
Abstract

One challenge for building software organisms is to
support more autonomous, self-directed learning,
rather than learning from annotated data or blindly
exploring state spaces. We present a method for
learning a simple game given a qualitative model.
The qualitative model provides partial information
about how actions and quantities influence each
other, and which goals trade off with each other, al-
lowing the learner to progressively rule out unpro-
ductive actions based on qualitative state descrip-
tions of the current situation, and to experimentally
adjust the relative importance of competing goals.
We show that this amounts to operationalizing a
qualitative model into a quantitative prescriptive
model, which can lead to rapid improvement in per-
formance on a simple game.

1 Introduction

Any human-like model of learning should account for the role
of prior knowledge. When we learn a new task, we do not
start from a blank slate, but rather, expectations and beliefs
guide actions and explanations to permit learning from far
fewer trials than is the norm for today's machine learning.
We refer to this as data efficiency.

One way that knowledge can guide learning is through self-
directed experimentation. We pose questions to ourselves
and take actions to triangulate on ever more accurate models.
Knowledge about the domain can help pose questions that re-
fine models as well as guide credit assignment. We argue
that data efficiency can arise from a more general notion of
state. A learned action policy need not map from concrete
primitive states to ground primitive actions, but may consist
of abstract states and constraints that map to generalized ac-
tions. Learning becomes a progressive refinement of states
and actions that can stop as soon as performance plateaus,
rather than exhaustively searching through primitive states.

This paper brings together experimentation and reinforce-
ment learning, using a qualitative model [Forbus, 2019] as
the prior domain knowledge. We show how a qualitative
model can support self-directed experiments at a high level
by exploring quantitative tradeoffs between competing goals.
We also show how the same qualitative model can guide

credit assignment to rule out ineffective action policies. Qual-
itative state representations further serve as antecedent con-
ditions in learned action policy rules.

Previous work in active learning and experimentation has
tended to focus on supervised learning of classification tasks
or domain theory acquisition and refinement. While this can
result in efficient learning, our focus differs in the prior
knowledge available to the learner, the means of credit as-
signment, and learned knowledge being an action policy.

Reinforcement learning tends to focus on a more bottom-
up “model-free” learning, at the cost of many learning trials
[Sutton and Barto, 2018]. Although our mechanism is also
unsupervised, it leverages a qualitative domain model to sup-
port efficient learning. We believe this will ultimately enable
a continuum of approaches from highly interactive appren-
tice-like learning to fully autonomous experimentation.

This paper describes a system that learns to play a simple
game given a qualitative model of the mechanics of that
game. Next we describe the domain task, the Human Re-
sources Manager game, followed by how it is played using a
qualitative model and goal network. Section 4 presents the
learning mechanism, including credit assignment, experi-
mentation, the representation of experimental controls and
learning goals. Section 5 presents the results of empirical ex-
periments. Section 6 compares this to related work and sec-
tion 7 presents conclusions.

2 The Domain Task: HRM

Human Resources Manager (HRM) is a single-player game
in which the objective is to manage a small printing company
for twenty months without driving the company into bank-
ruptcy or ending with a negative cash flow. The player starts
with $50,000 and a roster of three employees and makes HR
decisions about hiring, firing, training, promoting and giving
raises. Unhappy employees quit and former employees sue
the company if they were fired improperly.

HRM was adapted from a 27-year old corporate training
simulator [Feifer and Hinrichs, 1992]. It is implemented via
backchaining rules in a form similar to the Game Description
Language [Genesereth and Thielscher, 2014]. We chose
HRM because it was simple to implement, has a complex un-
derlying mathematical model, and yet it factors out adversar-
ial and stochastic complexities. This provides a simple

How Qualitative Models can Improve Learning by Experimentation

Thomas R. Hinrichs and Kenneth D. Forbus
Department of Computer Science, Northwestern University, Evanston IL

{t-hinrichs, Forbus}@northwestern.edu

testbed to explore ideas about autonomous experimentation
by enabling the system to impose experimental controls on
quantities and actions. We make no claims for its entertain-
ment or pedagogical value.

Negotiating tradeoffs is key in this game, as in most strat-
egy games. Finding an effective compromise between com-
peting demands is an abstract task that is a major constituent
of learning a strategy. One of our research goals is to dis-
cover how to acquire such strategic knowledge with the same
basic mechanism as learning action-level policies.

There are three main tradeoffs in HRM: First, the goal to
reduce labor costs with a low headcount competes with the
goal to maximize income. Second, the goal to keep employ-
ees happy with high salaries competes with keeping salaries
low to minimize labor costs. Third, the goal to invest in em-
ployee training competes with keeping payroll costs down.
Discovering quantitative compromises for these goals can be
thought of as turning a qualitative model into a partly quanti-
tative model.

3 The Game Interpreter

Before describing the learning mechanism, it helps to first
understand how the game player works. It first sets up the
initial state consisting of quantitative properties and relations
of the simulated company. On each turn it queries for legal
actions, selects one and applies it, and computes the next
state. Most actions are domain-level primitives that can be

applied to individual employees, such as giving a raise or
evaluating them. These have immediate effects, so we refer
to them as synchronic actions. There is a special diachronic
operator, doNextTurn, that advances the simulated time by
one month. This allows the player to take any number of ac-
tions within a turn and then explicitly advance the time. This
happens automatically when there are no more viable actions
to take in a turn. When a game is over, the score is computed.

Selecting good actions is what the system must learn. In-
stead of starting with a blank slate, as most RL systems do, it
has a qualitative model of the quantities in the game, the
graph of their influences, and the qualitative effects of actions
on quantities. For example, giving an employee a raise in-
creases their salary, which in turn positively influences the
employee's attitude and the company's labor costs. The learn-
ing problem is to figure out how to balance these competing
factors and to identify conditions for taking actions.

The qualitative model was produced manually by abstract-
ing the equations in the game’s rules. Prior work has shown
the feasibility of learning a qualitative model from demon-
stration [Hinrichs and Forbus 2012], but this was not the cur-
rent research focus. The HRM model has 37 reified quantity
types and 53 influences between quantities, actions, and
events. A quantity type may be instantiated for each em-
ployee or for the company itself. Because the qualitative
model ultimately connects intermediate quantities like salary
to the top-level game goal, it is possible to automatically

Figure 1: Goal network for HRM computed from the qualitative model

translate the influences into subgoals of the game goal. A
static analysis routine walks the qualitative influences to reify
goals, as described in [Hinrichs and Forbus, 2016]. Here the
goal types produced are all of the form maximize (or mini-
mize) some quantity type. Static analysis during construction
detects tradeoffs by identifying quantity types that both posi-
tively and negatively influence the same quantity. Figure 1
shows the goal network for HRM, with oval nodes indicating
goals involved in tradeoffs.

A goal is operational if there is a qualitative influence be-
tween some primitive action and the goal quantity, e.g. max-
imizing an employee’s salary is operational because there is
a qualitative dependence of employee salary on the action
doGiveRaise. Higher level goals, such as maximizing em-
ployees' attitudes, may be active, but are not operational be-
cause there is no direct control over attitudes.

The reified goal network also keeps track of the relative
activation of goals throughout the game. The activation of a
goal estimates its importance and thereby the proportional al-
location of effort expended in pursuing it. Conceptually, if
the top goal to win the game has 100% activation, then that
activation is subdivided among its subgoals. By default, ac-
tivation is allocated evenly, so that it serves as an informal
proxy for importance relative to the top goal. Also, goal acti-
vation can be explicitly set by a meta-level planning action,
used to experimentally explore tradeoffs.

The effect of goal activation is to control the likelihood of
picking actions that serve one goal over another. For goals
pertaining to a single entity, such as the company, this results
in stochastically picking an action or not, whereas for goals
that apply to many entities, it selects a subset of entities to act
on. For example, if the goal of maximizing salaries is only
20%, then only 20% of employees should receive raises. We
refer to this as an action budget for a type-level goal. The
action budget ensures that no single action type monopolizes
available resources. Although it still allows raises to be given
every turn, the action policy refinement learns to suppress
this when the actions have no positive benefit on higher-level
goals, as described later.

Algorithm 1 outlines the action selection process. When
the game player chooses an action to take, it steps through
active, operational domain goals in decreasing order of acti-
vation. It identifies action predicates that influence the goal

quantity and queries for ground legal actions. If there are ac-
tion policies or experimental conditions on the action predi-
cate, it filters the actions and selects the action whose entity
argument is the most underperforming with respect to the
goal (hence, argMin with respect to goal_performance). For
example, only the most underpaid employees should receive
raises. Finally, it takes the action in the game and records the
quantity changes as it computes the next state. Any expecta-
tion violations here are passed to credit assignment to con-
struct or refine an action policy for the action predicate.

4 Learning Mechanism

Our objective is to learn abstract lessons autonomously with
as few trials as possible, using a qualitative model to guide
experimentation strategically, and enabling credit assignment
to extract more powerful lessons from each trial.

4.1 Credit Assignment

Drawing more general conclusions from each trial promotes
data-efficiency in learning. When the learner loses a game,
it looks back in time to the most recent action that set it up to
lose the game, using the qualitative model to reconstruct the
causal trail back to poor decisions. This post-mortem analy-
sis identifies the quantities contributing to the loss. For
HRM, this is the company’s capital reaching zero. It traces
backward, looking for a change in the derivative of capital
until it reaches the turn in which some action influenced the
company’s capital. It searches the indirect influences on cap-
ital until it finds an action that negatively impacted the profit
rate, such as giving a raise or firing somebody. It posts learn-
ing goals to learn the conditions under which action primi-
tives should be applied, creates or refines action policies, and
schedules follow-up experiments for further refinements.

4.2 Generalization

To prevent the same mistake from being made in similar cir-
cumstances, an action policy is constructed for that action.
Whereas an action policy in most reinforcement learners
maps directly from states to utilities of actions, our learner
instead acquires and progressively generalizes constraints on
actions. In particular, an action policy rule relates a qualita-
tive state characterizing the condition with an action specifi-
cation that may itself be lifted or generalized. For example,
a policy might prohibit promoting Alice when her perfor-
mance is less than 20 and her attitude is less than 50. Such a
rule would look like:
(controlConditionLowerBound

 (LearnCondForActionFn doHRMPromote)

 (MostSpecificConditionFn doHRMPromote)

 (ruleOut (doHRMPromote Alice)))

where first argument is the learning goal, the second argu-
ment is a functional term denoting the name of a model frag-
ment that defines a qualitative state, and the third term is the
action specification. The model fragment, in turn, relates the
quantity conditions:

Algorithm 1 Action Selection

Input: domain goals
Output: execution of actions in simulated world
1: foreach domain goal in decr. order of activation do
2: while meets_action_budget(goal) do
3: legal ← legal_actions(goal)
4: acceptable ← filter_by_action_policy(legal)
5: action ← argMin(goal_perf (entity(a), goal))
6: Perform action.
8: record before/after quantity changes
9: refine action policy
10: end while
10: end foreach

(and (< (performance Alice) 20)

 (< (attitude Alice) 50))1

As new failure or success instances are encountered, the
ranges on quantities are extended and the arguments to the
action specifications are lifted as necessary. This representa-
tion was adopted to support experimental controls and has the
benefit of being relatively concise and explainable.
4.3 Autonomous Experimentation
Autonomous experimentation is the process by which the
learner proposes and executes its own experiments to reduce
uncertainty. There are two reasons for autonomous experi-
mentation: to strategically curate experience and to simplify
credit assignment. We address the former by systematically
varying experimental parameters and the latter by controlling
other exogenous parameters to restrict possible causes of
change. In addition, experiments are organized around ex-
plicit declarative learning goals as a way to be more strategic
about the exploration process. These learning goals specify
two different kinds of experiments that are supported: action
experiments and tradeoff experiments.

An action experiment is created when a postmortem traces
a failure to an action that either directly caused a game loss
or caused a trend that ultimately led to the loss. The agent
posts an action-condition learning goal to refine the condi-
tions under which the action is advisable. It then schedules
experiments to refine the conditions by exploring the region

1 Simplified syntax for presentation purposes

between the most specific state to rule out and the most gen-
eral. In other words, it reduces the uncertainty by driving the
qualitative state conditions in a manner similar to candidate
elimination in Version Spaces [Mitchell et al., 1983].

Tradeoff experiments, on the other hand, explore higher-
level decisions by controlling the relative activations of com-
peting goals. If the baseline allocations for competing goals
is 50%-50%, then a tradeoff learning goal will spawn two ex-
periments that set activations to 75%-25% and 25%-75% re-
spectively. Subsequent experiments further extrapolate or in-
terpolate the best performing allocation so far. These tradeoff
experiments further simplify credit assignment by suppress-
ing all actions that cannot influence either of the competing
goals. Consequently, this is an offline policy.

5 Evaluation

We ran learning trials under the two experimental conditions:
action learning and tradeoff learning. In the first, we tested
action learning by having it play autonomously through pure
trial and error while honoring the goals and qualitative model.
It learned to rule out actions that failed to have an immediate
benefit as predicted by the qualitative model. It also learned
from post-mortem analysis to rule out actions that had a long-
term negative effect leading to a loss of the game. Initially,
performance was spectacularly bad. Because every action in

Figure 2: Action learning trials 1-3 & 10. The action abbreviation key is:

Evaluate, Promote, Hire, Fire, Raise, Train, Lawsuit, Overpaying, Bankruptcy

0

10000

20000

30000

40000

50000

60000

1 2 3 4 5

Trial 1:

capital income productionCost

(EEEPPFHLTR-PEEEFRLH-PQEEF-LE-B)

0

20000

40000

60000

80000

100000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Trial 2:

capital income productionCost

(PPRTHH-PPPERRT-PPERR-PPEEERR-PEEERR-PERR-EEERR-
EERR-EOEERR-EOEEERR-EOEERR-EOEERR-EOEEERR-EOEE-

EOEE-EOEEEE-EOEE-EOEE-EOEEEE-O)

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Trial 3:

capital income productionCost

(PERHH-PERRT-ERR-RRT-RR-ERR-ERR-ERR-R-EERR-ER-
PE-PE---EER-E-E-EEERR-)

0

50000

100000

150000

200000

250000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Trial 10:

capital income productionCost

(RHH-PO-----R-ER----ET-R-E--E-R---)

the game serves some goal, it micromanaged and tried to pur-
sue every action as often as possible. In some cases, it tried
firing everybody in the first few turns, leaving the fixed costs
to drive the company into bankruptcy shortly afterward.

Figure 2 shows the results of the first three trials and the
tenth trial. Each chart shows the progression of the company-
wide capital, income, and production cost over time. While
the first trial ended with bankruptcy in turn 5, by the second
trial, it had learned an action policy that ruled out firing em-
ployees in most conditions and had discovered that hiring
more employees was the key to surviving past turn 20. Trials
3 through 10 continue to improve the final outcome by in-
creasing the profitability of the company until it banks
$240,000 by turn 20 in trial 10.

In addition to performance curves, the charts also present
the actual sequence of actions and events in the trial. We can
see from this that it quickly stopped firing employees and
learned to hire sooner in the game. Moreover, as it refined

the action policies, it learned to play with a lighter touch, such
that by trial 10, it achieved better performance with far fewer
actions consisting of hiring additional employees, giving a
few raises and evaluations, one promotion and one training
course. Thus the qualitative goal network is refined by the
action policy, which provides quantitative constraints on
when it is effective to take particular actions. HRM is deter-
ministic and the game objective is not especially difficult to
achieve. In fact, under the baseline conditions of taking no
actions at all, the company only fails after 19 turns. However,
the point of these experiments is to show how quickly it is
able to improve given fairly minimal background knowledge.

Figure 3 shows the results of tradeoff learning trials. Here,
because tradeoffs can be enumerated ahead of time, an initial
set of six trials was scheduled to extrapolate tradeoff ratios in
either direction from the baseline tradeoff allocation. In the
first two trials, it explores the salary tradeoff by first setting
the activation of the goal to minimize salaries at 50% vs 0%

Figure 3: Tradeoff learning trials

0

10000

20000

30000

40000

50000

60000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Trial 1:

capital income productionCost

50% min Salaries, 0% max Salaries

0

10000

20000

30000

40000

50000

60000

1 2 3 4 5 6 7 8 9

Trial 2:

capital income productionCost

0% min Salaries, 50% max Salaries

0

20000

40000

60000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Trial 4:

capital income productionCost

0% min Training, 50% max Training

0

20000

40000

60000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Trial 3:

capital income productionCost

50% min Training, 0% max Training

0

10000

20000

30000

40000

50000

60000

1 2 3 4 5 6

Trial 5:

capital income productionCost

75% min #Employees, 25% max #Empls

0

100000

200000

300000

400000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Trial 6:

capital income productionCost

25% min #Employees, 75% max #Empls

for maximizing salaries. Of course, since there is no action
to reduce salaries, this translates to never giving a raise.
Moreover, since all other actions are suppressed in this of-
fline policy, trial 1 is equivalent to the baseline condition of
taking no actions at all.

The next pair of trials explored the tradeoff between reduc-
ing labor costs by omitting training (Trial 3) and increasing
employee competence by training employees (Trial 4). As
with salary, there is no "untrain" action, so by not training
anyone and suppressing all other actions, Trial 3 is equivalent
to the baseline condition. Trial 4 did train an employee in the
first turn, but the only evidence of that is a small spike in pro-
duction cost, causing it to lose two turns earlier.

The final pair of trials explored the tradeoff between hav-
ing fewer employees to reduce labor costs (Trial 5) and hav-
ing more employees to increase production (Trial 6). The ef-
fect of reducing headcount by firing approximately half the
staff was swift and severe: labor costs dropped, but fixed
costs stayed the same causing profits to nosedive leading to
bankruptcy in turn 6. Finally, in Trial 6, by hiring two addi-
tional employees, income (barely) exceeds production cost
and the company remains profitable.

Ultimately, the tradeoff trials are merely suggestive of one
way for a learning agent to experiment at a more abstract
level than individual primitive operators. As currently imple-
mented, the relative goal activations of competing goals are a
coarse mechanism for controlling behavior and further re-
finement of the tradeoff ratios would not appreciably improve
performance in this domain. Despite this, it learned to win in
six trials, which is data efficient by most standards.

6 Related Work

The approach described here builds on ideas from several ar-
eas, most notably autonomous experimentation, reinforce-
ment learning, and qualitative modeling.

Learning by experimentation requires a learner to design
and run experiments to validate or refute its own hypotheses.
Part of this involves imposing experimental controls to mini-
mize conflating factors and to simplify credit assignment.
Important early work in experimentation includes the opera-
tor refinement method [Gil, 1994] which acquired domain
knowledge about operator applicability. It used experimen-
tation to identify and refine missing pre- and post-conditions
of planning operators that led to anomalous outcomes in ex-
ecution. Like operator refinement, our system runs experi-
ments to refine the conditions under which an operator can or
should be applied. Our approach differs by focusing on learn-
ing the advisability of different actions in different situations
in order to optimize behavior. A qualitative domain model
guides credit assignment and concisely encodes experimental
controls. The inequalities in action policy rules effectively
turn experimental design into a search in a parametric space.

Like most reinforcement learners, our system performs un-
supervised learning. While an important topic in RL is when
to explore vs exploit learned knowledge [Kearns and Singh

2002; Brafman and Tenenholtz, 2002], we focus instead on
experimentation that determines what to explore.

Reinforcement learning typically requires hundreds to
thousands of trials to learn even simple behaviors because it
exhaustively explores the state space of the system. Hierar-
chical reinforcement learning addresses such high dimen-
sionality scaling problems using temporal abstraction and hi-
erarchical control [Barto and Mahadevan, 2003]. Function
approximation accommodates states that take continuous val-
ues [Santamaría et al.,, 1997]. Using qualitative states to en-
code action policies could be considered a kind of
knowledge-derived function approximation.

 In cognitive robotics, [Janež et al., (2013)] used experi-
mentation to learn a qualitative model of robot actions to sup-
port prediction and explanation of effects. Part of their strat-
egy for learning faster was to experiment with more complex
environments in order to encounter a greater diversity of ob-
jects more quickly. In some respect, that is the exact opposite
of what our system does, because one of the benefits of ex-
perimentation is the ability to simplify credit assignment
through controlling and simplifying the environment.

Šoberl et al. (2017) explored the use of qualitative models
for driving behavior in a simulated robot. Their qualitative
constraints serve a similar purpose to our qualitative action
policies, except that they are not revised because the system
does not learn.

7 Conclusions

A qualitative model is one kind of prior domain knowledge
that can guide learning. It is itself a form of declarative,
learnable knowledge that can serve multiple roles in learning
to play a game or control a system of some kind. One of those
roles is to facilitate experimentation. Experimentation re-
duces ambiguity in credit assignment by imposing controls
on what will be systematically varied and what will be held
constant. We have presented two ways to do this: by gener-
alizing or specializing qualitative state conditions on action
selection and by manipulating the tradeoff ratios of activa-
tions of competing goals. In both cases, the result of learning
is to operationalize the qualitative model by learning more
quantitative policies for pursuing actions or goals.

A major property of the learning technique described here
is that it is data-efficient. It attains good (if not optimal) per-
formance in under ten trials. It achieves this by starting with
a qualitative domain model and ruling out vast portions of the
potential state space whenever an action fails to provide a
predicted performance benefit. It does not need to wait until
the end of the game to receive an extrinsic reward, since the
model and its derived goal network provide an immediate re-
ward signal via an audit trail from any action up to the top
level goal. We believe that the resulting data efficiency is an
important property of any learning system that purports to be-
have in a manner remotely like human intelligence.

Acknowledgments

This research was supported by the US Air Force Office of
Scientific Research.

References

[Abel et al., 2018] David Abel, Dilip Arumugam, Lucas
Lehnert, and Michael Littman. State abstractions for life-
long reinforcement learning. In International Conference
on Machine Learning, pages 10–19. 2018.

[Barto and Mahadevan, 2003] Andrew G. Barto and Sridhar
Mahadevan. Recent advances in hierarchical reinforce-
ment learning. Discrete event dynamic systems 13(1-
2):41–77, 2003.

[Brafman and Tennenholtz, 2002] Ronen I. Brafman and
Moshe Tennenholtz. R-max-a general polynomial time al-
gorithm for near-optimal reinforcement learning. Journal
of Machine Learning Research 3(Oct): 213-231, 2002.

 [Feifer and Hinrichs, 1992] R.G. Feifer and T. R. Hinrichs.
Using stories to enhance and simplify computer simula-
tions for teaching. In Proceedings of the Fourteenth An-
nual Conference of the Cognitive Science Society, pages
815–819, 1992.

[Forbus, 2019] Kenneth D. Forbus. Qualitative representa-
tions: How people reason and learn about the continuous
world. MIT Press, 2019.

[Forbus et al., 2009] Kenneth D. Forbus, Matthew M. Klenk
and Thomas R. Hinrichs. Companion cognitive systems:
Design goals and lessons learned so far. IEEE Intelligent
Systems 24:36–46, 2009.

[Genesereth and Thielscher, 2014] Michael Genesereth and
Michael Thielscher. General game playing. Synthesis
Lectures on Artificial Intelligence and Machine Learning
8(2): 1–229, 2014.

[Gil, 1994] Yolanda Gil. Learning by experimentation: Incre-
mental refinement of incomplete planning domains. In
Machine Learning Proceedings 1994, pages 87–95. Mor-
gan Kaufmann, 1994.

[Hinrichs and Forbus 2016] T. Hinrichs and K. Forbus. Qual-
itative models for strategic planning. In Proceedings of
the Third Annual Conference on Advances in Cognitive
Systems, Atlanta, May. 2015.

Janež, T., Žabkar, J., Možina, M., & Bratko, I. (2013). Learn-
ing Faster by Discovering and Exploiting Object Similar-
ities. International Journal of Advanced Robotic Systems,
10(3), 176.

[Kaelbling et al., 1996] Leslie Pack Kaelbling, Michael L.
Littman, and Andrew W. Moore. Reinforcement learning:
A survey. Journal of artificial intelligence research
4:237-285, 1996.

[Kearns and Singh, 2002] Michael Kearns and Satinder
Singh. Near-optimal reinforcement learning in polyno-
mial time. Machine learning 49(2-3): 209-232, 2002.

[Mitchell et al., 1983] Tom M. Mitchell, Paul E. Utgoff, and
Ranan Banerji. Learning by experimentation: Acquiring
and refining problem-solving heuristics. In Machine

learning, pages 163–190. Springer, Berlin, Heidelberg,
1983.

 [Santamaría et al., 1997] J. C. Santamaría, Sutton, R. S., &
Ram, A. (1997). Experiments with reinforcement learning
in problems with continuous state and action spaces.
Adaptive behavior, 6(2):163–217, 1997.

Šoberl, D., & Bratko, I. (2017, June). Reactive motion plan-
ning with qualitative constraints. In International Confer-
ence on Industrial, Engineering and Other Applications of
Applied Intelligent Systems (pp. 41-50). Springer, Cham.

[Sutton and Barto, 2018] Richard S. Sutton and Andrew G.
Barto. Reinforcement learning: An introduction. MIT
press, 2018.

