

Human-like Sketch Object Recognition

via Analogical Learning

Kezhen Chen, Irina Rabkina, Matthew D. McLure and Kenneth D. Forbus

Northwestern University
{KezhenChen2021 | irabkina | mclure}@u.northwestern.edu | forbus@northwestern.edu

Abstract

Deep learning systems can perform well on some image
recognition tasks. However, they have serious limitations,
including requiring far more training data than humans do
and being fooled by adversarial examples. By contrast, ana-
logical learning over relational representations tends to be
far more data-efficient, requiring only human-like amounts
of training data. This paper introduces an approach that
combines automatically constructed qualitative visual repre-
sentations with analogical learning to tackle a hard comput-
er vision problem, object recognition from sketches. Results
from the MNIST dataset and a novel dataset, the Coloring
Book Objects dataset, are provided. Comparison to existing
approaches indicates that analogical generalization can be
used to identify sketched objects from these datasets with
several orders of magnitude fewer examples than deep
learning systems require.

 Introduction

Deep learning approaches have, in recent years, become

very popular within artificial intelligence. This excitement

is reasonable given that such systems often do provide im-

pressive results given enough training data. On the MNIST

handwritten digit recognition task (LeCun et al., 1998), for

example, several convolutional neural network techniques

have achieved error rates below 0.3% (e.g. Ciresan et al.,

2011; Ciresan et al., 2012).

 This result is remarkably close to the estimated human

error rate of 0.2% on this dataset (LeCun et al., 1998) and

even better than the human classification accuracies from

two experimental trials 96.8% and 97.8% (Harding et al.,

2018). However, the approach itself is not at all human-

like. The network with the lowest error rate (Ciresan et al.,

2012), for example, was trained on 6 slightly deformed

versions of the MNIST dataset and validated using the

original—a total of 420,000 training examples. Eleven-

Copyright © 2019, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved.

year-old children, however, require fewer than 150 exam-

ples to learn to identify a novel symbol (Gibson, 1963).

Adults require even fewer examples. Clearly, human learn-

ing is far more data-efficient than learning by deep neural

networks.

 Human learning is also more stable. Neural networks are

easily fooled: not only do state of the art neural networks

classify white noise as, for example, a robin with extreme-

ly high confidence (Nguyen, Yosinski, and Clune, 2015),

but slight perturbations to correctly classified images—

called adversarial examples—can cause a neural network

to no longer classify the image correctly (Szegedy et al.,

2013; Goodfellow, Shlens, and Szegedy, 2015; Carlini and

Wagner, 2017). These perturbations are small enough that

a human cannot detect them, let alone be fooled by them.

 Furthermore, convolutional neural networks do not

model human spatial cognition. When classifying images,

they learn discriminative patterns that are driven by low-

level relationships between nearby pixels. On the other

hand, vision psychologists have ample evidence for struc-

tured, relational models in human vision (Marr, 1982;

Palmer, 1999). Perhaps computational approaches that are

based on structured, relational information can demonstrate

human-like learning, in terms of both number of examples

and stability, within and across datasets.

 Indeed, it has been demonstrated that such models can

match human learning on tasks that involve higher order

cognition. For example, Kandaswamy, Forbus, and

Gentner (2014) showed that the Structure Mapping Engine

(SME) can match the learning performance of 4-year-olds

on a higher-order pattern matching task. Similarly, Lovett

and Forbus (2013) showed that CogSketch (Forbus et al.,

2011), a model of human visual perception that relies on

relational structure, can solve mental rotation and paper

folding tasks using SME. Furthermore, these representa-

tions and analogical comparison have been used to model

human performance on several visual problem-solving

tasks, including Ravens’ Progressive Matrices (Lovett &

Forbus 2018), performing at the 75th percentile, which is

better than most adult Americans.

 This paper demonstrates that the combination of the hu-

man-like visual system of CogSketch and analogical gen-

eralization can also perform sketched object recognition.

Sketch data has high variability and is relatively hard to

collect in large quantities (Eitz, Hayes and Alexa, 2012),

which is likely to pose problems for deep learning models.

However, we show that our approach has reasonable

recognition results on two different types of sketches de-

spite having only sparse data with high variability.

 We begin by describing our approach, including data

encoding and analogical learning. We then present results

for experiments on object recognition in sketches using

two datasets: the MNIST handwritten digit dataset (LeCun

et al., 1998) and a novel dataset, the Coloring Book Ob-

jects dataset, which consists of drawings of everyday ob-

jects and animals. Finally, we look at related work and

discuss future directions for this line of research.

Approach

Sketch understanding can start with digital ink or bitmaps.

Here we start with bitmaps, to provide a closer comparison

with vision-based approaches. Consequently, the first step

is converting bitmaps into digital ink, and then using Cog-

Sketch to construct relational spatial representations. The

second step is analogical learning using the relational rep-

resentations as cases. Figure 1a shows a sketch of a fish

from the coloring book dataset, used as an example.

Bitmap to Structured Representation
The process of converting a bitmap input into a structured

visual representation has three stages: (1) bitmap prepro-

cessing to reduce noise, (2) object segmentation to extract

the edges and junctions that make up the sketch, and (3)

spatial encoding to create relational representations. All

stages and CogSketch are introduced below.

Bitmap Preprocessing

Given a sketched object bitmap, we first convert the

sketches to ink vectors for further processing. To reduce

noise and speed up the encoding algorithm, each original

image is resized such that the resized length is below 300

pixels. Then, the image is blurred and filtered to black and

white using a threshold of 70. Potrace, a software tool for

tracing bitmaps and Zhang-Suen’s thinning algorithm

(1984), are used to generate SVG for input into CogSketch.

CogSketch Visual Processing

CogSketch (Forbus et al., 2011) is an open-domain sketch

understanding system that automatically constructs rela-

tional representations based on visual and conceptual in-

formation. CogSketch is capable of computing spatial

properties (attributes and relations) at multiple representa-

tional levels on digital-ink sketches. Its basic level repre-

sentations concern glyphs, which are visual objects.

Glyphs are decomposed into edges and junctions, the most

basic units used by CogSketch. To identify edges, ink is

separated into segments at its discontinuities and junctions.

At the edge level, the length, curvature, orientation, posi-

tion, and topological relations (i.e., type of junctions, such

as T-junction) are computed by CogSketch. Edges can be

assembled into edge-cycles that form closed shapes, which

provide larger units out of which representations of surfac-

es can be constructed. Edge-cycles have similar properties

to edges and many properties of polygons, but, unlike pol-

ygons, can also have curved edges. Shared edges between

edge-cycles also provide important clues to visual struc-

ture. These representations are motivated by psychological

studies of human visual processing and spatial cognition,

when available, but due to the current state of knowledge

in cognitive science, this is somewhat under constrained.

Object Segmentation

Each digital-ink sketch imported into CogSketch is de-

composed into closed edge-cycles and edges. The edge-

cycles and edges are sorted and stored in a decomposition

tree. From outside to inside of the object, each edge or

closed edge-cycle is stored in a node of the decomposition

tree from root to leaves, so the root node contains the con-

tour edge-cycle of the whole sketched object. Figure 1b

shows the edge-cycle decomposition of the sketched fish

depicted in Figure 1a. Figure 1c shows the corresponding

Figure 1: (a) is a sketched fish from Coloring book dataset. (b) is the edge-cycle decomposition of (a) from CogSketch. (c) is the corre-

sponding decomposition tree. (d) is the medial-axis transform of the contour edge-cycle of (a). (e) is the segmentation result.

decomposition tree. Note that the inner edge-cycles corre-

spond to the eye, fins, body, and head of the fish.

 To represent properties of edge-cycles, we draw on

Biederman’s (1987) recognition-by-components theory,

that people seem to encode visual input as a combination

of simple shapes. Thus, each edge-cycle is segmented and

described by several attributes. For example, the medial-

axis transform is found by computing the grassfire trans-

form (Blum, 1967). For each medial axis point, a pair of

closest points on the edge-cycle is generated. The pairs are

then iterated over, to find closures of the edge-cycle. A

closure contains at least one concave point relative to the

edge-cycle. A line segment is added for each closure.

 To reduce segmentation noise, we add several con-

straints on closure detection. These are: (1) the sum of the

angles of two closure points should be less than 3.05 radi-

ans, (2) one of the angles of two closure points should be

less than 2.85 radians, (3) the distance between the two

points of each closure should be less than one sixth the

length of the perimeter of the edge cycle, (4) only one clo-

sure with smallest angle sum is detected in a certain range

(i.e. 1/20th the length of contour) and (5) all segments

whose area is below a preset threshold and which do not

connect more than one other segments are dropped. These

parameters were all determined experimentally on pilot

data. Figure 1d shows the medial-axis transform of the

Figure 1a contour. Figure 1e shows the edge-cycle seg-

mentation of the Figure 1a contour. Notice that each edge-

cycle in the decomposition tree (Figure 1c) is segmented

into several pieces for later encoding. There are five clo-

sures detected in Figure 1e.

Spatial Encoding

After decomposition and segmentation are completed, the

spatial relations between edge-cycles and segments are

encoded. Each edge-cycle is described as a combination of

the attributes of its segments, as well as the positional rela-

tions and connection relations between segments.

 Attribute selection for segments and edge-cycles poses a

tricky trade-off: the more attributes described, the more

details of the segment are available—and the more training

examples are needed to learn useful generalizations in ana-

logical learning (see below). To address this trade-off, we

use greedy search to select five attributes with the best dis-

crimination out of eight possible attributes. The selection

of the eight-attribute scheme is based on visual analysis of

the datasets and inspired by Geons (Biederman, 1987). All

attributes are converted to a qualitative size description

(i.e., small, medium and large) according to preset thresh-

olds. Table 1 describes the details of the eight attributes.

During encoding, the isa predicate in Cyc is used to ex-

press attributes, for example,

(isa EdgeCycle-Seg-149 HighSolidity)

 The connection relations between segments are de-

scribed via the segmentsConnectToViaEdge predicate.

The first argument of this predicate is the connecting edge

of first edge-cycle and the second argument is the second

edge-cycle. For example:

(segmentsConnectToViaEdge

 (leftOfEdgeOfCycleFn EdgeCycle-Seg-149)

 EdgeCycle-Seg-152)

 The positional relations above and leftOf are used to

describe the relations between edge-cycles of the same

degree in the decomposition tree. RCC8 relations (Randell

et al., 1992) are used to describe the containing relations

between the segments of edge-cycles and their children.

 The set of entities, attributes, and relations computed for

a sketched object are combined to form a case, for use in

analogical learning and classification, as described next.

Analogical Learning
Human learning is broad and general, while being data-

efficient. An important advantage of our approach is that

we are using off-the-shelf analogical learning models,

without modification, for this task. The analogical pro-

cessing models introduced below have considerable psy-

chological evidence supporting them and have been used

for building AI performance systems for a variety of tasks

(Forbus & Hinrichs, 2017).

Attribute Description

Eccentricity The principal axis ratio computed from the covari-

ance matrix of all polygon contour points.

Compactness The ratio between the polygon area and estimated

cycle area based on perimeter of polygon.

Circularity The ratio between the standard deviation and mean

of radial-distance between polygon contour points

and polygon centroid.

Ellipsity The ratio between the standard deviation and mean

of d-primes between polygon contour points and

polygon centroid.

Convexity The ratio between the perimeter of polygon and the

perimeter of its convex hull.

Solidity The ratio between the area of polygon and the area

of its convex hull.

Orientation The orientation of the polygon main axis: vertical,

horizontal, and angular.

Area Size The relative area size of the polygon with respect to

other polygons in one segmentation.

Table 1: Descriptions of the eight encoding attributes

Structure Mapping Engine (SME)

The Structure Mapping Engine (Forbus et al., 2017) is a

computational model of analogical matching and similarity

based on Structure Mapping Theory (Gentner, 1983). Giv-

en two cases of structured, relational representations,

called a base and a target, SME computes one (or up to

three) mappings between them. A mapping includes a set

of correspondences that align entities and relations in the

base and target, a similarity score that indicates how simi-

lar the base and the target are, and candidate inferences,

which are projections of unaligned structure from one case

to the other, based on the correspondences. Here SME is

used both as a similarity metric and as a means of combin-

ing cases into generalizations, as described below.

MAC/FAC

The MAC/FAC algorithm (Forbus, Gentner, and Law,

1995) is a model of analogical retrieval. Given a probe

case and a case library, it retrieves up to three examples

from the case library that are the closest match (i.e., have

the highest similarity score) to the probe. Cases in the case

library are structured, relational representations. When a

case is stored, a content vector representation is automati-

cally computed for it and stored as well. Each dimension

in a content vector represents a predicate, and its strength

corresponds to the number of occurrences of it in that

case1. The dot product of two content vectors provides a

rough estimate of what SME would compute for a similari-

ty score for the corresponding structured representations,

which is used as a pre-filter. The MAC stage is a

map/reduce operation, where dot products for a content

vector of the probe is computed in parallel with the vectors

for all items in the case library, with the top three scoring

cases passed on to the FAC stage as output. The FAC

stage also is map/reduce but using SME on the probe and

the retrieved cases, keeping the best (or up to all three, if

they are very close to the top). The MAC stage provides

scalability, since vector dot products are quite cheap. The

FAC stage provides the sensitivity to structure that human

retrieval demonstrates, probably because structural similar-

ity leads to useful conclusions. Each case returned from

FAC is called a reminding. We use MAC/FAC for retrieval

during both training and testing, as described below. Only

the top reminding is used.

SAGE

The Sequential Analogical Generalization Engine (SAGE;

McLure et al., 2015a) is a model of analogical generaliza-

tion. Each concept to be learned by analogy is represented

by a generalization pool, which potentially holds both gen-

eralizations and outlying examples. The generalizations

and examples in a concept’s generalization pool represent

1 In a large knowledge base like OpenCyc, this leads to very sparse vec-
tors, since there are on order of 10-100 non-zero dimensions out of rough-
ly 105.

alternative models of the concept. There are two basic

operations: adding an example and classifying an example.

 Here we assume that each training example is labeled

and added to a single SAGE generalization pool. The ex-

ample is merged to the most similar case retrieved from the

pool via MAC/FAC. If nothing is retrieved, or the similari-

ty score associated with the top retrieval is below the as-

similation threshold, the training example is added to the

generalization pool as a new outlier. If the reminding is

another example, then a new generalization is formed.

This is done by replacing non-identical aligned entities

with skolems, a new unique symbol, and taking the union

of the statements involved. A probability is calculated for

each statement—1.0 if it is aligned in the match, and 0.5

otherwise. A statement’s probability reflects the frequency

with which the examples assimilated into the generaliza-

tion contained an expression that mapped to that statement.

If the reminding is a generalization, then that generaliza-

tion is updated, by adding new statements, perhaps new

skolems, and updating the probabilities for each statement

(statements whose probability gets too low are eventually

deleted, based on another threshold.). Thus, over time a

generalization pool can have a set of generalizations and

outliers. Each generalization can be thought of as a com-

ponent of a disjunctive model for the concept. In this sense

SAGE is like k-means with outliers, except that there is no

a priori determination of the number of clusters; the algo-

rithm derives that from the data.

 Classification is performed using MAC/FAC, where the

probe is the new example to be classified and the case li-

brary is the union of generalization pools representing the

possible classifications. The generalization pool from

which the best reminding comes is used as the label for

that example.

Experiments

We test our approach on two very different sketch datasets,

using a relatively small number of training examples.

Experiment 1: MNIST

The MNIST handwritten digit dataset (LeCun et al. 1998)

is constructed from NIST’s Special Database 3 and Special

Database 1. It consists of 60,000 training images and

10,000 testing images of handwritten digits. Each image is

a 20x20 pixel bitmap centered on a 28x28 pixel field. We

use randomly-selected subsets of 10, 100, and 500 images

for training and the full test set.

Method

All examples were converted into relational representations

using the CogSketch pipeline described above. A SAGE

assimilation threshold of 0.9 was used in all experiments.

For each training set size, three random subsets were se-

lected, and the system was trained on each subset and test-

ed on the full test set.

Results

See Figure 2 for the average accuracy per digit and Table 2
for overall accuracy and standard deviation information for

each training set size compared with the LeNet-5 (LeCun

et al., 1998). While the LeNet-5 also performed well using

less than the full MNIST training dataset, note that it

learned over 20 iterations. Our approach saw each example

once.

Experiment 2: Sketched Object Recognition

Dataset

We created the Coloring Book Objects dataset2 (hereafter

CBO) by collecting images from a collection of open-

license coloring books. It contains 10 bitmap examples for

each of 19 different categories of animals and everyday

objects. Each image is a roughly 900x550 pixel field. The

images in each category have very high variety including

style (e.g. realistic vs. cartoon) and view (e.g. profile vs.

frontal). Figure 4 shows some examples from the CBO

dataset. We chose objects and animals depicted in coloring

books because they are designed to be recognizable by

children, who have had little experience with the world.

2 The Coloring Book Objects dataset and CogSketch sketches can be
found at http://www.qrg.northwestern.edu/Resources/cbo/index.html .

But as Figure 3 illustrates, they provide significant varia-

bility nonetheless.

Method

We use leave-one-out cross-validation to perform sketched

object recognition. In each round, nine images are used as

training data and one image is used for testing. As some

animals or objects have texture or noise, only closed edge-

cycles as perimeters are encoded into representations. Each

animal or everyday object category has a generalization

pool. A SAGE assimilation threshold of 0.9 assimilation is

used and average accuracy is computed.

 As a baseline, we compare to results of the CNN model

LeNet-5 (LeCun et al., 1998) trained using the same leave-

one-out cross-validation technique. The model has 2 con-

volution layers with a ReLU activation followed by max-

pooling layers and a fully connected layer with softmax.

This CNN model performed above 99% accuracy on the

full MNIST training set.

Methods Training Size

(per digit)

Overall Accuracy

Our Approach 10 54.9%

Our Approach 100 76.24%

Our Approach 500 85.03%

LeNet-5 1500 x 20 iter 98.3%

LeNet-5 6000 x 20 iter 99.2%

Table 2: Accuracy and standard deviation per training size

Figure 3: A subset of examples in CBO

Figure 2: Average accuracy per digit

Figure 4: The accuracy (%) for each category

http://www.qrg.northwestern.edu/Resources/cbo/index.html

Results

Figure 4 shows the sketched object recognition accuracy

for each category using our approach. Table 3 shows the

overall accuracy and standard deviation of each model.

Our approach achieves 29.47% accuracy, which is signifi-

cantly above chance. The CNN model only achieves 5.26%

accuracy, which does not differ from chance.

Discussion

These results indicate that CogSketch plus analogical gen-

eralization can surpass 85% accuracy on the MNIST da-

taset using only 500 examples per concept, and reaches

76.24% with just 100 examples per concept. We note that

with LeNet-5 we were not able to get better than chance

performance until the system was given 1,000 examples

per concept on standard MNIST inputs. We did not get

very competitive results with the state-of-art because the

MNIST dataset is a highly down-sampled, to fit the con-

straints of CNNs at the time, which introduces significant

amounts of noise. Even though the preprocessing stage

removes some noise, the object segmentation stage and the

attributes CogSketch computations for segment edge-

cycles still have bias or errors. Thus, some images have

similar segmentations to other digits. For example, Figure

5 shows the confusion matrix from when our system was

trained on 100 examples per digit. A frequent failure mode

is the digit two being mistaken for a five, and vice versa.

This is an example of the segmentation problem—both

twos and fives are sometimes interpreted as two segments

(essentially a top curve and a bottom curve), connected in

the middle.

 As mentioned above, attribute selection is a tricky ques-

tion that needs further exploration. When segments are

similar, the selected attributes may lose information. For

example, Figure 5 shows that some nines are recognized as

fours. This is because the computed attributes of the edge-

cycles in these images sometimes cannot distinguish be-

tween the upper triangle of a four and the upper circle of a

nine—both are closed edge cycles. Our results might be

better with the original NIST dataset, but we have not yet

explored this option.

 With the Coloring Book Objects dataset, which has ex-

tremely high variability, even with only 9 training exam-

ples as training data, our system has significantly better

accuracy than chance, whereas a CNN model performs at

only chance (Table 3). The variability in this dataset is

extreme: Animals sometimes have hats, for example. Fig-

ure 6 shows the confusion matrix for this dataset. It shows

that our system has high accuracy on simple objects such

as mittens and pencils but cannot distinguish butterflies

and ice-cream—likely because they have complicated tex-

ture or shapes. Being able to recursively decompose recog-

nition might be necessary to get very high accuracy on this

dataset.

 While our results do not yet approach the state of the art

on the MNIST dataset and the performance on the Color-

ing Book Object dataset has plenty of room for improve-

ment, these results already support the hypothesis that

structured relational representations and off-the-shelf ana-

logical learning models can be used to produce systems

that learn to recognize object from sketches in more hu-

Methods Overall Accuracy

(%)

Standard

Deviation

Our approach 29.47% 2.72%

LeNet-5 5.26% 1.19%

Table 3: Overall Accuracy and standard deviation results

Figure 5: Confusion matrix of MNIST (100 training samples)

Figure 6: Confusion matrix of CBO classification results

man-like ways, with far better data efficiency than deep

learning models.

Related Work

Here we discuss four existing approaches on learning

sketched objects. We highlight where these approaches

overlap with ours, and how they differ.

 Eitz, Hays and Alexa (2012) created a large dataset of

human object sketches containing 80 sketch bitmaps per

category from 250 different categories, called the Berlin

dataset. They represented sketches using local feature vec-

tors that encode distributions of image properties. Specifi-

cally, the distribution of line orientation within a small

local region of a sketch is encoded. With the local feature

vectors, they partitioned the vectors into k disjunct clusters

via k-means clustering. A frequency histogram of the k

clusters is generated as the feature representation of

sketches. With the frequency histograms, KNN and SVM

were tested on the whole dataset. KNN could achieve

around 25% accuracy with 10 training examples and 43%

accuracy with 80 training examples. SVM could reach

31% accuracy with 10 training examples and 55% accura-

cy with 80 training examples. Prior work with analogical

generalization on this dataset (McLure et al., 2015b)

achieved similar levels of performance on a subset of that

database by introducing an Ising model to handle textures

over edge-cycles. The integration of Biederman’s recogni-

tion-by-components model with CogSketch encoding, in-

troduced here, could be combined with texture encoding to

improve performance on this dataset as well.

 Seddati, Dupont, and Mahmoudi (2015) presented a

deep convolution neural networks (ConvNets) model for

sketch recognition, which they tested on the Berlin dataset.

The model contains 15 layers, which are a combination of

convolution layers with ReLU followed by Maxpool lay-

ers. Each sketch is rescaled from 1x1111x1111 to

1x180x180 and the black and white pixels are reversed.

During each iteration of training, 64 samples from 64 dif-

ferent sketches categories were randomly selected. With

0.1 learning rate and a momentum equal to 0.9, the model

could reach 75.42% average accuracy after 80 epochs

(epoch = 13056 examples presented to the ConvNet).

While this accuracy on that corpus is impressive, it uses far

more data than people require on such tasks.

 On the other hand, Lake et al. (2015) used Bayesian

program learning (BPL) to learn to recognize handwritten

symbols and generate new, similar examples after seeing

only one example of each symbol, using their framework.

Symbols were represented as probabilistic programs—

sequences of movements based on pen strokes. Having

seen a single such example of a symbol, the model was

able to match human learning on a similar symbol match-

ing task. It was also able to generate similar images that

humans matched to the original with high fidelity. Unfor-

tunately, it is well-known in handwriting recognition that

stroke data is easier to recognize than bitmap data, so we

do not see it as applicable here.

 Dai and Zhou (2017) used an approach that combined

logical abduction and statistical induction (LASIN) to learn

encodings for hand-written symbols from several datasets.

For each dataset, LASIN learned dictionaries of primitive

concepts combined with background knowledge, such as

strokes or ink clusters, that were then used for encoding the

symbols. The utility of the learned dictionaries was tested

using support vector machines (SVM) with a linear kernel.

MNIST was one of several datasets used for testing. With a

dictionary of 200 strokes, an SVM reached 97% accuracy

on 5-fold cross-validation of a randomly selected subset of

1000 MNIST training examples (100 per digit). A diction-

ary of 20 strokes achieved approximately 91% accuracy on

this task. While our approach differs in terms of its encod-

ing strategy and learning method, Dai and Zhou’s results

provide evidence that thousands of training examples are

not necessary for robust learning. Rather, it is important to

determine appropriate representations for the forms being

learned. We argue that the representations used by humans

are a good place to start.

Conclusions and Future Work

We have shown that analogical learning over relational

representations is a viable and promising path for sketch

recognition. Our approach is based on a human-like encod-

ing scheme and achieves solid results with a very small

number of training examples on different types of sketches.

We note that deep learning systems require from 60,000

examples (Ciresan et al. 2011) to 420,000 examples (Cire-

san et al. 2012) over hundreds of epochs to achieve the

performance that they report on MNIST. Moreover, the

Coloring Book Objects dataset illustrates that deep learn-

ing models have poor performance with small numbers of

training examples, whereas analogical generalization, de-

spite the high variability of the examples, performs much

better.

 While the data efficiency of analogical generalization is

already very encouraging, we plan several lines of future

work to improve it further. First, we plan to explore dy-

namic attribute selection, using statistics gleaned from

SAGE to control the choice of attributes in subsequent

encoding. Second, we plan to integrate texture representa-

tions, as per McLure et al (2015b). Finally, we plan on

using near-miss learning (McLure et al. 2015a), which

provides additional discrimination to analogical generaliza-

tion and has been beneficial in other datasets.

Acknowledgments

This research was supported by the Machine Learning,

Reasoning, and Intelligence Program of the Office of Na-

val Research.

Reference

Biederman, I. 1987. Recognition-by-components: a theory of
human image understanding. Psychological review, 94(2), p.115.

Blum, H. 1967. A transformation for extracting new descriptors
of shape. Models for Perception of Speech and Visual Forms,
362-380.

Cantoni, V. 1994. Human and Machine Vision.

Carlini, N.; and Wagner, D. 2017. Towards evaluating the robust-
ness of neural networks. Security and Privacy (SP) IEEE Sympo-
sium on. IEEE.

Ciresan, D. C.; Meier, U.; and Schmidhuber, J. 2012. Multi-
column deep neural networks for image classification supplemen-
tary online material. Computer Vision and Pattern Recognition
(CVPR), 3642-3649.

Ciresan, D. C.; Meier, U.; Gambardella, L. M.; and Schmidhuber,
J. 2011. Convolutional neural network committees for handwrit-
ten character classification. Document Analysis and Recognition
(ICDAR), 1135-1139.

Dai, W.; and Zhou Z. 2017. Combining logical abduction and
statistical induction: Discovering written primitives with human
knowledge. AAAI, 4392-4398.

Eitz, M.; Hays, J.; and Alexa, M. 2012. How do humans sketch
objects? ACM trans. Graph. 31.4: 44-1.

Forbus, K. 1995. MAC/FAC: A model of similarity-based re-
trieval. Cognitive Science, 141-205.

Forbus, K.; Usher, J.; Lovett, A.; Lockwood, K.; and Wetzel, J.
2011. CogSketch: Sketch understanding for Cognitive Science
Research and for Education. Cognitive Science, 648-666

Forbus, K.; Ferguson, R. W.; Lovett, A.; and Gentner, D. 2017.
Extending SME to handle large-scale cognitive modeling. Cogni-
tive Science, 1152-1201.

Forbus, K., & Hinrichs, T. (2017). Analogy and Qualitative Rep-
resentations in the Companion Cognitive Architecture. AI Maga-
zine, 38(4):34-42

Gentner, D. 1983. Structure-mapping: A theoretical framework
for analogy. Cognitive Science.

Gibson, E. J. 1963. Development of perception: Discrimination of
depth compared with discrimination of graphic symbols. Mono-
graphs of the Society for Research in Child Development: 5-24.

Goodfellow, I. J.; Shlens, J.; and Szegedy, C. 2014. Explaining
and harnessing adversarial examples. ArXiv

Harding, S. M.; Rajivan, P.; Bertenthal, B. I.; Gonzalez, C. 2018.
Human Decisions on Targeted and Non-Targeted Adversarial
Samples. In 40th Annual Meeting of the Cognitive Science Society
(CogSci 2018), pp. 25-28.

Kandaswamy, S.; Forbus, K.; and Gentner, D. 2014. Modeling
Learning via Progressive Alignment using Interim Generaliza-
tions. Cognitive Science Society, Vol. 36, No. 36.

Lake, B. M.; Salahutdinov, R.; and Tenenbaum, J. B. 2015. Hu-
man-level concept learning through probabilistic program induc-
tion. Science, 350(6266), 1332-1338.

LeCun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998. Gradi-
ent-based learning applied to document recognition. IEEE, 2278-
2324.

Lovett, A.; and Forbus, K. 2013. Modeling spatial ability in men-
tal rotation and paper-folding. Annual Meeting of the Cognitive
Science Society, 25.

Lovett, A.; Forbus, K. 2017. Modeling visual problem solving as
analogical reasoning. Psychological Review, 124(1).

Marr, David. 1982. Vision: A computational approach.

McLure, M.; Friedman, S. E.; and Forbus, K. 2015a. Extending
Analogical Generalization with Near-Misses. AAAI, 565-571.

McLure, M.; Kandaswamy, S.; and Forbus, K. 2015b. Finding
Textures in Sketches using Planar Ising Models. 28th Internation-
al Workshop on Qualitative Reasoning (QR2015), Minneapolis,
MN.

Nguyen, A.; Yosinski, J.; and Clune, J. 2015. Deep Neural Net-
works are Easily Fooled: High Confidence Pre-dictions for Un-
recognizable Images. Conference on Computer Vision and Pat-
tern Recognition (CVPR), 427-436.

Palmer, S. 1999. Vision science: Photons to phenomenology. MIT
Press.

Randell, D.A; Cui, Z; Cohn, A.G. 1992. A spatial logic based on
regions and connection. 3rd Int. Conf. on Knowledge Representa-
tion and Reasoning, pp. 165-176.

Seddati, O.; Dupont, S.; and Mahoudi, S. 2015. DeepSketch: deep
convolutional neural networks for sketch recognition and simi-
larity search. In Content-based Multimedia Indexing (CBMI), 13th
International Workshop on (pp. 1-6).

Su, B. 1983. Affine Differential Geometry. CRC Press.

Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.;
Goodfellow, I.; and Fergus, R. 2013. Intriguing properties of
neural networks. ArXiv.

Zhang, T.; and Suen, C. 1984. A fast parallel algorithm for thin-
ning digital patterns. In Communications of the ACM 27.3: 236-
239.

