
Abstract 

Agents often have to make decisions with 
incomplete knowledge and few computational 
resources.  We argue that qualitative 
representations and reasoning, especially combined 
with analogy, provide a natural approach to 
performing decision-making in situations with little 
data, incomplete models, and under tight 
computational constraints.  Moreover, qualitative 
models provide a means of recognizing and 
framing decision problems.  This paper describes 
our progress in exploring these ideas to date, using 
examples from experiments with a system that 
learns to play Freeciv, an open-source strategy 
game. 

1 Introduction 
Any agent operating in a world must make decisions.  Many 
decisions are immediate, e.g. which way to turn during 
navigation or searching a physical environment.  
Reinforcement learning (Sutton & Barto, 2017) has often 
been used as a model for how to make such decisions.  The 
tasks to be performed are fixed outside the learning 
mechanism, and the appropriate notion of state has been 
settled by the agent’s designer (or evolution).  Many other 
decisions require more analysis, such as how to optimize a 
supply chain, and the mathematical tools of decision theory 
are often brought to bear on these.  Such tools require 
accurate mathematical models of the system to be optimized 
and accurate probabilities to handle uncertainty.  Yet other 
kinds of decisions involve design: How should an efficient 
transportation network be built economically, or how much 
should be invested in what kinds of military units to provide 
an effective defense?  These decisions involve 
organizational policies and values more directly, as well as 
having components of optimization, but with much less 
agreement on what quantitative models should be used, if 
any.  What is common about all three kinds of decisions is 
that the formalisms used to address them do not incorporate 
the problem of framing the decision problems themselves.  
What should an agent pay attention to, what choices does it 
have to make, and how should it evaluate its progress?  We 
believe that qualitative representations and reasoning can be 

used to capture aspects of decision-making that tend to be 
left implicit, just as they have been used to capture tacit 
knowledge in science and engineering.  There has already 
been productive work on using qualitative representation in 
decision-support systems to be used by people (e.g. Agell et 
al. 2006; Benaroch & Dhar, 1995; Rosello et al. 2010;Zitek 
et al. 2009), but our focus here is on using QR within 
autonomous agents.  The goal of reinforcement learning is 
to make good local decisions.  The equivalent goal in 
qualitative decision-making is to make sensible decisions, 
and especially to avoid repeated blunders.  We propose to 
do this by using analogy-based episodic memory, combined 
with qualitative representations, to detect problematic 
situations, build up models of their properties, and modify 
the agent’s decision-making to avoid them in the future.  
The goal of traditional decision-theory is optimization.  The 
equivalent goal in qualitative decision-making is to ensure 
that resource allocation is in alignment with the agent’s 
priorites, as expresed by activations of goals.  In keeping 
with our aim of formalizing more of the strategic thinking 
process itself, we use qualitative models to express 
strategies that are used to achieve goals (Hinrichs & Forbus, 
2015).  This includes synthesis goals, where setting up the 
means of production and handling investments is part of the 
problem.   
 This paper summarizes our work to date on using 
qualitative reasoning in decision-making.  Most of this work 
has been done in a strategy game domain, Freeciv, so we 
start by briefly reviewing it.  Then we discuss the use of 
qualitative representations to encode strategies, followed by 
a discussion of qualitative reasoning about resources.  The 
problem of enabling agents to formulate their own 
evaluation metrics is discussed next, which leads naturally 
into how an agent can design systems in a domain that serve 
its strategic goals.  Learning from experience via episodic 
memory is discussed next.  We close with future work.   

1.1 Freeciv in a nutshell 
Freeciv1 is a turn-based strategy game, played on a grid of 
tiles (see Figure 1).  Players start with a few units – settlers 
can found cities, and workers can improve terrain, to make 

                                                 
1 http://freeciv.org/ 
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it more productive.  Most of the map is unknown, and must 
be explored, by an explorer unit or a military unit.  Unlike 
chess or go, new entities can be created by a player’s cities.  
This includes new settlers, once the population grows 
enough, thereby fueling an expansion (and thus the need to 
find more terrain to build upon).  Cities can be linked by 

transportation networks, which again are constructed by the 
player using workers.  Cities produce resources (food, 
production, luxury goods) that go into feeding citizens, 
expanding the population, and producing new units or 
buildings.  Buildings enhance properties of a city: City walls 
improve its defensive capabilities, and a Library improves 
its science output.  There are 40 types of city improvements 
and 51 types of units that can be built in Freeciv version 
2.2.4, depending on which of 87 available technologies a 
player has achieved via research.  Games are typically 
played on a 4,000 tile grid, and can last for hundreds of 
turns.  Thus the sheer size contributes to the game’s 
complexity. 
 There are several additional sources of complexity from 
the game’s dynamics.  There is finding good places to put 
cities, since some terrain has advantages, just like placing a 
city on a river or bay has advantages in real life.  The kinds 
of units that can be built depends on what technologies the 
player has, which in turn depends on which technologies 
they choose to research.  Some technologies directly allow 
the construction of new units: Catapults become possible 
once Mathematics is understood, for instance.  Other 
technologies enhance properties of a civilization: 
Democracy, for example, enhances economic productivity 
but makes for citizen unrest if war is declared.  Research 
investments trade off against production and food, leading 
to classic short-term spending versus long-term investment 
choices.  And of course there are competing civilizations, 
with a simple diplomacy system and warfare, with units 
ranging from warriors to musketeers to nuclear weapons, 
depending on what technologies a civilization has gained (or 
stolen from others).  Unlike some games, there can be 
serious disparities in technological advancement, based on a 
civilization’s decisions: Archers trying to defend a city 
against tanks is a good lesson in the drawbacks of under-

investing in research2.  There are two ways to win: Either 
wipe out all other civilizations, or send the first starship to 
colonize Alpha Centari, which requires considerable 
research and economic prowess. Thus civilization-style 
games are extremely complex, much more so than chess or 
go. 

Since Freeciv is open-source, and there is an active player 
community, quantaitive models are possible.  Importantly, 
most players neither develop nor use them.  Qualitative 
causal models of the game dynamics, combined with a sense 
of relative magnitudes and some spatial reasoning, suffice to 
play well in our experience.  This makes it an excellent 
testbed for exploring qualitaitve reasoning in decision-
making by autonomous agents. 

Freeciv has been used by other AI researchers as well.  
Branavan et al. (2012) explored using Monte Carlo 
simulation and text analytics to construct a heuristic 
evaluation function.  While it played well on a small subset 
of the game (smaller map, games ended at 75 turns), it 
required many trials to learn the game and used the game 
engine to do lookahead search while playing, a tactic which 
is not available for most domains. It also did not construct 
an inspectable model of causality in the domain, unlike our 
learned qualitative models.  Ulam et al. (2008) investigated 
combining metareasoning and reinforcement learning for 
the subtask of city defense in Freeciv.  While it uses model-
based reasoning, the quantitative model it uses is 
constructed by hand, by contrast with our automatically 
learned qualitative models.   

2 Strategic Planning as Qualitative Reasoning 
We argue that continuous processes provide a representation 
for strategies (Hinrichs & Forbus, 2015).  Consider the gap 
between a strategy, e.g. expand the cities in one’s 
civilization, versus the actions actually available to carry out 
this strategy, e.g. build settlers, find terrain, send settlers out 
to establish new cities, and so on.  An agent’s individual 
actions are discrete, i.e. move one of it’s units to a new tile 
(and thereby reveal the contents of adjacent squares, if not 
already revealed), build a city by using a settler (which is 
consumed in the process).  Some actions are durative, e.g. 
irrigating a tile or building a road takes multiple turns.   
Formulating a crisp specific end goal would be very 
complex: A large continent can support a dozen cities and 
similar numbers of units.   Exploration takes time, and so 
locations can only be planned as terrain becomes revealed.  
But in the meantime, other civilizations are building as well 
– there is a race for territory.  So a strategy of doing a phase 
of data gathering followed by designing an optimal solution 
will be thwarted.  Instead of this discrete, planning oriented 
model, we think instead of strategies as continuous 
processes that the agent implements by its choices of 
actions.  Exploration is a process that increases the size of 
the pool of known tiles.  Expansion is a continuous process 
that increases the size of the pool of a civilization’s cities.  

                                                 
2 We note that in Freeciv, research always succeeds and the 

benefits are accurately known in advance.   

Figure 1: Freeciv 



Actions can be planned and evaluated based on whether 
they will ultimately contribute to implementing the 
processes that represent the agent’s current strategy.  This 
approach supports incrementality, an important property for 
dynamic worlds.  The last few cities built, for instance, are 
typically created by settlers who were built in cities that did 
not even exist at the start of the game.  Constructing 
extremely detailed long-range plans makes little sense in an 
adversarial situation, when units or terrain that are assumed 
turn out to no longer be available3.   
 A concrete example will make this clearer.  Consider the 
concept of defense.  Defense isn’t an action: Attacking an 
attacker is an action taken in the course of defending a city 
(or the unit itself), but is not the same thing.  Defense isn’t a 
state to be achieved, it is more about ensuing that an 
undesirable state (i.e. destruction or conquest) is prevented.  
Figure 2 illustrates a qualitaitve model of using a unit to 
defend a city or another unit.  All concepts not in QP theory 
(Forbus, 1984) are from the OpenCyc ontology or our 
extensions of it for Freeciv.  The key point is that the 
vulnerability of the object protected is reduced by the 
defensive strength of the protector.  By expressing the 
defense of a civilization in terms of a sufficiently low 
vulnerability (discussed below), a limit point can be 
constructed for the process of adding defenses that adds 
defenses when the civilization becomes more vulnerable and 
stops building them when it estimates that it is sufficiently 
protected. 

                                                 
3 As military commanders sometimes say, “The enemy has a 

vote.” 

3 Resources 
A central concept in decision-making is the idea of 
resources.   Some resources are the inputs to production or 
carrying out events: In Freeciv, there are several such 
resources.  Gold provides a notion of money.  Light bulbs 
(i.e. ideas) must be generated and accumulated to achieve a 
new technology.  Shields are a unit of production, which is 
used in building new units or buildings in a city.  Food is 
needed to keep a city alive, and when there is a surplus for a 
long enough period, the city’s population grows.  Cities 
produce these resources, based on where they are, how their 
citizens are put to work, tax rate settings, and what buildings 
have been created to improve a city.  These trade off against 
each other, and the agent can exploit these tradeoffs in 
subtle ways.  For example, cities along a hostile frontier 
might invest more in production, to create city walls and 
military units, while cities safely inside the civilization’s 
borders might focus on research or economic advancement.  
These resources are also fungible: Gold can be spent to 
finish something a city is producing, e.g. city walls if there 
are barbarians approaching. 
 While these resources are represented in the game as 
integers, they can be effectively reasoned about as 
continuous quantities.  Qualitative models describing the 
dynamics of such quanitites can be learned via 
demonstration, where an agent watches a human player 
(Hinrichs & Forbus, 2012) and by natural language 
instruction (McFate et al. 2014).  These learning methods 
complement each other, and our agent uses a qualitative 
model of domain dynamics that combines knowledge 
learned by these methods.  This model can be used to 
express overall goals of the game: Winning by military 
conquest is driving the number of enemy civilizations to 
zero, for instance.   
 One issue that arises with a complex set of goals is 
identifying tradeoffs.  We automatically construct tradeoffs 
for type-level goals via a static analysis of the learned 
qualitative model (Hinrichs & Forbus, 2015).  Goal 
tradeoffs can be characterized in terms of two dimensions: 
(1) Total versus Partial determines whether or not all 
instances of the goal must be adjusted in lockstep.  For 
instance, how taxes are spent is determined at the level of 
the civilization, not individual cities, so that is a total 
tradeoff, whereas what is produced in cities can vary with 
the city.  (2) Abrupt versus Progressive concerns whether 
the change in goals is instantaneous or can be gradually 
changed over time.  Setting a tax rate is an abrupt action, 
whereas reducing emphasis on producing new settlers as a 
continent is filling is a progressive change in the relative 
priority of goals.  These distinctions are independent, and 
hence there are different strategies for each of the four 
possible cases.   
 The nature of a constructive domain is that resources can 
be used to build new means of production (e.g. cities in 
Freeciv) or improve existing means (e.g. build a Factory in a 
city in Freeciv). While such resources are discrete, we find 
it useful to express goals about them in terms of continous 
properties.  The cardinality of sets of some type of entity, 

(isa Defending ModelFragmentType) 
(genls Defending 
      ProtectingSomething) 
(participantType Defending 
    protector-Agentive 
    FreeCiv-MilitaryUnit) 
(participantType Defending 
    objectProtected FreeCiv-Actor) 
(associatedRoleList Defending 
   (TheList protector-Agentive 
            objectProtected)) 
(participantConstraint Defending 
  (and (objectFoundInLocation 
          protector-Agentive 
          objectProtected)  
       (different protector-Agentive 
                  objectProtected))) 
(consequenceOf-TypeType Defending 
  (qprop- 
    ((QPQuantityFn Vulnerability) 
          objectProtected) 
    (DefensiveStrengthFn  
      protector-Agentive 
      FreeCiv-MilitaryUnit)))  

Figure 2: Defense as a model fragment 



such as number of cities, is a useful measure of progress in 
expansion.  Sums across a civilization are another type of 
useful quantity for decision-making, e.g. overall research 
capacity, military strength, which can be defined by using a 
compositional sum (C+, from QP theory) over the 
appropriate types of entities (Hinrichs & Forbus, 2013). 
 Two other important resources that hold for almost any 
domain are space and time.  In Freeciv, like today’s planet, 
cities can only be built on land.  For each new game, a new 
map is randomly generated. If a player is lucky enough to 
start on a large continent, they can focus on expansion and 
technologies for land-based units, leaving seafaring 
technologies for later, when their civilization is more 
advanced.  If their continent is small (or even an island of a 
single tile), then their research priorities should instead 
focus on seafaring.  Making this tradeoff requires taking 
information from exploration into account.  Civilizations 
can span multiple continents, but this involves building sea 
units to transport other units (e.g. settlers, military units for 
protection) and coordinating such transportation.  A 
landlocked civilization on a small continent is in a dismal 
place indeed, and may need to resort to warfare to expand.  
Such a strategy would involve first shifting production to 
military units, and then shifting back to settlers to grab new 
territory (and defend conquered cities).  Thus the relative 
value of resources can shift drastically depending on the 
nature of the environment. 
 Time is perhaps the most subtle of resources.  Adversarial 
domains often involve some sort of race, so the effective use 
of time becomes important.  A qualitative model that 
stratifies durations of actions can be surprisingly useful in 
planning.  Consider a city which is under threat by an 
enemy unit.  It could switch production from what it is 
currently building, to create either city walls or a warrior (in 
the early game).  Or a military unit can be moved from a 
neighboring city could be moved in to protect the city under 
threat.  Switching production has a cost – which is moot if 
the city is conquored or destroyed, naturally – so avoiding 
that if possible would be good.  Is the neighboring unit 
sufficiently close that it can make it in time?  This depends 
in part on what transportion networks are available to the 
two units, their relative distance to the city, and how fast 
they can move (i.e. how many movement points per turn).  
In the early game, production is sufficiently slow that 
producing a defender in response to a perceived enemy 
threat is usually too late.  This temporal consideration 
suggests a strategy of pre-positioning defenses and 
defenders before they are needed.  Note that units and city 
improvements have upkeep costs, so this strategy (like all 
strategies) is not without drawbacks.  Trying out alternate 
strategies, and keeping track of how well they succeed or 
fail, is a way of gathering data about the distribution of 
these relative intervals in a way that is directly relevant for 
decision-making.  We plan to explore this by using 
analogical generalization (McLure et al. 2015), setting up a 
strategy, executing on it, and recording what happened 
afterwards, to learn which strategies work.  One subtlety 
with dynamic worlds, of course, is that things change – in 

late-game strong civilizations, new technological advances 
may take only a turn or two, so researching a new 
technology and then building a needed unit based on that 
becomes a more viable strategy, whereas it is a recipe for 
defeat in the early game. 
 

4 Formulating Evaluation Metrics 
One of the key tasks of an agent in making decisions is 
deciding how to evaluate its alternatives.  Rather than 
assuming a built-in evaluation function (as reinforcement 
learning does) or learning an evaluation for a single task (as 
inverse reinforcement learning does4), we believe that 
agents should formulate their own evaluation functions 
based on broad world knowledge as well as experience. An 
agent can be making many decisions at once, affecting a 
large set of ongoing strategies.  Since one of the jobs of 
qualitative reasoning is framing problems, we view 
constructing evaluation metrics as one of the important tasks 
of QR for decision-making.  We take evaluation dimensions 
to be parameters that can be approximated as continuous 
parameters.  Every resource described above can be treated 
as an evaluation dimension, using either a continuous 
perspective on an integer quantity (e.g. gold, light bulbs) or 
integer quantities defined across sets (e.g. cardinality, 
totals).  We denote the cost of an action or plan by the 
logical function CostFn.  This function has two arguments: 
The plan itself and an evaluation dimension.  Thus each 
evaluation dimension potentially provides a different way to 
look at the cost of an action or plan, and thereby enables 
tradeoffs to be explored.  For instance,  a plan ?p1 to 
reinforce a city under threat by moving a defender to it 
would have, as part of the constraints on any plan involving 
motion,  
 
(qprop+ (CostFn ?p1 Time) 
        (TravelTimeFn ?p1)) 
 
By contrast, a plan ?p2 to buy city walls in a city ?c would 
incur a cost in gold, which depends on how much effort had 
already been invested in building them: 
 
(qprop+ (CostFn ?p2 Gold) 
        (- (ProductionCostFn CityWalls 
                             Shields) 
           (ProductionSoFarFn CityWalls 
                              ?c))) 
 
The underlying game engine provides numerical values for 
some of these parameters (e.g. Shields) but not others (e.g. 
travel time).  Such parameters are used by our systems to 
learn qualitative models from experimentation (e.g. Hinrichs 
& Forbus, 2007), but we do not use them for constructing 

                                                 
4 We note that inverse reinforcement learning assumes that the 

expert traces it is observing are optimal – something that is not 
consistent with human decision making in complex domains 
(Kahaneman, 2011).   



exact quantitative cost functions, because for constructive 
adversarial games in general, accurate mathematical models 
of the underlying domain are not available.  Instead, we use 
experimentation to learn decision trees based on 
accumulating information from direct measurements.  For 
example, a city built on grassland with wheat is much more 
productive than a city built on a desert.  A learned decision 
tree that evaluates locations for city placement is used in the 
planning process for selecting expansion sites.  Another 
method we plan to explore is using learned estimates of 
ordinal relationships to decide among alternatives.  A rough 
estimate of the arrival time of the enemy would be enough 
to determine what alternatives (if any) are actually feasible.   

5 Strategic Design 
Some decisions are about how to build up new entities and 
systems to serve an agent’s goals.  In Freeciv, for example, 
building up a civilization entails creating a number of cities 
(as many as a dozen or more), improving the terrain around 
them, and linking them with roads (or railroads, once that 
technology is discovered).  Such systems can be partially 
characterized by parameters whose settings should be 
learned by the agent, based on experience.   
 For example, how far apart should cities be?  Claiming 
territory is useful, since it provides a buffer against enemies 
and gives an agent’s civilization room to grow.  On the 
other hand, unless each city has capable defenses, sending 
defenders to reinforce a city becomes more expensive.  That 
suggests making the mean distance between cities smaller 
rather than larger.  This consideration can be expressed 
qualitatively as follows: Consider ?p to be a generic plan 
involving travel between two cities, which can be 
approximated by the mean travel time:  
 
(c+ (CostFn ?p Time) (TravelTimeFn ?p)) 
(qprop+ (TravelTimeFn ?p) 
        (MeanCityDistFn ?civ)) 
 
implies 
 
(qprop+ (CostFn ?p Time) 
        (MeanCityDistFn ?civ)) 
 
On the other hand, trade routes are more valuable when two 
cities are far apart – if ?p is establishing a trade route 
between two cities, then  
 
(qprop+ (ValueFn ?p Trade) 
        (DistanceFn ?city1 ?city2)) 
 
Then taken across the entire civilization,  
 
(qprop+ (ValueFn ?civ Trade) 
        (MeanCityDistFn ?civ)) 
 
How do these qualitative models help in decision-making?  
They tell an agent about what relative likelihoods it needs to 
estimate.  If warfare is likely to be common and trade is less 

important, keeping cities tightly clustered would be a better 
strategy.  If bolstering trade is more important, then larger 
spacing might be a reasonable strategy.  Building up models 
of what is likely in a game, via analogical generalization 
over episodic memories, could provide a way to estimate 
such likelihoods. 

6 Analogical Learning from Experience 
Incomplete and incorrect models are the norm for agents 
operating in complex domains, especially when adversaries 
are involved, because other agents are often less predicable 
than domain physics.  For example, a city can be weakened 
without being directly attacked by placing enemy units on 
the tiles immediately surrounding it, which prevents them 
from being worked and can cause starvation – an emergent 
behavior which is effectively a siege.  A naïve agent can 
make suboptimal decisions, such as leaving military units 
out in the middle of nowhere, neither providing early 
warnings of approaching enemies nor defending anything.  
Trying to build settlers before a city has size 2 is impossible, 
because one citizen goes into the construction of a settler.  
All of these are things that human players figure out by 
watching their own behavior and learning how to improve 
it.  We propose that analogical generaliztion over episodic 
memories provides a distillation of experience that can be 
used for such learning.  This provides the rapid retrieval of 
either something to do, or something to avoid, a mechanism 
for the kind of human decision making that Kline describes 
in his recognition-primed decision model (Kline 1999).  
 For example, consider learning the immediate effects of 
actions.  Most actions are fairly boring, either there is the 
same kind of change (i.e. changing production or research 
changes what a city is producing or the civilization is 
researching) or nothing happens for a while, if it is a 
durative action (e.g. irrigation has no immediate effect 
except for the worker no longer being idle).  Movement is 

 
Figure 3: The generalization pool for doMove.  The 
white circles are generalizations, the black dots 
within them represent particular experiences used 
in building that generalization. 



typically similarly boring, with one exception: Entering a 
hut.  Huts on tiles can lead to multiple outcomes – gold or a 
new technology might be found, the unit might be killed by 
the inhabitants, or a new unit or city might be added to the 
civilization that made contact.  Figure 3 illustrates a SAGE 
generalization pool for the primitive action doMove.  
Generalization pools accumulate examples of a concept 
incrementally, merging them into generalizations when they 
are suffiicently similar.  Here the largest two generalizations 
are the typical outcomes of movement, with the different 
outcomes of entering a hut corresponding to smaller 
generalizations.  Since SAGE constructs probabilities for 
each of the statements in every generalization pool, based 
on experience, the agent can compile a table of probabilities 
for the outcome of entering a hut (Table 1).  Such 
experience-based probabilities are very useful for decision-
making: Entering a hut can be seen here to be a good idea, 
overall, although given the chance of the unit being wiped 
out, diverting a settler on its way to found a new city to 
enter a hut is probably unwise. 

 How should a system know to build such a table?  We 
have formulated a metric for surprise based on novelty 
concerning an experienced concept.  That is, given an 
example E of a command C, whose analogical model 
consists of gpool(C), we define the novelty of E with respect 
to gpool(C) as 

1-NSIMB(BestMapping(SME(E,MACFAC(E,gpool(C)))) 
That is, the base-normalized similarity score of the best 
mapping for the closest item retrieved from the 
generalization pool.  If there is a case in the generalization 
pool that is identical to E (isomorphic up to entity 
renaming), then the numerical similarity will be 1, and E 
will have zero novelty.  If nothing is retrieved, the 
numerical similarity is taken to be zero, and hence the 
novelty of E would be at its maximum, 1.0.   
 Not all novelty matters.  SAGE provides a natural 
definition for novelty, since that can be taken as the dual of 
the decision that a new example is close enough for 
assiilation.  That is, every generalization pool has an 
assimilation threshold At that ranges from 0 to 1.  To 
respect this threshold, if an example E would be assimilated 
under the current threshold, then the novelty will be zero.  
The other factor which must be taken into account is how 
much experience the system has with the concept.  We 

incorporate this factor by taking the product of the novelty 
with the following rate equation: 

1-e-n/r 
Where n is the number of examples that have been added to 
the generalization pool so far, and r is a rate parameter, 
controlling how fast this asymptotes to 1.  In the case of the 
doMove action, each time a new kind of outcome occurs 
when a hut is entered it signals a surprise, which can enable 
a system to keep track of that subset of actions as 
interesting. 

Immediate effects of actions are just one kind of 
experience that should be routinely stored for subsequent 
analysis by an agent.  Building up a model of the time that 
durative actions take can be done by taking before/after 
snapshots of the locale where such an action is taking place, 
and including the duration as part of the episodic memory.  
Statistics over those durations can then provide a robust way 
of estimating time costs for actions.  In general, when 
decisions are made about an aspect of a domain that is not 
well understood, constructing episodic memories that 
capture what happened and how successful it was can be 
useful (e.g. worker assignments in Hinrichs & Forbus, 
2007).   
 We see two other important functions of episodic 
memory.  In adversarial domains, it is important to learn 
from what is being done to you, as well as what you do.  
Qualitative representaitons help lift descriptions to a level 
that is easier to compare, and hence to learn from.  For 
example, the approach of an enemy unit to a city can be 
described as one interval using the Qualitative Trajectory 
Calculus  (Van de Weghe et al. 2005) along with the 
duration of that activity, factoring out the specifics of the 
tiles traversed.  Similarly, recognizing that a unit was lost 
because it was attacked by another unit is a very simple 
form of persective-taking.  The other function of episodic 
memory is helping to set strategic parameters, e.g. what 
should the relative priorities of goals be, and what should 
limit points for strategic processes be?  This, we suspect, is 
best done via a retrospective analysis of longer periods of 
play, abstracting out the specific events into statistics about 
global properties.  For example, if a game was lost because 
an agent’s cities were wiped out, then one potential solution 
is to increase the sensitivity to vulnerability, so that it pre-
positions more defense resources and is more careful in 
future games.   

7 Conclusions and Future Work 
We believe that qualitative representations and reasoning 
can provide valuable services in formalizing the decision-
making of agents in complex, dynamic adversarial worlds.  
The techniques outlined here complement traditional 
decision theory and reinforcement learning, since they are 
concerned with framing and formulating decision problems 
and using qualitative, causal models for both understanding 
the broad properties of domain dynamics and to express 
strategic concepts.   
 We plan to continue exploring these ideas in several 
ways. First, we plan to implement the other forms of 

Outcome of entering a hut P
Gold Found 0.38
Technology Found 0.23
Unit joins your civ 0.23
City joins your civ 0.08
Killed by Barbarians 0.08  
Table 1: Probability of outcomes for entering a hut, as 
calculated from SAGE’s summaries of experience 



episodic memory as outlined above, and explore their 
properties.  Second, we plan to implement a reasoner that 
can formulate and articulate decision problems, criteria, and 
alternatives in a domain, so that agents can participate in 
joint problem solving involving strategic problems and learn 
more from natural langauge instruction, beyond the advice 
and domain-level causal models we have used language-
based instruction for previously.  Finally, we plan to explore 
cross-domain transfer: Tell a Companion stories about our 
world and ask what they imply about its strategies, and vice 
versa.  Understanding when things will work in both (e.g. 
blockades) and when they won’t (e.g. airlifts work in our 
world but not in Freeciv) is an important test of strategic 
thinking and transfer. 
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