceptual

change involves (a) recognizing that their current account is incoherent, (b) recognizing

that the new account increases coherence relative to the old model, and (c) incrementally

shifting to the new account by retrospectively explaining phenomena with the new

account.

Assembled coherence theory shares theoretical commitments with other theories of

conceptual change. From the AC theory perspective, constructing explanations for the

sake of internal sensemaking (e.g., Chi, 2000) involves assembling elementary knowledge

elements (e.g., diSessa, 1993; diSessa & Sherin, 1998) with respect to central epistemic

commitments (e.g., Vosniadou & Brewer, 1992, 1994), and this promotes metacognitive

evaluation of mental models for consistency and coherence (e.g., Vosniadou, 2007).

Under AC theory, misconceived mental models that productively explain and predict the

world (despite their incorrectness) will be more resilient to change, all else being equal

(Smith, diSessa, & Roschelle, 1994). Like Carey’s (2009) theory of conceptual change,

AC theory involves building multiple coherent accounts of the world and transitioning

from one to another.

Assembled coherence theory relies on knowledge representation and reasoning for-

malisms from Artificial Intelligence as a theoretical account of how people reason about

continuous physical systems and assemble this knowledge into explanations. People rep-

resent continuous processes (e.g., orbiting, rotation, heat transfer) and causal relationships

between quantities (e.g., the closer something is to a heat source, the greater its tempera-
ture). AC theory draws from qualitative process (QP) theory (Forbus, 1984), reviewed in

Section 2.2, for representation and reasoning formalisms for continuous processes and
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quantities like these. This provides an account of how people reason about continuous

changes in the world and how those changes propagate to other phenomena. AC theory

relies on compositional modeling (Falkenhainer & Forbus, 1991), reviewed in Sec-

tion 2.3, as an account for how people assemble these knowledge components into reusa-

ble mental models and explanations. Using qualitative models and QP theory to simulate

human-like mental models in physical domains is not a new idea; this was an initial moti-

vator for qualitative physics research (Forbus, 1984; Forbus & Gentner, 1997).

Assembled coherence theory makes novel theoretical commitments. For instance, AC

theory hypothesizes that the reason people learn by explaining—called the self-explana-
tion effect (Chi, 2000; Chi et al., 1994)—is due to the learner assembling fragmentary

knowledge into more coherent, preferable, reusable mental models. More generally, AC

theory hypothesizes that fragmentation and coherence—which have historically been

opposing perspectives (diSessa et al., 2004; Ioannides & Vosniadou, 2002)—are actually

different sides of the same coin. Furthermore, AC theory makes representational and

computational commitments about how fragmentary knowledge is represented, assembled

into coherent aggregates, evaluated, and revised. We describe a computational implemen-

tation of AC theory, and then we revisit AC theory in Section 6.

1.2. Outline of the computational model and experiment

Our computational model TIMBER (for Transforming Models & Beliefs via Explanation

& Reflection) implements the AC theory of conceptual change using Artificial Intelli-

gence techniques. TIMBER represents people’s domain knowledge using (a) qualitative

model fragments (e.g., Falkenhainer & Forbus, 1991; Rickel & Porter, 1997) to describe

continuous processes (Forbus, 1984) and complex entity relationships and (b) predicate

calculus expressions to describe entity categories, spatial relations, temporal relations, and

ordinal relations. TIMBER uses explanations to organize knowledge: It records explanatory

structure, competing explanations, and preferences over explanations. It uses an abductive

model formulation algorithm and a meta-level cost function (Friedman, 2012) to model

how people construct and evaluate explanations, respectively. Its cost function assigns

zero cost for assumptions and inferences already used in previous, preferred explanations,

resulting in a bias to reuse existing explanatory structure. It uses a greedy restructuring

algorithm to support incremental belief revision.1

TIMBER has been used to simulate students’ conceptual change in commonsense science

domains including physics (Friedman & Forbus, 2010), biology (Friedman & Forbus,

2011), and the day–night cycle (Friedman, Barbella, & Forbus, 2012). As TIMBER con-

structs and installs new preferences over explanations, it revises the set of beliefs that it

will subsequently be used to explain phenomena, but it still retains the beliefs and

explanatory structure that it no longer prefers. This models the psychological self-expla-

nation effect (Chi, 2000) whereby people repair erroneous mental models by constructing

explanations.2

This paper describes promising results using TIMBER to simulate students’ explanations

and belief revisions during a clinical interview about the changing of the seasons (Sherin,
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Krakowski, & Lee, 2012). To explain a proposition such as Chicago is hotter in its sum-
mer than in its winter, TIMBER performs the following operations:

1. Construct a causal qualitative model to justify the proposition, using model frag-

ments and axioms in domain knowledge.

2. Identify competing explanations within the proposition’s justification structure.

3. Numerically score competing explanations using a cost function, taking previous

explanations and beliefs about other phenomena into consideration.

4. Select and record a preferred explanation.

5. Opportunistically revisit and revise preferred explanation(s) for previously

explained phenomena to further reduce cost (i.e., increase global coherence).

We evaluate TIMBER based on its ability to simulate the students interviewed by Sherin

et al. about seasonal change. The experimenters cataloged the intuitive knowledge that

each student used while explaining the changing of the seasons, including mental models

and propositions regarding the Earth, the sun, heat, and light. They also documented how

students changed their account of the seasons during the course of the interview, when

given new information. In each simulation trial, TIMBER begins with a domain theory cor-

responding to a single student in Sherin et al., encoded using an extension of the Open-

Cyc3 ontology. TIMBER explains the changing of the seasons using this knowledge,

resulting in an intuitive explanation like those described in Sherin et al. Like the student,

TIMBER is then presented the information that Chicago’s summer coincides with Aus-

tralia’s winter. In some trials, this information causes a high-cost inconsistency across

preferred explanations, and TIMBER subsequently revises its explanation preferences to

improve the cost. We compare TIMBER’s explanations and explanation revisions to those

of the students in the initial study.

We begin by discussing research in commonsense science, and then we review Sherin

et al.’s study and the knowledge representation and reasoning techniques used in TIMBER.

We then describe our approach and present simulation results. We close by discussing

related work and future work.

1.2.1. Research on commonsense science
Simulating how people reason about physical phenomena such as the motion of a

tossed ball, the boiling of a pot of water, or the changing of the seasons, is important for

at least two reasons. The first reason is relatively obvious: In order to function as humans

in the world—and to communicate with other humans about the world—we need to learn

and reason about these physical phenomena.

The second, more subtle reason is that in cognitive science, research on what has been

called “commonsense science” has played a uniquely central role. Commonsense science
refers to knowledge of the natural world that is gained outside of formal science instruc-

tion. This includes knowledge gained from direct experience: tossing balls, watching pots

of water boil, and feeling the warmth of direct sunlight. It also includes culturally derived

knowledge, such as the information we gain from conversation and reading. Its impor-

tance has long been recognized in AI (e.g., Hayes, 1978).
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Formal science instruction has become closely related to commonsense science in that

commonsense science knowledge is adapted or replaced as formal scientific knowledge is

gained. This image of formal science education has, in many contexts, come to be taken

as a central example of how learning happens across disciplines. Consequently, research

on commonsense science has taken on additional importance.

Even with this intense focus, there remain fundamental disagreements about the nature

of commonsense science knowledge. On one side of the debate is the theory theory.
According to this view, commonsense science knowledge is coherent, much in the way

that the theories of scientists are coherent. An implication of this view is that students’

commonsense science (i.e., their theories) must be replaced by instruction. On the other

side of the debate is the knowledge-in-pieces perspective. In this view, commonsense

science consists of a large number of fragments that are assembled, in a context-depen-

dent manner, to explain physical phenomena. Educationally, the same fragments that sup-

port incorrect intuitive explanations could be leveraged and reused to support formal

scientific knowledge.

In educationally oriented cognitive science, attempts to resolve this debate have been

largely empirical: Students are given tests, or interviewed, and their responses are exam-

ined for coherence. There have been few attempts to create cognitively precise theories

of commonsense science reasoning, and there have been even fewer efforts to build com-

putationally explicit models of the type of commonsense science reasoning at the heart of

these debates. That is the goal of this paper: to model the reasoning of students in a com-

monsense science interview setting.

From the perspective of AC theory, fragmentation (from the knowledge-in-pieces per-

spective) and coherence (from the theory theory perspective) describe the same knowl-

edge system at different granularities: Fragmented models and beliefs can be fashioned

into larger, coherent explanatory structures, and these structures can be evaluated and

manipulated at a larger granularity to improve global coherence. This is the central prin-

ciple of AC theory and its computational model TIMBER.

1.2.2. How seasons (and explanations) change
Sherin et al.’s study—and our TIMBER simulation thereof—focuses on how people

explain and understand the changing of the seasons. Most people have commonsense

knowledge about the seasons, but the scientifically accepted explanation of how seasons

change poses difficulty even for many scientifically literate adults (Lelliott & Rollnick,

2010; Sherin et al., 2012). This makes it an interesting domain to model belief change

about dynamic systems and commonsense science reasoning.

Sherin et al. interviewed 21 middle school students regarding the changing of the sea-

sons to investigate how students use commonsense science knowledge. Each interview

began with the question “Why is it warmer in the summer and colder in the winter?” fol-

lowed by additional questions and sketching for clarification. After the student elaborated

on their initial explanation, the interviewer would introduce, when appropriate, challenges

to the student’s explanation. For example, if the student’s initial explanation of seasonal

change did not account for different parts of the Earth experiencing different seasons
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simultaneously, the interviewer asked, “Have you heard that when it’s summer [in Chi-

cago], it is winter in Australia?” This additional information, whether familiar or not to

the student, often alerted them to an inconsistency in their account, and they subsequently

revised their explanation. In this way, a student might transition among various intuitive

explanations during an interview. Sherin et al. includes a listing of conceptual knowledge

used by the students during the interviews, including propositional beliefs, general sche-

mas, and fragmentary mental models.

The scientifically accurate explanation of the seasons depends on the fact that the

Earth’s axis of rotation is tilted. As the Earth orbits the sun, the axis of rotation always

points in the same direction. When a hemisphere is inclined toward the sun, it receives

more direct sunlight per unit area than when pointed away, which results in warmer and

cooler temperature, respectively. While 12/21 students mentioned that the Earth’s axis is

tilted, only six of them used this fact in an explanation, and none of these were fully

accurate. This is an important characterization: Some students knew parts of the correct

explanation (e.g., the Earth’s tilt), but they were unable to assemble this with causal
mechanism knowledge to produce a coherent mental model to explain seasonal tempera-

tures. Instead, students frequently explained that the Earth is closer to the sun during the

summer and farther during the winter (Fig. 1).

The interview transcript from the student Angela4 is listed in the online supplementary

material, courtesy of Sherin et al. Angela begins by explaining that the Earth is closer to

the sun in the summer than in the winter, and seasons change as the Earth approaches

and retreats from the sun throughout its orbit. This near-far explanation is illustrated by a

student sketch in Fig. 1. When the interviewer asks Angela if she has heard that Australia

experiences its winter during Chicago’s summer, and whether this is a problem for her

explanation, Angela sees that her explanation is problematic. She eventually changes her

answer by explaining that the spin of the Earth changes the seasons: The parts of the

Earth that face the sun experience their summer, while the parts that face away experi-

ence winter. We call this the facing explanation. Other students used the near-far

(A) 

(B) 

Fig. 1. Common misconception of seasonal change sketched by an interviewee.
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explanation and the facing explanation, and many students mentioned idiosyncratic

knowledge (e.g., they had seen a picture of a sunny day in Antarctica) that influenced

their explanations.

Our TIMBER simulation models how Angela and other students in Sherin et al. create

explanations of dynamic systems from fragmentary knowledge. We vary the knowledge

in our model to simulate different students, some of whom have incomplete knowledge

(e.g., lacking knowledge of causal mechanisms), and others who have misconceptions.

Although the students in Sherin et al. were not given the correct explanation, we include

a simulation trial that has access to the requisite knowledge to show that the model can

simulate both novice and expert reasoning. We next review the qualitative modeling tech-

niques used in TIMBER.

2. Background

We next review qualitative reasoning, QP theory, and compositional modeling, which

are TIMBER’s methods of representing and assembling conceptual knowledge.

2.1. Qualitative reasoning

“Quantity” is not synonymous with “number.” A quantity (e.g., the volume of lemon-

ade in a pitcher) may be assigned a numerical, unit-specific value (e.g., 12 fluid ounces)

at a specific time, but people can very effectively reason about quantities without num-

bers. For instance, we might infer the volume of lemonade in a pitcher with an ordinal

relationship such as “less than the volume of the pitcher” or with a qualitative label such

as “a lot,” based on anchors within our space of experiences (Paritosh, 2004). We can

reason about causality in a similar non-numeric fashion. For example (quantities in ital-

ics), we know that if we increase the angle of the pitcher, the height of the pitcher lip
will decrease. Once the lip decreases below the height of the lemonade, the liquid will

begin flowing, and as we increase the angle of the pitcher, we will increase the rate of
flow. This simple qualitative reasoning used “increase” and “decrease” to capture the sign

of nonzero quantity derivatives over time, and “below” to capture ordinal relationships

between values of two quantities. People can thereby qualitatively reason about continu-

ous quantities, rates of processes, directionalities of change, and ordinal relationships

(i.e., greater than, less than, equal to) between them. Previous work provides methods for

representing and reasoning about processes (e.g., Forbus, 1984) and devices (e.g., de

Kleer & Brown, 1984), and simulating systems provided this knowledge (e.g., Kuipers,

1986).

Novices and experts alike often reason with incomplete and imprecise qualitative

knowledge, especially in situations of informational uncertainty (Trickett & Trafton,

2007). Consider the incorrect near-far novice explanation of how the seasons change

(Fig. 1): the Earth orbits the sun along an elliptical path and is closer to the sun in the

summer than in the winter. This mental model includes no numbers, but relies on
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quantities (e.g., the Earth’s distance from the sun, the Earth’s temperature) and relations

between quantities (e.g., the Earth’s temperature increases as its distance to the sun

decreases). This is qualitative reasoning. We next review methods for representing,

assembling, and reasoning with qualitative models.

2.2. Knowledge representation conventions

We built TIMBER using an extended OpenCyc ontology, and we use OpenCyc conven-

tions to describe TIMBER’s knowledge and algorithms in this paper. We review relevant

knowledge representation conventions here.

The models, inferences, and input knowledge of TIMBER are all relational statements

and composites thereof. A statement such as (greaterThan (Temp mycoffee) (Temp
myspoon)) has a relation (i.e., greaterThan) that traditionally begins with a lowercase

letter and precedes the arguments (i.e., (Temp mycoffee) and (Temp myspoon)). In this

example, both arguments are function terms. Functions can refer to specific dimensions or

properties of entities such as mycoffee and myspoon. Taken together, the statement

asserts a greater than relationship between the temperatures of two entities. In TIMBER,

relational statements describe all spatial, temporal, and quantitative information.

Some statements, such as (isa myspoon Teaspoon), assert category membership with the

isa predicate: The entity myspoon is a member of the Teaspoon category.5 An entity can

be a member of more than one category. Categories are organized into a lattice: If an entity

is a member of a category, it is implicitly a member of all ancestors of that category. The

same is true for relations: If a relation is asserted, all ancestor relations hold implicitly.

2.3. Qualitative process theory

Qualitative process (QP) theory (Forbus, 1984) provides a vocabulary for representing

changes in physical systems. Under QP theory, only processes cause changes in a physi-

cal system. For our example of pouring lemonade in the previous section, processes

include the tilting of the pitcher and the flow of lemonade.

QP theory defines two kinds of qualitative causal relationships between quantities.

Direct influences positively or negatively constrain the derivative of a quantity by the

rates of processes. For example, for a process of liquid flow L,

(i+ (Mass destination) (Rate L))
(i- (Mass source) (Rate L))

Direct influences are additive; if water is flowing into a bathtub at the same rate that

water is flowing out of it via the drain, the mass of the water in the tub has a derivative

of zero (i.e., it is not changing). Direct influences are causal: they describe exactly how a

process directly affects some aspect of the world.

The other type of influence is indirect influences, also known as qualitative proportion-
alities, because they propagate the direct effects of processes. These provide partial infor-

mation about monotonic functional dependence, for example,

1118 S. Friedman, K. Forbus, B. Sherin / Cognitive Science 42 (2018)



(qprop (Level water) (Mass water))
(qprop- (Level water) (Width (Container water)))

The above qprop statement asserts that, all else being equal, when the mass of water

in a container increases, it causes the water level to rise (and if mass decreases, level will

fall). The above qprop- statement asserts that as the width of the container increases

(think of an inflatable swimming pool), the water level will fall (and if width decreases,

level will rise). Unlike direct influences, these indirect influences are algebraic constraints

where changes accumulate over time. For both types of influences, closed world assump-

tions must be made to reason about causal effects.

2.4. Compositional modeling

Model fragments (Falkenhainer & Forbus, 1991) represent physical or conceptual enti-

ties (e.g., the asymmetrical path of a planet’s orbit) and processes (e.g., a planet

approaching and retreating from its sun along that path, as in Fig. 1). Modeling the

common misconception in Fig. 1 involves several such model fragments. Fig. 2 shows

two model fragment types used in the simulation: the conceptual model fragment

ConceptualModelFragmentType AstronomicalHeating
Participants: 
 ?heater HeatSource (providerOf) 
 ?heated AstronomicalBody (consumerOf) 
Constraints: 
 (spatiallyDisjoint ?heater ?heated) 
Conditions: nil 
Consequences: 
 (qprop- (Temp ?heated) (Dist ?heater ?heated)) 
 (qprop (Temp ?heated) (Temp ?heater)) 

QPProcessType Approaching-PeriodicPath
Participants: 
 ?mover AstronomicalBody (objTranslating) 
 ?static AstronomicalBody (to-Generic) 
 ?path Path-Cyclic (alongPath) 
 ?movement Translation-Periodic (translation) 
 ?near-pt ProximalPoint (toLocation) 
 ?far-pt DistalPoint (fromLocation) 
Constraints: 
 (spatiallyDisjoint ?mover ?static) 
 (not (centeredOn ?path ?static)) 
 (objectTranslating ?movement ?mover) 
 (alongPath ?movement ?path) 
 (on-Physical ?far-pt ?path) 
 (on-Physical ?near-pt ?path) 
 (to-Generic ?far-pt ?static) 
 (to-Generic ?near-pt ?static) 
Conditions: 
 (active ?movement) 
 (betweenOnPath ?mover ?far-pt ?near-pt) 
Consequences: 
 (i- (Dist ?static ?mover) (Rate ?self)) 

Fig. 2. AstronomicalHeating (top) and Approaching-PeriodicPath (bottom) model fragment types.
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AstronomicalHeating, and the process Approaching-PeriodicPath. A type of model

fragment can be uniquely defined by its sets of participants, constraints, assumptions, con-

ditions, and consequences. We describe these using the model fragments in Fig. 2 as an

example, where terms preceded by a question mark are variables that can be filled by

observed or assumed entities.

Participants are the entities involved in the phenomenon, such as ?heater in Astronomi-
calHeating. All participants have a variable term (e.g., ?heater), a type, and a role in the

model fragment. Participant ?heater has a type HeatSource, so the proposition (isa The-
Sun HeatSource) must be true for TheSun to fill the ?heater participant role. Participant

?heater has role providerOf within AstronomicalHeating, so (providerOf AH-inst The-
Sun) would be true of any AstronomicalHeating instance AH-inst where TheSun is ?hea-
ter. Entities in the scenario (e.g., TheSun) are bound to participant variables (e.g.,

?heater), using a binding list such as {⟨?heater, TheSun⟩, ⟨?heated, PlanetEarth⟩}.
Constraints are statements about the participants that delimit the model fragment’s

existence. When the constraints hold, an instance of the model fragment type is inferred

as a distinct entity, given the participant bindings. For example, if (spatiallyDisjoint The-
Sun PlanetEarth) is true of HeatSource instance TheSun and AstronomicalBody
instance PlanetEarth, then the participant roles and the constraints hold. Consequently, a

new model fragment instance can be created with bindings {⟨?heater, TheSun⟩,
⟨?heated, PlanetEarth⟩}.

Modeling assumptions describe the granularity, perspectives, and approximations of the

model fragment. These help determine the model fragment’s relevance, since the behavior

of a single physical phenomenon (e.g., light from the sun reaching the Earth) can be

described at multiple granularities (e.g., waves or particles).

Conditions are statements about a model fragment’s participants that delimit its behav-

ioral scope, such as (active ?movement) in Approaching-PeriodicPath. When all condi-

tions of a model fragment instance hold over the participants, the instance is active.
These differ semantically from model fragment constraints (defined above): If the con-

straints are satisfied but the conditions are not, an instance of a model fragment exists,

but it is not active.

Consequences (S) are statements that describe a model fragment instance’s behavior

when it is active. For example, one consequence of AstronomicalHeating—which is

only inferred when the process is active—is that the temperature of ?heated increases as

the distance from ?heater to ?heated decreases, all else being equal.

This technique of instantiating and activating model fragments is known as model for-
mulation (Falkenhainer & Forbus, 1991). Model formulation occurs in a logical context,

called a scenario, containing a partial description of the phenomena to be modeled, such

as propositional facts about HeatSource entities, AstronomicalObject entities, and spa-

tial relations over them. Model fragments are stored within a domain theory comprised of

model fragments and scenario-independent beliefs. Model formulation produces a sce-
nario model consisting of one or more model fragment instances. One model fragment

instance may serve as a participant of another, so the scenario model may have a nested

structure.
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3. TIMBER

Here, we describe the TIMBER computational model, using the results from our simula-

tion of Sherin et al.’s Angela subject, discussed above, as an extended example. For the

Angela trial, TIMBER starts with a set of model fragments for both the near-far explanation

and the facing explanation, since Angela constructed both of these explanations during

the interview without learning these models from the interviewer.

Using the Angela example, we describe TIMBER with a focus on (a) organization of

explanations and domain knowledge; (b) an abductive model formulation algorithm for

building scenario models from model fragments; (c) metareasoning for computing a total

preferential pre-order6 over competing explanations; (d) incorporating new, credible

knowledge; and (e) handling inconsistencies to increase global coherence across preferred

explanations.

3.1. Organizing explanations and domain knowledge

In TIMBER, explanations and their constituent beliefs are organized in a network that

supports metareasoning and conceptual change. A portion of a network from TIMBER’s

Angela trial is shown in Fig. 3. The legend of Fig. 3 labels the key beliefs (facts and

model fragments) for reference (terms labeled f are facts and terms labeled m are model

fragments), but the specific beliefs are not yet important. We describe the network with

respect to this example. To improve readability, we lay out the network on three tiers.

We describe them from bottom to top.

3.1.1. Bottom (domain knowledge) tier
The bottom tier of the network in Fig. 3 contains domain knowledge, including model

fragments and beliefs that are supported by observation or instruction. Domain knowledge

can serve as premises: They need no justification and are believable independently of

explanations they support. Fig. 3 plots a small subset of the propositions and model frag-

ments used in TIMBER’s Angela trial.

3.1.2. Middle (assembly) tier
The middle tier plots inferences—including assumptions, assembled model fragment

instances, and logical assertions—that TIMBER generates while constructing explanations

as well as their justifications (displayed as right-pointing black triangles). This is based

on the justification structure network of a traditional truth-maintenance system (Forbus &

de Kleer, 1993). The antecedents of a justification are adjacent on its left, and its conse-

quences are adjacent on its right. Each justification represents a logical inference: Believ-

ing the antecedents is sufficient for believing the consequences. The assumptions and

justifications in Fig. 3 do not represent all of TIMBER’s inferences; this is a fraction of the

network. Unlike the bottom tier, the inference nodes on this tier are not directly supported

by observation or instruction; they are inferred during the explanation construction
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process. If a belief on this tier is subsequently observed or supported by instruction, it is

moved to the bottom tier.

Some beliefs are explicitly quantified in specific states using temporal quantifiers repre-

sented as white triangles in Fig. 3. Consider the temporal quantifier that justifies f20 with

f18 in Fig. 3. This states that TIMBER believes f20 (i.e., (holdsIn (Interval ChiSummer
ChiWinter) (decreasing (Temp Chicago)))) so long as the belief f18 (i.e., (decreasing
(Temp Chicago))) and all beliefs justifying f18 hold within the state (Interval ChiSum-
mer ChiWinter). This compresses the explanation structure: without these temporal

quantifiers, we would have to store each belief b left of f20 as (holdsIn (Interval
ChiSummer ChiWinter) b). We can decompress the explanation into this explicitly

quantified notation without any loss of information, but we can also perform temporal

reasoning without decompressing.

Legend
f0 (isa earthPath EllipticalPath) f9 (active AH-inst) 
f1 (spatiallyDisjoint earthPath TheSun) f10 (qprop- (Temp PlanetEarth)  

        (Dist TheSun PlanetEarth)) 
f2 (isa TheSun AstronomicalBody) f11 (qprop (Temp PlanetEarth)  

       (Temp TheSun)) 
m0 (isa ProximalPoint ModelFragment) f12 (i+ (Dist TheSun PlanetEarth) 

    (Rate RPP-inst)) 
m1 (isa DistalPoint ModelFragment) f13 (increasing (Temp PlanetEarth)) 
m2 (isa Approaching-Periodic ModelFragment) f14 (decreasing (Temp PlanetEarth)) 
m3 (isa AstronomicalHeating ModelFragment) f15 (qprop (Temp Australia) (Temp PlanetEarth)) 
m4 (isa Retreating-Periodic ModelFragment) f16 (qprop (Temp Chicago) (Temp PlanetEarth)) 
f3 (isa TheSun HeatSource) f17 (increasing (Temp Chicago)) 
f4 (spatiallyDisjoint TheSun PlanetEarth) f18 (decreasing (Temp Chicago)) 
f5 (isa APP-inst Approaching-PeriodicPath) f19 (holdsIn (Interval ChiWinter ChiSummer) 

   (increasing (Temp Chicago))) 
f6 (isa AH-inst AstronomicalHeating) f20 (holdsIn (Interval ChiSummer ChiWinter)  

   (decreasing (Temp Chicago))) 
f7 (isa RPP-inst Retreating-PeriodicPath) f21 (greaterThan (M (Temp Australia) AusSummer) 

             (M (Temp Australia) AusWinter))
f8 (i- (Dist TheSun PlanetEarth)  

    (Rate APP-inst)) 
f22 (greaterThan (M (Temp Chicago) ChiSummer)  

             (M (Temp Chicago) ChiWinter)) 

f21

f19-20

f22

…

…
…

m1

m0
f0-2

m2
m3

m4

f3-4

f6 f9-11

f15

f16

f13

f14
f17-18

x0
x1

logical entailment
temporal quantifier

f5

f7

f8

f12…

…

Fig. 3. A knowledge-based network of explanations (top tier), assembly (middle tier), and domain theory

(bottom tier). Explanations justify seasonal change in Australia (x0) and Chicago (x1). Only key beliefs are

labeled.
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3.1.3. Top (explanation) tier
The top tier plots explanation nodes. Fig. 3 depicts a subset of all explanations con-

structed by TIMBER, plotted with quadrilateral nodes x0 and x1 on the top tier. Each expla-

nation represents a unique well-founded explanation for some situation or belief. A well-

founded explanation for a node n is any set of justifications J = {j0, . . ., jk} such that (a)

node n is justified by jk, (b) all antecedent beliefs of jk—and of all other justifications in

J—are justified by another justification in J, and (c) if any justification is removed, some

justification in J will have an unsupported antecedent. This is based on the concept of

well-founded support from the truth-maintenance system literature (Forbus & de Kleer,

1993).

Each explanation in TIMBER is uniquely defined with the tuple ⟨M, J, B⟩, where

• M is the explanandum: a set of one or more propositions explained by the explana-

tion. In Fig. 3, the explanandum beliefs are at the right.

• J is a set of justifications that comprise a well-founded explanation for M. In

Fig. 3, explanation nodes x0 and x1 have dashed lines to some of their justifications

J, and other lines are omitted for clarity.

• B is the set of beliefs that comprise the explanation, including all antecedents and

consequences of the explanation’s justifications J. This includes domain knowledge

(bottom tier) and inferences/assumptions (middle tier).

Based on these definitions, the network in Fig. 3 describes the shared structure, causal

mechanisms, premises, and temporal quantification of explanations x0 and x1. In the fol-

lowing, we walk through TIMBER’s simulation of the student Angela to describe how TIM-

BER constructs, evaluates, reuses, and revises explanations.

3.2 Creating explanations in TIMBER

Here, we describe how TIMBER explains Chicago’s seasonal change and then subse-

quently explains Australia’s seasonal change, opportunistically reusing beliefs from its

explanation of Chicago’s seasonal change.

3.2.1. Explaining Chicago’s seasons
At the beginning of our Angela trial, we query the system for an explanation of why it

is warmer in Chicago’s summer than in its winter. TIMBER then builds a scenario model to

justify the proposition via model formulation (defined in Section 2). Some model formula-

tion algorithms perform exhaustive forward-chaining to instantiate all model fragments pos-

sible within a scenario (e.g., Forbus, 2010), while others back-chain from a target assertion

and create scenario models that entail the assertion (e.g., Rickel & Porter, 1997). TIMBER’s

algorithm is an improvement of the back-chaining approach used in Friedman and Forbus

(2010, 2011). It initializes a domain context D as a set of model fragments to use in its

explanation. It initializes a scenario context S containing propositional beliefs, for example,

from other previous explanations. S includes model fragment instances from previous

explanations, in order to leverage already inferred causal mechanisms.
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After initialization, TIMBER begins model formulation with the procedure justify-ordi-
nal-proposition, shown in Fig. 4 (Fig. 5). This takes an ordinal (e.g., greaterThan)
proposition m that requires an explanation.7 The algorithm directly justifies the belief by

formulating a compositional qualitative model that logically entails the ordinal proposi-

tion. For our example, we use the following proposition that states that the temperature

of Chicago in greater in its summer than in its winter:

(greaterThan (M (Temp Chicago) ChiSummer) (M (Temp Chicago) ChiWinter))
The M operator from QP theory denotes the measurement of a quantity at a state (e.g.,

(Temp Chicago)) within a given state (e.g., ChiSummer).

We describe TIMBER’s model formulation algorithm using the above inputs, given a

domain theory (D) and scenario description (S) capable of modeling the misconception in

Fig. 1.

When justify-ordinal-proposition is called on the belief that Chicago is warmer in its

summer than its winter, TIMBER binds q to (Temp Chicago), s1 to ChiSummer, and s2 to

ChiWinter. It then queries to determine whether (a) ChiWinter is after ChiSummer and

whether (b) ChiSummer is after ChiWinter. Since both are true, the beliefs f19–20 in

Fig. 3 are encoded to justify the proposition. Next TIMBER must model how (Temp

Justifying ordinal propositions with qualitative models 

global domain D, scenario S

procedure justify-ordinal-proposition (proposition m) 
// here m is of the form (greaterThan (M <q> <s1>) (M <q> <s2>))  
let q, s1, s2 = quantity-of(m), state-1-of(m), state-2-of(m) 
if query S for (after s2 s1) then: justify-quantity-change(q, i-) 
if query S for (after s1 s2) then: justify-quantity-change(q, i+) 

procedure justify-quantity-change (quantity q, direction d) 
// Find direct and indirect influences of q 
// d is either i+ or i-
instantiate-fragments-with-consequence((qprop q ?x)) 
instantiate-fragments-with-consequence((qprop- q ?x)) 
instantiate-fragments-with-consequence((d q ?x))
let Ii = query S for qprops on q. // results are in form (qprop/qprop- q ?x)
for each i in Ii:

let qi = influencing-quantity(i) 
let dc = d if (direction-of-influence(i) == qprop) else opposite(d) 
justify-quantity-change(qi, dc)

Fig. 4. Pseudo-code for back-chaining model formulation.
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Chicago) decreases between ChiSummer and ChiWinter and how it increases between

ChiWinter and ChiSummer. It achieves this via two subsequent invocations:

justify-quantity-change((Temp Chicago), i-)
justify-quantity-change((Temp Chicago), i+)

Abductive model formulation  

global domain D, scenario S

procedure instantiate-fragments-with-consequence (proposition p) 
let F = query D for model fragments with some consequence that unifies with p
for each f in F: 

for each consequence c of f that unifies with p: 
let B = bindings-between(c, p) 
abductive-mf-instantiation(f, B) 

procedure abductive-mf-instantiation (modelfrag m, bindings B) 
// Bindings B may be incomplete. 
// Find participant collections 〉, … , 〈  of m. 
let Pm = participants-of(m) substituted by 〈 〉

// Find the constraints of m. 
let Nm = constraints-of(m) substituted by 〈 〉

// Recursively instantiate participant model fragments. 
for each 〈 〉 in Pm where coll is a Model Fragment type: 

               // Using local constraints Nm, find bindings for the recursive call. 
              let Nf = ground statements in Nm that: 

1. have a participant role of coll as its predicate. 
2. have slot as a first argument. 

let Bf = bindings between participant slots of coll and entities in Nf
// Make a recursive call to instantiate the participant. 
abductive-mf-instantiation(coll, Bf) 

// Compute participant bindings for modelfrag m in D, including incomplete ones. 
let InstanceBindings = query D for bindings of Pm ∧ Nm 
for each I in InstanceBindings: 

// Assume the existence of all unknown participants. 
let UnkParticipants = 〉

for each 〈 〉 in UnkParticipants: 
let e = new-skolem-entity(e, coll) 
set I = replace 〈 〉 with 〈 〉 in I

// Add the constraints, conditions, consequences, and roles to the scenario model.
instantiate-model-fragment(m, I) 

Fig. 5. Pseudo-code for back-chaining model formulation and abductively instantiating model fragments by

assuming the existence of participant entities.
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Notice that these invocations make no mention of ChiWinter and ChiSummer. This
is because the system is building a model of the mechanisms by which the temperature of

Chicago might increase and decrease. These beliefs and causal mechanisms are explicitly

quantified in specific states using temporal quantifiers (white triangles in Fig. 3).

The above invocation justify-quantity-change((Temp Chicago), i-) first instantiates all

model fragments in D that contain a consequence that unifies with one of the following

patterns:

• (qprop (Temp Chicago) ?x): ?x influences Chicago temperature.

• (qprop- (Temp Chicago) ?x): ?x inversely influences Chicago temperature.

• (i- (Temp Chicago) ?x): Process rate ?x directly decreases Chicago tempera-

ture.This locates all mechanisms that can directly (i.e., i-) or indirectly (i.e., qprop
and qprop-) decrease Chicago’s temperature, and instantiates qualitative models

accordingly.

In its Angela trial, TIMBER finds the influence (qprop (Temp Chicago) (Temp Plane-
tEarth)) in its domain theory (plotted as f16 in Fig. 3), asserting that the temperature of

Chicago will decrease if the temperature of the Earth decreases. It next attempts to justify

the Earth’s decrease in temperature (decreasing (Temp PlanetEarth)), plotted as f14 in

Fig. 3. This results in the recursive invocation:

justify-quantity-change((Temp PlanetEarth), i-)

In this recursive invocation, TIMBER invokes instantiate-fragments-with-consequence
(Fig. 5) to locate and instantiate mechanisms that affect decrease the Earth’s temperature.

The procedure finds AstronomicalHeating with relevant consequences, so it invokes

abductive-mf-instantiation (Fig. 5) for model AstronomicalHeating, with {⟨?heated,
PlanetEarth⟩}, so the ?heater participant is unbound. This procedure searches for

and instantiates all AstronomicalHeating instances conforming to the partial binding.

This instantiates a single, complete model fragment instance with participant bindings

{⟨?heated, PlanetEarth⟩, ⟨?heater, TheSun⟩}, producing the statements f9–11 in Fig. 3,

including the model fragment instance’s consequences:

(qprop- (Temp PlanetEarth) (Dist TheSun PlanetEarth))
(qprop (Temp PlanetEarth) (Temp TheSun))

When the procedure next searches for influences of (Temp PlanetEarth), it will find
these statements and justify the Earth’s cooling with an increase in (Dist TheSun
PlanetEarth) or a decrease in (Temp TheSun). This makes another recursive invocation

of justify-quantity-change to justify an increase in (Dist TheSun PlanetEarth). This sub-
sequently composes a Retreating-Periodic instance whose rate increases the Earth’s dis-

tance to the sun (statement f12 in Fig. 3) during part of its orbit around the sun.

We have described how TIMBER justifies Chicago’s decreasing temperature. It justifies

Chicago’s increase in temperature in an analogous fashion, using some of the same model

fragment instances (e.g., the same AstronomicalHeating instance) and some new model

fragments, including an Approaching-Periodic instance whose rate decreases the Earth’s
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distance to the sun (statement f8 in Fig. 3). This justifies the Earth’s increase in temperature

(statement f13 in Fig. 3), and downstream, Chicago’s increase in temperature.

TIMBER justifies Chicago’s seasonal change using mechanisms in its domain knowledge,

but the justification structure may contain multiple, competing explanations. TIMBER cre-

ates a unique explanation node (e.g., x1 in Fig. 3) for each well-founded explanation of

the explanandum. In its simulation of Angela, TIMBER constructs multiple explanations for

Chicago’s seasons, only one of which (x1) is shown in Fig. 3. Consider the following

simplified explanations in English:

• x1: The Earth retreats from the sun for Chicago’s winter and approaches for its

summer (shown in Fig. 3).

• x2: The sun’s temperature decreases for Chicago’s winter and increases for its summer.

• x3: The sun’s temperature decreases for Chicago’s winter, and the Earth approaches

the sun for its summer.

• x4: The Earth retreats from the sun for Chicago’s winter, and the sun’s temperature

increases for its summer.

Explanations {x1, x2, x3, x4} compete with each other to explain the seasons. However,

x2, x3, and x4 are all problematic. Explanations x3 and x4 contain asymmetric quantity

changes in a cyclic state space: A quantity (e.g., the sun’s temperature) changes in the

summer-to-winter interval without returning to its prior value somewhere in the rest of

the cycle. Explanation x2 is not structurally or temporally problematic, but D contains no

model fragments that can describe the process of the sun changing temperature. Conse-

quently, these changes are assumed rather than justified by processes. Assumed quantity

changes are problematic because they represent unexplainable changes in a system. These

are also problematic under the sole mechanism assumption (Forbus, 1984), which states

that all changes in a physical system are the result of processes.8 Just as we have ana-

lyzed and discredited TIMBER’s explanations x2-4 that compete with explanation x1, TIMBER

analyzes its explanations automatically, as we describe next.

3.3. Cost-based epistemic preferences

The cognitive science literature has characterized factors that impact people’s judg-

ments of explanations, including causal simplicity, coverage of observations, goal appeal,

and narrative structure (Lombrozo, 2011). The Artificial Intelligence community has mod-

eled some of these as a posteriori likelihood (Pearl, 1988), constraint satisfaction (Tha-

gard, 2000), assumption counting (Ng & Mooney, 1992), and assumption cost (Charniak

& Shimony, 1990). Unlike previous systems, TIMBER’s evaluates explanations based on

their credibility and causal complexity across all preferred explanations. This implements

Occam’s Razor globally, biasing TIMBER to choose explanations that cohere with others.

TIMBER’s cost function numerically scores the additional complexity that an explana-

tion would incur. It computes this by summing the cost of epistemic artifacts that would

be incurred by preferring that explanation. Epistemic artifacts (hereafter “artifacts”) are

listed in Table 1 with their corresponding numerical costs. If an artifact, such as a model
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fragment, is already used within another preferred explanation, the artifact incurs zero

cost.

The artifacts listed in Table 1 each describe a different dimension of complexity or

conflict: contradictions indicate logical conflicts; asymmetric and assumed quantity

changes indicate systematic conflict; model fragments and model fragment instances indi-

cate qualitative and quantitative complexity, respectively; assumptions indicate uncer-

tainty complexity; and credibility indicates conflict with authority.

TIMBER computes each explanation’s cost by identifying and summing all additional

artifacts that would be incurred if that explanation was preferred. Consequently, when

TIMBER simulates the Sherin et al. interviews, artifacts already incurred by explaining Chi-

cago’s seasons incur no additional cost to explain Australia’s seasons. TIMBER sorts expla-

nations by cost, where lower cost is better, and chooses the lowest-cost explanation as

the preferred explanation for the explanandum. Artifacts grow monotonically with pre-

ferred explanations, and the only way to remove an artifact is to remove a preferred

explanation or replace it with another.

The numerical costs listed in Table 1 were determined empirically to maximize accu-

racy of cognitive simulation of the students in Sherin et al.’s (2012) study, and most of

these artifacts and costs have also been used to simulate students reasoning about the

day–night cycle (Friedman et al., 2012). We do not believe this list of artifacts is com-

plete, and we discuss opportunities for expanding and refining these in future work.

3.3.1. Explaining Australia’s seasons
At this point, TIMBER has constructed and chosen a preferred explanation for Chicago’s

seasonal change. We next query TIMBER for an explanation of why Australia is warmer in

its summer than in its winter. This again invokes justify-ordinal-proposition to construct

Table 1

Epistemic artifacts used in our simulation, including numerical costs and conditions for existence

Artifact: Cost Artifact Belief Constituents

Contradiction: 100 Any set of inconsistent beliefs B such that no proper subset thereof is inconsistent

Asymmetric

quantity change:

40

A quantity change in an explanation x that does not have a reciprocal quantity change

in a cyclical state-space

Assumed quantity

change: 30

A quantity increase or decrease that has no influencing process or influence. Processes

are the mechanisms of change in a physical system (Forbus, 1984), so the lack of an

influencing process is an anomalous behavior

Model fragment: 4 Beliefs of form (isa mf ModelFragment), where mf is a model fragment, e.g.,

AstronomicalHeating
Model fragment

instance: 2

A belief of form (isa inst mf) where inst is the instance name and mf is the model

fragment type, e.g., (isa mfi0 AstronomicalHeating)
Credibility:

[�1,000, 0)

A belief communicated from another source. The utility (i.e., negative cost) of the

artifact is proportional to the credibility of the source, e.g., the student Angela states

that she learned about Earth’s orbit from second grade (see online supplementary

material)
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explanations for Australia’s seasons. When TIMBER chooses among competing explana-

tions for Australia’s seasons using the cost function, the cost of each explanation is influ-

enced by the explanations it presently prefers (e.g., x1 preferentially explains Chicago’s

seasons). As described above, TIMBER’s zero-cost reuse of existing artifacts biases it to

choose a low-cost near-far explanation for Australia’s seasons (x0 in Fig. 3) that shares

most of its causal model with the preferred explanation for Chicago’s seasons (x1 in

Fig. 3).

3.4. Comparing TIMBER explanations to student explanations

At this point, we want TIMBER to describe the mechanisms that cause seasonal change

and temperature change. Sherin et al. do not give the interviewees a pretest or posttest;

rather, they ask the student to explain it freely. Generating causal explanations in English

is outside the scope of this research, so we have TIMBER describe causal models using

influence graphs as illustrated in Fig. 6. Given one or more explanations, TIMBER automat-

ically constructs an influence graph by (a) creating a vertex for each quantity described

in the explanation and (b) creating a directed edge for every influence described in the

explanation. In the case of Fig. 6, TIMBER graphs the two preferred explanations where

Australia’s seasons and Chicago’s seasons are jointly explained with the same mecha-

nisms.

The majority of the influence graph in Fig. 6 describes continuous causal mechanisms

common to both explanations. The only explanation-specific components are the tempera-

tures of Chicago and Australia and their qualitative proportionalities to the temperature of

the Earth. This illustrates how TIMBER reuses knowledge across explanations and explains

phenomena with existing causal structure, thereby implementing the reuse bias of AC

Temp(Chi) Temp(Aus)

Dist(Earth,Sun)

P-Rate(Retreat) P-Rate(Approach)

i+ i-

q+

q-

q+

[ChiWin→ChiSum];
[AusWin→AusSum]

[ChiSum→ChiWin];
[AusSum→AusWin]

P-Rate(EarthTranslating)
q+ q+

Temp(Earth)

Fig. 6. An influence diagram of the near–far explanation of both Chicago’s (Chi) and Australia’s (Aus) sea-

sons. Nodes are quantities and edges describe positive and negative direct influences (i+, i�) and indirect

influences (q+, q�). Bracketed ranges quantify process activity.
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theory. Even though explanations exist as separate compositions in AC theory (and in the

computational model TIMBER), they share significant fragmentary knowledge.

3.5. Accommodating new, credible information in TIMBER

Thus far, we have described how TIMBER constructs and computes preferences for the

two explanations plotted in Fig. 3: one for how Chicago’s seasons change (x1) and another

for how Australia’s seasons change (x0). Other explanations for Chicago’s and Australia’s

seasons exist in TIMBER, but they are not preferred since they incur a greater cost.

In Sherin et al.’s study, recall that if a student’s explanation did not account for differ-

ent seasons in different parts on the Earth—like TIMBER’s presently preferred explanations

—the interviewer asked them whether they were aware that Chicago’s winter coincided

with Australia’s summer. This caused some students, including Angela, to revise their

explanation of seasonal change. We describe how TIMBER models these students by incor-

porating new information and subsequently revising its preferred explanations.

To begin, we add the opposite seasons information to TIMBER’s domain knowledge as

the following four statements:

(cotemporal ChiSummer AusWinter)
(cotemporal ChiAutumn AusSpring)
(cotemporal ChiWinter AusSummer)
(cotemporal ChiSpring AusAutmn)

These statements are from a trusted source, so each has a credibility artifact of cost

�1,000 (recall that negative cost indicates positive utility). TIMBER will receive this high

utility while these statements exist in its preferred knowledge.

After adding these statements to domain knowledge and receiving high utility, TIMBER

searches for contradictions across its preferred explanations (e.g., x0 and x1 in Fig. 3) and

preferred domain knowledge. This uses domain-general rules for detecting logical incon-

sistencies (i.e., believing a belief and its negation), ordinal inconsistencies (i.e., greater-

than and less-than conflicts), and derivative inconsistencies (i.e., when a quantity is simul-

taneously increasing and decreasing).

In the ongoing Angela example, consider the near-far Australia explanation x0 with

constituent beliefs B0 and the near-far Chicago explanation x1 with constituent beliefs B1.

The following statements—among many others—are included in these belief sets:

B0 includes the statement between Australia’s summer and winter, the Earth cools:

(holdsIn (Interval AusSummer AusWinter) (decreasing (Temp PlanetEarth)))

B1 includes the statement between Chicago’s winter and summer, the Earth warms:

(holdsIn (Interval ChiWinter ChiSummer) (increasing (Temp PlanetEarth)))

Before the opposite seasons statements were incorporated, B0 and B1 were globally

consistent. Afterward, however, TIMBER infers that (Interval AusSummer AusWinter)
coincides with (Interval ChiWinter ChiSummer) and the Earth’s temperature is
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believed to increase and decrease simultaneously. TIMBER detects that this contradiction

creates a contradiction artifact over the following four statements:

(cotemporal ChiSummer AusWinter)
(cotemporal ChiWinter AusSummer)
(holdsIn (Interval AusSummer AusWinter) (decreasing (Temp PlanetEarth)))
(holdsIn (Interval ChiWinter ChiSummer) (increasing (Temp PlanetEarth)))

In all, TIMBER detects four contradictions between these explanations due to simultane-

ous increase and decrease in the Earth’s temperature and simultaneous increase and

decrease in Earth’s distance to the sun. Artifacts are created for these four contradictions,

incurring a total cost of 400.

TIMBER uses contradiction artifacts as triggers to change its preferred explanations and

preferred domain knowledge. Since TIMBER will use preferred explanations and domain

knowledge to explain new phenomena, revising these preferences also revises its usable

beliefs. There is no guarantee that TIMBER will find a lower cost preference assignment,

so these contradictions may persist across explanations and credible domain knowledge

indefinitely.

TIMBER’s belief revision procedure is called restructure-around-artifact, shown in

Fig. 7. Given an artifact (e.g., contradiction), it attempts to reduce cost by removing one

or more of the beliefs supporting the artifact. For the Angela example, the procedure

identifies domain knowledge supporting the contradiction, including the two cotemporal
statements, and it identifies explanandums whose explanations support the contradiction,

including Chicago’s seasonal change and Australia’s seasonal change. For each support-

ing belief in preferred domain knowledge, it computes whether revoking the belief’s pre-

ferred status will lower the overall cost. Revoking preference for (cotemporal
ChiSummer AusWinter) will remove all four contradictions for a cost reduction of 400,

but it would lose the credibility benefit for a cost increase of 1000, so this is not desir-

able. The same is true of revoking preference for (cotemporal ChiWinter
AusSummer).

For each supporting phenomenon, TIMBER recomputes the lowest cost explanation. For

example, changing Chicago’s near-far explanation to the facing explanation described

above removes preference for the beliefs that the Earth’s temperature and the Earth–sun
distance changes during Chicago’s seasonal intervals. The facing explanation was not ini-

tially the lowest-cost explanation for Chicago’s seasons, but these contradictions have

since made the two near-far explanations much more costly.

When TIMBER changes its preferred explanation for Chicago’s seasons to the facing

explanation, it disables all four contradictions. TIMBER still processes the final explanan-

dum (i.e., Australia’s seasonal change) that initially supported the contradictions, and it

computes a cost reduction by revising Australia’s seasons to a facing explanation,

because using the same model fragments, model fragment instances, and assumptions as

Chicago’s newly preferred explanation (i.e., the facing model) is less expensive. TIMBER

then iterates through the same domain knowledge and explanandums again to compute

additional revisions that reduce cost. Finding none, the belief revision procedure
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terminates. The procedure is guaranteed to converge because it only performs belief revi-

sion if cost can be reduced, and cost cannot be reduced infinitely. Restructuring is a

greedy algorithm, so it is not guaranteed to find the optimal cost configuration of expla-

nation preferences.

After TIMBER’s belief revision in the Angela example, Chicago’s and Australia’s sea-

sons are both explained by the facing model. The influence graph for both preferred

explanations is shown in Fig. 8. Both explanations use RotatingToward and Rotat-
ingAway processes to explain change in temperature, the rates of which are qualitatively

proportional to the rate of the Earth’s rotation.

Locally restructuring the Knowledge Base 

〈 〉〉

〉

function restructure-around-artifact (artifact 〈 〉) 
// Find supporting proposition, explanation  mappings. 

// Find supporting beliefs in the domain theory. 

// Iterate until no further local revisions are made. 

while revised: 
set revised = false 
// Attempt to find a new explanation for proposition ma 
for each ma in Ma: 

// Find existing well-founded explanations for m. 

// Find the least cost explanation. 

// Make the least cost explanation the best explanation, if not already. 
if 〈 〉  then: 

replace 〈 ,∗〉 with 〈 〉 in 
set revised = true

// Attempt to remove beliefs from the domain theory. 
for each d in Da: 

// If this belief can be retracted to reduce cost, retract it. 
if retraction-savings(d) > 0 then

// Remove d from adopted beliefs. 
set =
set revised = true 

Fig. 7. Algorithm for restructuring knowledge based on the presence of a high-cost artifact.

1132 S. Friedman, K. Forbus, B. Sherin / Cognitive Science 42 (2018)



Like the student Angela, TIMBER begins by explaining the seasons with a near-far

explanation and ends the trial with a facing explanation. As described below, we simulate

five of the students from Sherin et al.’s study, including Angela.

4. Simulation

We next compare simulation results of TIMBER against the interview transcripts of stu-

dents in Sherin et al.’s (2012) study, describing our methodology for encoding student

knowledge, our experimental setup, and our results.

For computationally validating AC theory and modeling students’ commonsense

science reasoning, we are interested in TIMBER’s ability to (a) explain the changing

of the seasons using causal models similar to the interviewed students, (b)

identify inconsistencies in its causal models when given information from the

interview about Chicago’s and Australia’s seasons, and (c) revise its causal models

and explanations when given new information in similar ways as the interviewed

students.

4.1. Method

The experimenters in Sherin et al. (2012) provided us with a spreadsheet describ-

ing domain-relevant beliefs and mental model components of the interviewed stu-

dents. This included the following types of knowledge: topic-specific propositions

(e.g., “the sun is a source of heat and light”); general causal schemas (e.g.,

“closer/farther from a source provides greater/less effect of the source” and “facing/
not-facing a source provides greater/less effect of the source”); mental models (e.g.,

“Earth orbits sun in an ellipse” and “Earth rotates”); and ordinal or qualitative
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Fig. 8. An influence diagram of the facing explanation of both Chicago’s (Chi) and Australia’s (Aus) seasons.
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beliefs (e.g., “A is warmer than B,” “A is far from the equator,” and “A is warm”).
Sherin et al. described these knowledge components in English, so we constructed

the corresponding formal knowledge representations by hand: We use model frag-

ments to represent knowledge about continuous changes, Horn clauses to represent

if-then knowledge, and predicate calculus statements to represent propositional

beliefs. By using the OpenCyc ontology whenever possible, we reduce tailorability

in our representations.

We implemented TIMBER using the Companion cognitive architecture (Forbus, Klenk,

& Hinrichs, 2009). In each trial, TIMBER starts with hand-coded domain knowledge per-

taining to one or more students from Sherin et al., but no explanations have been con-

structed. In terms of Fig. 3, the starting state of TIMBER consists only of the domain

knowledge nodes on the bottom tier of the network. We first ask TIMBER to explain Chi-

cago’s and Australia’s seasons, then we provide TIMBER with the opposite seasons infor-

mation, and finally, we ask it to explain the seasons again, to assess how and whether it

revised its explanations.

The individual differences in the students within the interviews involve more than just

variations in domain knowledge. Some students strongly associate some beliefs with the

seasons, for example, that the Earth’s axis is tilted, without knowing the exact mecha-

nism. We model gaps in mechanism knowledge by excluding model fragments. Other stu-

dents start with a preference for one mechanism and then they transition to another. We

model these initial explanatory biases, for example, in the Deidra and Angela trial below,

using a priori credibility artifacts.

4.2. Results

Here, we describe the results of TIMBER’s simulation of student interviews from Sherin

et al. (2012) according to the methods described above. We describe specifics about

inputs and results of each student group in each trial below.

4.2.1. Ali and Kurt trial
To simulate these two students, TIMBER’s domain knowledge includes (a) the Earth

rotates on a tilted axis, (b) temperature is qualitatively proportional to sunlight, and (c)

the Earth orbits the sun. However, there is no knowledge that each hemisphere is tilted

toward and away during the orbit. Consequently, TIMBER computes nine explanations for

both Chicago and Australia, and computes a preference for the facing explanations shown

in Fig. 8, with a cost of 56. This explanation is consistent with the opposite seasons

information, so no revision occurs as a result: Like Ali and Kurt, TIMBER starts and ends

with the facing explanation.

4.2.2. Deidra and Angela trial
TIMBER’s initial domain knowledge includes (a) the Earth rotates, (b) the Earth orbits

the sun and is sometimes closer and sometimes farther, and (c) amount of sunlight and

distance from the sun both affect temperature. To model Deidra and Angela’s preference
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for the distance-based explanation, we used a credibility assertion on TIMBER’s model

fragments Approaching-PeriodicPath and Retreating-PeriodicPath, since Angela men-

tions that she learned about Earth’s orbit behavior in second grade (see online supplemen-

tary material). Under these parameter settings, TIMBER constructs 16 explanations9 and

computes a preference for the near-far explanations graphed in Fig. 6, with a cost of 56.

TIMBER also created facing explanations graphed in Fig. 8 with a cost of 66. The credibil-

ity artifact makes the near-far explanation preferable to the facing explanation. When

confronted with the opposite seasons information, TIMBER, like the students Deidra and

Angela, detects contradictions and revises its preferred explanation from the near-far

explanations to the facing explanations.

4.2.3. Amanda trial
In Sherin et al.’s interview, Amanda mentions two influences on Chicago’s tempera-

ture: (a) the distance to the sun due to the tilt of the Earth, and (b) the amount of

sunlight, also due to the tilt of the Earth. By the end of the interview, she settles on

the latter; however, she could not identify the mechanism by which the tilt changes

throughout the year.

TIMBER uses the following domain knowledge to simulate Amanda: (a) the Earth

rotates on a tilted axis, (b) when a hemisphere is tilted toward the sun, it receives more

sunlight and is closer to the sun, and (c) sunlight and distance to the sun both affect tem-

perature. TIMBER produced the two explanations in Fig. 9a (i.e., tilt affects temperature

via distance from the sun) and Fig. 9b (i.e., tilt affects temperature via direct sunlight),

where neither explanation includes a causal mechanism affecting the Earth’s tilt. Fig. 9b

was the final model that TIMBER—and Amanda—chose as a final explanation.

4.2.4. Amanda (correct explanation) trial
To demonstrate TIMBER’s ability to generate a scientifically correct explanation, we

repeated the Amanda trial with additional model fragments: (a) TiltingToward: a hemi-

sphere of the Earth tilts toward the sun due to orbit along a tilted axis; and (b) Tilt-
ingAway: a hemisphere tilts away due to orbit along a tilted axis. TIMBER produced the

graphs in Fig. 9c,d. The explanation in Fig. 9d is a simplified, scientifically correct model

of seasonal change.

We have shown that TIMBER is able to (a) construct student explanations from

Sherin et al. and (b) alter its preferred explanations similar to the way students did

when confronted with an inconsistency. Furthermore, in the Amanda trial, we provided

additional process models to demonstrate that TIMBER can construct a simplified cor-

rect explanation.

5. Related work

Like TIMBER, other cognitive systems extend and revise their knowledge by construct-

ing or evaluating explanations. We discuss several lines of related research.
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ECHO (Thagard, 2000) is a connectionist model that uses constraint satisfaction to

judge hypotheses by their explanatory coherence. ECHO creates excitatory and inhibitory

links between consistent and inconsistent propositions, respectively. Its “winner take all”

network means that it cannot distinguish between there being no evidence for competing

propositions versus balanced conflicting evidence for them. ECHO requires a full

explanatory structure as its input. By contrast, TIMBER generates its own justification

structure from fragmentary domain knowledge, and then evaluates it along several dimen-

sions via metareasoning.

Other systems construct explanations using abduction. For example, the system

described in Molineaux, Kuter, and Klenk (2011) diagnoses failure through abductive

explanation. Abduction increases the system’s knowledge of hidden variables, and conse-

quently it improves the performance of planning in partially observable environments.

Similarly, ACCEL (Ng & Mooney, 1992) creates multiple explanations via abduction and

then uses simplicity and set-coverage metrics to determine which is best. When diagnos-

ing dynamic systems, ACCEL makes assumptions about the state of components (e.g., a

component is abnormal or in a known fault mode) and minimizes the number of
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Fig. 9. Influence graphs for additional explanations produced by the simulation: (a) and (c) describe the tilt

of the axis affecting each hemisphere’s distance to the sun, thereby affecting temperature; (b) and (d)

describe the tilt of the axis affecting direct sunlight to each hemisphere, affecting temperature. Explanations

(c) and (d) contain a mechanism for the Earth’s tilt, and (d) is a simplified, correct explanation of the sea-

sons.
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assumptions used. TIMBER’s explanation evaluation is more complex: It can assume any

model fragment condition; some assumptions (e.g., quantity changes) are more expensive

than others; and additional artifacts (e.g., model fragment types and instances) are penal-

ized within explanations. In cost-based abduction (e.g., Charniak & Shimony, 1990; San-

tos, 1994) the goal is to find a least-cost proof (LCP) where each assumption has a

weighted cost. Unlike traditional cost-based abduction, TIMBER’s cost function evaluates

an explanation’s contents with respect to preferred knowledge outside of the explanation,

allowing it to shift explanations and revise beliefs, thus changing its evaluation of future

explanations.

Recent research focuses on evaluating explanations with respect to properties not

implemented in TIMBER’s cost function. For example, Licato, Sun, and Bringsjord (2014)

describe methods for specifying and tuning a cognitive architecture’s explanation prefer-

ences, for example, to prefer intentional explanations or mechanism-based explanations.

Additional research has characterized the role of analogy and similarity for generating

and evaluating explanations (e.g., Gentner & Markman, 1997; Hummel, Licato, & Bring-

sjord, 2014), including in scientific domains (e.g., Gentner et al., 1997; Nersessian, 2010;

Thagard & Litt, 2012). Our TIMBER simulation of Sherin et al.’s student interviews does

not involve analogy, but we have used analogy with TIMBER to transfer knowledge across

domains and promote conceptual change (Friedman et al., 2012). This models people’s

tendency to retain highly contextualized misconceptions (Collins & Gentner, 1987;

diSessa et al., 2004) despite also knowing scientifically correct models (Clement, 1982).

Creating and revising explanations is part of the larger cognitive process of conceptual

change. INTHELEX (Esposito, Semeraro, Fanizzi, & Ferilli, 2000) is an incremental the-

ory revision program that has modeled conceptual change as supervised learning. INTHE-

LEX uses Datalog clauses as its knowledge representation, which is insufficient for

explaining the behavior of dynamic systems, such as the seasonal change study presented

here. Furthermore, INTHELEX implements belief revision as theory refinement, so it

revises its logical theories when it encounters an inconsistency, instead of reformulating

explanations using new and existing knowledge.

Learning by explaining is an established method in Artificial Intelligence. Many sys-

tems that perform explanation-based learning (EBL) (DeJong, 1993) create new knowl-

edge by chunking explanation structure into single rules (Laird, Newell, & Rosenbloom,

1987). Chunking speeds up future reasoning by avoiding operations when a chunked rule

exists, but it does not alter the deductive closure or preferences over domain knowledge,

so it cannot simulate belief revision.

Research in AI and philosophy has produced logical criteria for belief revision in

response to observations. Alchourr�on, G€ardenfors, and Makinson (1985) describe postu-

lates of rational revision operations for a deductively closed propositional knowledge

base, and Katsuno and Mendelzon’s (1991) theorem equates these postulates to a revision

mechanism based on total pre-orders over prospective knowledge bases. Unlike these

globally consistent approaches, TIMBER does not maintain a globally consistent, deduc-

tively closed knowledge base; instead, TIMBER uses soft constraints and a greedy restruc-

turing algorithm to attempt to approach consistency. This helps TIMBER model human-like
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reasoning: Competing explanations and models may be simultaneously entertained and

compared, but it has a bias for coherence within and across explanations and the mecha-

nism-based models they contain.

6. Discussion

This paper presented the AC theory of how people represent, assemble, run, and revise

mental models in commonsense science domains. We also described the TIMBER computa-

tional model of the theory and we presented empirical results of TIMBER simulating how

students construct and revise explanations. Our simulation results provide empirical evi-

dence of the following:

1. TIMBER’s knowledge representations, including compositional qualitative models,

can simulate students’ knowledge in this commonsense science domain.

2. Fragmentary, globally inconsistent knowledge can be assembled into coherent mod-

els and then evaluated and manipulated as larger constructs.

3. When new information disturbs consistency or coherence, fragmentary domain

knowledge can be reassembled into more preferred, globally coherent constructs.

These results suggest that AC theory and TIMBER provide a plausible computational

account of how people’s reason with—and repair—their mental models in commonsense

science domains. We demonstrated these capabilities by modeling novices rather than

experts, since expert knowledge is more consistent, more complete, and less prone to

large-scale revision.

We have previously used TIMBER to simulate students’ reasoning and conceptual

change when learning about the day-night cycle (Friedman et al., 2012), and we have

used subsets of TIMBER to simulate students learning biology (Friedman & Forbus, 2011)

and physics (Friedman & Forbus, 2010). This provides evidence that the representations

and algorithms of TIMBER apply generally to commonsense science domains. We next

revisit the key ideas of AC theory, and we discuss some opportunities for future work in

making more adaptable cognitive models and autonomous learning systems using the

methods in TIMBER.

6.1. Compositional coherence: In theory and in implementation

Unlike most other theories of conceptual change and mental models, AC theory has a

working computational model capable of simulating students in commonsense science set-

tings. Like any cognitive model, some properties of the computer model (i.e., TIMBER) do

not reflect commitments of the theory (AC theory). We discuss these commitments here.

From a knowledge representation perspective, AC theory hypothesizes that people use

qualitative, relational, and symbolic representations to describe space, time, entities, and

processes. People reuse these symbolic relational structures individually (e.g., TIMBER’s

beliefs) or as operationalized aggregates (e.g., TIMBER’s model fragments) to build and
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rebuild mental models to explain and predict phenomena in the world. TIMBER uses the

OpenCyc ontology, but other ontologies that are rich enough to support qualitative repre-

sentations would work as well. AC theory is not committed to any specific predicate cal-

culus statements or model fragments existing in a learner (cf. diSessa, 1993); rather, we

reused relational beliefs and model fragments across TIMBER’s simulation trials of differ-

ent students based on available data.

From an algorithmic perspective, TIMBER models the following key cognitive processes

of AC theory: (a) assembling fragmentary knowledge into coherent explanatory aggre-

gates; (b) evaluating competing rationale to identify a preferred explanation for a phe-

nomenon; (c) incorporating new knowledge via observation or instruction; and (d)

revising preferences to increase global coherence. We discuss some of these processes in

TIMBER that are less cognitively plausible, and hence targets for future work.

At present, we believe that TIMBER is doing much more computation than people to

construct the same explanations. For example, TIMBER computed and evaluated 36 expla-

nations in the Deidra and Angela trial. People probably use a more incremental approach

to explanation construction, where they interleave meta-level analysis within their model

formulation strategies. Using a narrower back-chaining algorithm in TIMBER would avoid

reifying explanations (such as x2–4 described above) that are known to be structurally

problematic or incomplete. In previous work (e.g., Friedman & Forbus, 2010, 2011), we

demonstrate TIMBER using a model of similarity-based retrieval (Forbus, Gentner, & Law,

1995) to find similar problems and reuse the model fragments and beliefs from the corre-

sponding preferred explanation(s). This further prevents TIMBER from generating a cogni-

tively implausible and intractable number of explanations.

We see value in adding heuristic search to selectively reify explanations. For instance,

Thagard (2007) suggests that explanations of greater depth (i.e., deeper justification struc-

ture to serve as rationale) have higher likelihood of correctness over time, so TIMBER

might utilize a depth heuristic within a beam search through the abductive explanation

space. Whether a depth-biased beam search will more accurately model human explana-

tion construction is an empirical question.

TIMBER evaluates explanations with respect to its domain knowledge and other pre-

ferred explanations, using a numerical relative cost function. This causes TIMBER to favor

explanations that cohere with preferred knowledge, thus modeling the reuse bias of AC

theory. As noted earlier, the numerical costs were empirically derived and we do not

believe the list of artifacts is complete. Since costs are expressed declaratively in the

model, they might be learnable and/or adaptable over time. TIMBER does not currently

simulate anomaly response strategies (Chinn & Brewer, 1998) or the development of

metacognitive awareness thereof (Vosniadou, 2007).

We believe that learning by instruction involves reflecting on how the new informa-

tion coheres or conflicts with existing knowledge. At present, TIMBER incorporates

information (e.g., that Chicago and Australia experience opposite seasons), by adding

it to domain knowledge and then using declarative heuristics to instantiate epistemic

artifacts (e.g., for credibility and contradictions). We do not believe that people simi-

larly identify all inconsistencies against new information, but Sherin et al.’s results
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suggest that the students can easily detect when new information contradicts a

recently used mental model.

TIMBER formulates mental model repair as a constrained optimization problem: it

repairs its knowledge (i.e., revises epistemic preferences) to reduce cost (i.e., contradic-

tions and complexity). Its reconstruction algorithm has the following computational con-

sequences:

• The greedy algorithm biases TIMBER to retain as many existing preferences as possi-

ble, all else being equal. This conservatism in belief revision is not a new idea; it

has been observed in both students and scientists (Chinn & Brewer, 1993) and has

been proposed in the philosophical belief revision literature (e.g., Alchourr�on et al.,

1985; Doyle, 1991).

• By making a series of local cost reductions, TIMBER’s reconstruction is an any-time,

incremental, amortizable algorithm: It can partially reduce cost, stop, and resume

restructuring later, retaining stability throughout (i.e., each phenomenon still has a

preferred explanation). Incrementality is an important property, since human con-

ceptual change is a prolonged process (Carey, 2009; Gentner et al., 1997).

• Contradictions are allowed in the knowledge base (i.e., they do not strictly prevent

the adoption of new beliefs), but they are early targets for the restructuring algo-

rithm, as demonstrated in our simulations.

• The conservative, incremental behavior of the restructuring algorithm helps TIMBER

maintain tractability as it accrues knowledge and explanations over time. We

believe these are important principles of models of human conceptual learning.

6.2. Social, emotional, and political considerations

Assembled coherence theory and its TIMBER computational implementation do not cur-

rently model social, emotional, and political considerations, aside from representing credi-

bility of knowledge gained from other sources. Such factors are important for

understanding cognition more broadly (Abelson, 1979), but we note that the cognitive

science literature on conceptual change in science education, which we have focused on

modeling, also ignores these factors.

Could AC theory and TIMBER be used to model conceptual change concerning emo-

tionally charged topics? We note that qualitative models can be used to model at least

some of the domains that are currently politically fraught (e.g., climate change), and

they can be used more broadly in political reasoning (e.g., Forbus & Kuehne, 2005).

Thagard and Findlay (2010a,b) use emotional coherence to explain people’s difficulties

in accepting new beliefs about climate change, evolution, and other emotionally

charged topics, using emotional valence as a factor in belief revision. AC theory

could potentially be extended to include emotional valence as epistemic artifacts with

positive and negative costs, and thereby incorporated in the same conceptual change

process. Valence for incoming information might be calculated by a version of apprai-

sal theory (e.g., Wilson, Forbus, & McLure, 2013). We further note that existing
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emotional coherence models do not themselves detect inconsistencies or construct

explanations, and so something like TIMBER’s model formulation algorithms could

potentially provide new capabilities for such models.

6.3. Future work on TIMBER and AC theory

We see three lines of future work motivated by these results, and we discuss each in

turn. First, we plan to explore TIMBER’s capabilities in additional domains. In addition to

expanding the catalog of epistemic artifacts, we can use TIMBER as a platform for model-

ing the effect of epistemic entrenchment (Alchourr�on et al., 1985), level of specificity,

source credibility, goal relevance, narrative structure (Lombrozo, 2011), individual differ-

ences in people’s response to instruction (e.g., Feltovich, Coulson, & Spiro, 2001), and

anomalous data (Chinn & Brewer, 1993).

Assembled coherence theory and TIMBER could potentially be applied within intelligent

tutoring systems (ITS; e.g., Koedinger et al., 1997). ITSs automatically deliver cus-

tomized feedback to a student based on his or her performance, using cognitive models

of the domain and reasoning to understand what a student is doing, including qualitative

models (e.g., de Koning et al. 2000). TIMBER could be used to find incoherence across a

student’s mental models and suggest examples that would help the student confront

inconsistencies in his or her models.

Finally, TIMBER and AC theory provide architectural patterns for building more robust

long-lived AI systems, since they abandon globally consistent knowledge stores in favor

of a less constrained, highly contextualized knowledge organization strategy. In this

framework, belief revision is the rule rather than the exception, and at any given time,

the AI system may be attempting to increase coherence (i.e., reduce cost) in its causal

models in multiple domains. This is especially relevant to AI systems that learn from

reading, instruction, observation, and social interaction.
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Notes

1. Greedy algorithms are used to find good approximate solutions when finding an

optimal solution would be computationally intractable, for example, require expo-

nential computational resources. In exchange for not guaranteeing optimality,
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greedy algorithms operate in polynomial time, which is important for cognitive

modeling.

2. The simulation in Friedman and Forbus (2011) was able to explain 90% of the

model changes of students by varying cost parameters in TIMBER’s explanation eval-

uation process.

3. http://dev.cyc.com/ontology-development/.

4. Not her real name. All student names are pseudonyms, for privacy.

5. In OpenCyc, categories are modeled as collections, which can be thought of as

the set of all things that satisfy that concept, although defined in a way that

avoids the usual self-reference paradoxes of set theory, while preserving the

intuitive semantics (i.e., one can think of the isa relation as indicating that

something is a member of a category, and category inheritance as if it were a

subset relationship).

6. In a preferential pre-order, some elements may be equally preferred (=), or of equal
or greater preference (≥). TIMBER breaks ties by favoring earlier explanations, all

else being equal.

7. TIMBER can also justify other types of propositions and entities, including events

and processes (Friedman & Forbus, 2010, 2011), but this capability is not relevant

for this simulation.

8. TIMBER might explicitly assume that an unknown, active, process is directly influ-

encing the quantity, but such an assumption is still objectively undesirable within

an explanation.

9. The increased number of explanations is due to the belief that proximity in addition

to amount of sunlight affect temperature.
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