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Abstract 

Researchers have recently found that 3-month-old infants are 
capable of using analogical abstraction to learn the same or 
different relation, given the right conditions (Anderson et al. 
2018).  Surprisingly, seeing fewer distinct examples led to 
more successful learning than seeing more distinct examples.  
This runs contrary to the prediction of standard learning 
theories, which hold that a wider range of examples leads to 
better generalization and transfer, but is compatible with other 
findings in infant research (Casasola 2005; Maguire et al. 
2008).  Anderson et al. (2018) propose that this is due to 
interactions between encoding and analogical learning.  This 
paper explores that proposal through the lens of cognitive 
simulation, using automatically encoded visual stimuli and a 
cognitive model of analogical learning.  The simulation results 
are compatible with the original findings, thereby providing 
evidence for this explanation.  The assumptions underlying the 
simulation are delineated and some alternatives are discussed. 
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Introduction 

Relational learning and reasoning are central in human 

cognition (Gentner, 2003, 2010; Gentner & Markman 1997; 

Hofstadter, 2001; Penn et al., 2008). How does this ability 

arise? Is analogical ability built up gradually via maturational 

change, or by combining other component processes?  Or is 

structure-mapping ability an innate species-level adaptation? 

The first possibility may seem more plausible, given the 

abundant evidence that relational sophistication increases 

over development (Gentner & Rattermann, 1991).  But recent 

findings suggest that analogical processing ability may be 

present early on, and that developmental gains in analogical 

fluency are due to increases in relational knowledge 

(Gentner, 2010; Gentner & Rattermann, 1991) and/or 

executive ability (Richland et al., 2006; Thibaut et al., 2010).  

For example, Ferry, Hespos and Gentner (2015) found 

evidence that 7-9-month-old infants can carry out analogical 

abstraction across a sequence of exemplars to derive an 

abstract same or different relation. 

Anderson et al. (2018) recently reported that even 3-

month-old infants can learn same or different relations via 

analogical abstraction.  A surprising aspect of the research 

was that the infants learned better when given fewer 

examples.  In the first experiment, infants failed to learn these 

relations after being shown six distinct examples of either 

same or different repeated until habituation. (The exact 

number of habituation trials varied, ranging from 6 to 9 trials 

until infants’ looking times declined by 50% from the first 

three trials to the last three, or until infants had completed 

nine trials.) In the second experiment, infants succeeded after 

being given repeated exposure to only two examples of the 

relation. This result runs contrary to the predictions of 



standard learning theories, which predict that a wider range 

of examples leads to better generalization and transfer, but is 

compatible with some prior findings on infant relational 

learning (Casasola 2005; Maguire et al. 2008).  

 Anderson et al. (2018) proposed that these phenomena are 

due to interactions between encoding and analogical 

processing.  This paper examines this proposal via cognitive 

modeling, using automatically encoded stimuli and a model 

of analogical learning.  Specifically, we ask whether the 3-

month-old pattern can be modeled by assuming that the 

infants have structure-mapping ability, but that they are 

limited by their encodings of examples. We lay out a set of 

assumptions that provide a possible processing account and 

show that these assumptions could explain the generalization 

pattern. The modeling enterprise also reveals other possible 

encoding assumptions, which can be explored in future work. 

We first review prior research on analogical abstraction, 

then describe the Anderson et al. (2018) experiments to be 

modeled.  Then we describe our model of the infants’ 

encoding and learning process. To preview, the model is 

constructed from pre-existing components (described below). 

This includes automatic encoding of visual stimuli based on 

photos of the objects shown to the infants.  We describe the 

processing performed by the model, laying out the 

assumptions we are making and noting where alternative 

explanations are feasible.  Then we present the results of 

computational simulation based on the model. We end with a 

discussion of the implications and possible future work 

Background 

There is evidence of analogical ability in children from early 

preschool through adulthood (Gentner, 2003; Gentner & 

Rattermann, 1991; Richland et al., 2006). Two signatures of 

this ability are (1) the ability to perceive abstract relational 

matches can be enhanced by comparing instances of a 

relation, in both adults  (Gick & Holyoak, 1983; Markman & 

Gentner, 1993) and children (Gentner, 2003; Kotovsky & 

Gentner, 1996); and (2) the presence of salient objects can 

interfere with relational mapping, especially early in 

development (Gentner & Toupin, 1986; Paik & Mix, 2008; 

Richland et al., 2006). These findings are consistent with 

other research suggesting that comparison entails a structural 

alignment process that highlights relational commonalities 

between the items compared (Markman & Gentner, 1993). 

Recent research has explored relational learning in human 

infants (Anderson et al., 2018; Ferry et al., 2015; Gervain et 

al., 2012). Ferry et al. (2015) found evidence that 7 to 9-

months-old infants can engage in analogical abstraction. 

When shown a series of same pairs (using the method 

described below), infants afterwards looked significantly 

longer at a novel different pair than at a novel same pair (and 

the reverse for habituation to different). This is evidence for 

the first signature of analogical processing—that comparing 

across examples promotes abstracting the common relational 

 
1 To test for salient-object interference, the infants had previously 

seen some objects in the waiting room; this is not modeled here.  

structure. They also found evidence for the second signature 

of analogical processing: that salient objects tend to distract 

from relational processing. When infants were shown a 

subset of objects prior to habituation, they performed poorly 

on test trials containing these objects, failing to distinguish 

same and different. Thus, Ferry et al. (2015) concluded that 

by 7-9-months, infants can use analogical generalization to 

form a relational abstraction.  

Analogical Learning in 3-month-old Infants 

To explore the origins of analogical ability, Anderson et al. 

(2018) asked whether 3-month-olds could abstract same and 

different relations. Infants were shown a series of pairs: half 

the infants saw same pairs and the other half saw different 

pairs 1 . The materials were pairs of colorful, distinctive 

objects (Fig. 1). In order to engage infants’ attention, on each 

habituation and test trial, the pair was moved together 

through a fixed motion path: up, then tilted left, then right, 

then down to the start point. This 8-second cycle was repeated 

continuously until the infant looked away for 2 seconds. Then 

the next pair was shown in the same way.  The habituation 

trials continued until the infant’s looking time declined by 

50% from the first three trials to the last three, with a 

maximum of nine trials (range = 6 to 9 trials). 
Both groups of infants then saw the same six test pairs—

three depicting the same relation and three depicting the 

different relation. The pairs were shown one at a time, and the 

key dependent measure was how long the infant looked at 

each pair. The key test pairs had brand new objects 

instantiating either the same or different relation. If infants 

have abstracted the relation they saw during habituation, they 

should look longer at the novel relation. (This use of looking-

time is commonly used with preverbal infants; the idea is that 

the familiar relation will fit their expectations, whereas the 

novel relation will be more surprising.) 

In Experiment 1, infants were shown six distinct pairs 

(either all same or all different) during habituation. During 

test, the infants failed to look longer at novel pairs on the key 

trials. Thus, there was no evidence for analogical learning. 

Although this could mean that 3-month-olds lack this ability, 

the experimenters explored another possibility:  that the 

 

 

 
Figure 1: Examples of habituation pairs from 

Anderson et al. Expt. 1 (2018).  



infants were overwhelmed by the variety of objects in the 

study, and thus failed to encode the relations between them 

(e.g., Casasola & Park, 2013).  Consequently, in Experiment 

2, only two distinct pairs were used during habituation (e.g., 

AA, BB, AA, BB...for same). The infants were then tested in 

the same manner as in Experiment 1.  In this case, infants did 

indeed learn. They looked longer at pairs showing the novel 

relation, even with brand new objects—evidence that they 

had abstracted the relation.  

Simulating the Infants’ Learning 

In order to abstract a same or different relation from a series 

of examples, two things must happen (not necessarily in a 

fixed order): (1) the learner must compare the objects within 

each pair to form some initial representation of the same (or 

different) relation within the pair; and (2) the learner must 

compare across the pairs to arrive at a more abstract   

encoding of the relation. Only if both those things happen will 

the learner experience a brand new same pair as familiar. Our 

simulation explores one path—by no means the only path—

by which this could happen.  

Simulation Design 

Here we discuss our simulation. We begin by noting a critical 

point: in order to be informative about human cognition, a 

simulation must be constrained. Many simulations have used 

hand-coded representations to depict the learner’s construal 

of a situation, and/or have implemented a simulation process 

specific to the situation being modeled.  But this allows 

enormous latitude to tailor the representations and processes 

to fit whatever outcome is desired.  To avoid this problem, 

(a)  as input, the model is given representations that are 

automatically encoded from the visual stimuli given to the 

infants; and (b) our processing model is built out of pre-

existing components that have successfully simulated prior 

findings in analogical processing.  

We first describe the component models, then how they are 

combined. 

Simulation of analogical processing 

We use the Structure-Mapping Engine (SME, Forbus et al. 

(2016)) as a simulation of analogical mapping, and SageWM 

(Kandaswamy et al. 2014) as a simulation of analogical 

generalization in working memory.  These models have been 

used to model a number of psychological phenomena already. 

SME is based on Gentner’s (1983) structure-mapping 

theory of analogy and similarity.  Given two cases consisting 

of structured relational representations, SME computes one 

or more mappings between them, preferentially aligning 

common relational structure. A mapping includes a set of 

correspondences that align entities and statements in the base 

and target, a similarity score that indicates how similar the 

base and the target are, and candidate inferences, which are 

 
2 As descriptions are merged, frequency counts are kept for how 

often each statement is aligned.  If the probability goes below a 

threshold (0.2 by default), the statement is eliminated. 

projections of additional structure from one case to the other, 

based on the aligned structure. SME also computes a 

structural evaluation score—a similarity score that takes into 

account the depth of the common structure as well as the 

among of overlap. Here SME is used both as a similarity 

metric and as a means of combining cases into 

generalizations in SageWM. 

SageWM is the working-memory version of SAGE 

(McClure et al. 2015), the Sequential Analogical 

Generalization Engine. It provides a model of analogical 

abstraction.  SageWM creates new generalizations from a 

series of examples, by iterative application of SME. When 

given a series of examples, SageWM stores the first example. 

When the next example arrives, SageWM compares it to the 

first one, using SME. If there is sufficient overlap (that is, if 

SME’s score is above a pre-set assimilation threshold), the 

common structure is stored as a generalization. If the 

similarity to the abstraction is below threshold, the example 

will be stored separately. This process continues as new 

examples arrive. Thus, if new examples are sufficiently 

similar to the ongoing generalization, then the generalization 

will be updated to be somewhat more abstract. We use 0.95 

as the assimilation threshold in these experiments2 which is 

the default for SageWM. 

Simulation of visual encoding 

In order to avoid hand-coding the stimuli, we use CogSketch 

(Forbus et al. 2017), a pre-existing cognitive model of visual 

encoding and visual problem solving, to provide a vocabulary 

of visual representations.  CogSketch has successfully 

modeled a variety of adult visual tasks, including Ravens’ 

Progressive Matrices (Lovett & Forbus, 2017), an oddity task 

(Lovett & Forbus, 2011), and a paper-folding task (Lovett & 

Forbus, 2013).   

The production of visual stimuli occurs via an automatic 

pipeline, starting with photographs the pairs of objects 

provided by the original experimenters.  The photographs are 

blurred and the Canny edge detector is used to generate a set 

of initial edges describing each object.  CogSketch 

decomposes these initial edges into segments based on 

discontinuities and intersections.  CogSketch automatically 

computes a variety of information about each segment, e.g. 

its length, curvature, orientation, position, and topological 

relations with other segments. This graph of segments and 

junctions is also used to identify regions within an object 

(McLure et al. 2011).  This includes the object’s boundary, 

consisting of all exterior edges, which we assume is visually 

salient and likely to be encoded early in human processing.  

Several kinds of information are automatically encoded for 

regions as well, such as whether or not it has curved sides.  

CogSketch also estimates its closeness to a set of shape 

templates, e.g. spindles, triangles, rectangles, and ellipses.  

Since color is visually salient, we use a color extraction 



library to extract up to eight of the most frequent colors for 

an object.   

An important issue in this modeling effort is to consider the 

visual encoding processes available to 3-month-olds. In the 

first months of life, vision and attentional processes are 

becoming increasingly stable (Arterberry & Kellman, 2016; 

Colombo, et al., 1991). Visual acuity improves steadily 

through the first several months. Especially relevant here, 

infants’ habituation and fixation periods decrease 

dramatically during the first 6 months (Bornstein, 1985; 

Colombo & Mitchell, 2009), suggesting that young infants’ 

encoding is slower and more variable than that of older 

infants. 

 To capture young infants’ relatively inefficient encoding 

processes, here we have assumed slow encoding—that is, that 

not all the available information is encoded on first exposure.   

(Other assumptions are possible, including variable 

extraction of information.) Specifically, we assume that the 

boundary of an object, its shape properties, and color are 

encoded early.  When given more time, we assume infants 

compute higher-level representations of the shape, including 

internal properties and relations. We use the scheme from 

Chen et al. (2019), which is inspired by Biederman’s (1987) 

Recognition by Components theory, which describes shapes 

as being made out of parts called geons.  CogSketch identifies 

geons by using a medial axis transform, compatible with 

Biederman’s original account and consistent with evidence 

from Lowet et al. (2018) regarding their use in human shape 

representations.  Object-internal relationships between geons 

are computed in terms of positional relations and qualitative 

topological relations (Cohn et al.1997).  Figure 2 shows 

examples of boundary and geon representations for one of the 

objects. We further assume that, given sufficient time, infants 

encode representations of both objects.  

In the original experiments, the pairs were moved in a 

uniform way throughout the habituation and test trials.  We 

assume that the infants encode these motions, since motion 

is extremely salient for them.  While we could use 

qualitative spatial representations to automatically represent 

the specific motions of the stimuli as part of the encoding 

process, using techniques like (Chen & Forbus, 2018), this 

would involve considerable complexity to gather the video 

data. Thus, we do not explicitly encode such motions in the 

present model.   

We hypothesize that the repeated motion influenced the 

infants’ processing in two ways. First, within a trial, the two 

objects in a pair always move together. This gives rise to a 

perception of the unity of the pair and prompts the infant to 

compare the two objects in a pair. Over trials, as the object 

representations become more detailed, this will lead to 

perceiving many common attributes in a same pair (or few, 

in the case of a different pair).  We call the representation of 

the two objects plus relations computed between them the 

pair-level description.  We hypothesize that pair-level 

descriptions are only computed when both objects have 

been fully encoded.  The second effect of the repeated 

motion is to invite comparison across trials: even though the 

individual pairs (say, AA and BB) are quite distinct, we 

hypothesize that the similarity in their motion leads the 

infant to compare them, as described below.  

To represent the visual similarity of objects, we use one of 

two relations, depending on whether their similarity, as 

measured by SME, is above a particular threshold (here, 0.5).  

If their similarity is above the threshold, a statement using the 

sameObject relation is encoded, and otherwise, 

differentObject. We use these terms for convenience, but we 

do not assume that infants distinguish absolute sameness 

from high similarity (see Smith, 1993). It is also not clear 

whether infants are learning these relations de novo, or 

whether they already possess some kind of representations of 

same and different, either innately or through early learning.  

We return to this question in the Discussion.  

Processing Assumptions 

To recapitulate, we assume that infants encode the motion of 

the pair of objects and that this invites comparison both 

within and across trials. However, the comparison process 

become also requires that the object representations be 

sufficiently detailed. We do not assume that infants encode 

everything about the objects in a trial at first exposure. Here 

we assume that information about object boundaries and 

color are computed first, followed by information about the 

decomposition of the object into geons, and that these two 

levels of representation occur in that sequence. We assume 

that even partial object representations are stored in 

SageWM, and retrieved the next time they are exposed to the 

pair.  This retrieval speeds up the initial encoding process, 

allowing processing to move on to the next level of encoding. 

It is not clear whether infants are encoding both objects on 

first exposure to a pair.  Here we assume that objects are 

encoded independently in parallel, but with the levels of 

representations outlined above.  We assume that having the 

objects placed into correspondence causes them to be 

 
Figure 2: Example of boundary and Geon relational 

Representations. These relational representations are 

automatically generated. For the readers’ convenience, 

we use English word to indicate relations and entities. 

;; Overall properties
(WhiteColor A)

(RedColor A)

(highRectangularity R-1)

(ellipseSystemShape R-1)

(hasConcavedEdge R-1)

(someCurvedCycle R-1)

[…] ;; Internal regions
(LowRectangularity R-34)

(CycleSystemShape R-34)

(NonConcavedEdge R-34)

(AllCurvedCycle R-34)

(above R-29 R-34)

(rightOf R-34 R-29)

[…]



compared, once their encodings are complete.  The result of 

this comparison results in the description of the pair being 

augmented with a sameObject or differentObject 

statement, depending on the outcome of that comparison. 

Experiment Simulation 

Now let us reconsider the experiments in Anderson et al. 

(2018) through the lens of cognitive simulation.  We discuss 

each in turn. In both simulations, we did not simulate the 

infants’ experience of some objects from waiting room. 

Simulation of Experiment 1 

Following the original experiment, we simulated two 

habituation sequences: one  with a sequence of six pairs of 

objects satisfying the same relationship (<A,A>, <B,B>, 

<C,C>, <D,D>, <E,E>, <F,F>) and one with a sequence of 

six pairs of objects satisfying the different relationship 

(<A,B>, <C,D>, <E,F>, <B,C>, <F,A>, <D,E>).  Given our 

assumption of parallel object encoding, in the same condition 

only the first level of encoding occurs for each object in the 

simulation, and hence the objects are not compared and no 

pair-level descriptions are generated. For the different 

condition, there are repeated exposures to particular objects, 

but another comparison involving them would be needed to 

generate pair-level representations.  Since there are no pair-

level examples, they cannot be compared and generalized, 

and hence no analogical learning takes place, compatible with 

the infant results. 

Simulation of Experiment 2 

Following the original experiment, two sequences of 

alternating pairs of objects were used.  For the same 

habituation trials, these were (<A,A>, <B,B>, <A,A>, 

<B,B>, <A,A>, <B,B>, and for the different habituation 

trials, these were <A,B>, <C,D>, <A,B>, <C,D>, <A,B>, 

<C,D>.  Thus for both habituation conditions, each pair was 

presented to the simulation three times, in alternation.  In the 

first exposure to a pair, the first level of encoding occurs for 

its objects, which are stored in SageWM. In the second 

exposure, the second level of encoding occurs, building on 

the initial model stored in SageWM.  In the third exposure, 

the fully-encoded objects retrieved are used to construct a 

pair description, including the cross-object comparison 

(because of the assumed common roles in the motion 

perceived by the infants).  That pair description is also stored 

in SageWM. The pair representations are generalized by 

SageWM across pairs as they occur: that is, a generalization 

is formed that includes either a sameObject or a 

differentObject statement, depending on habituation 

condition.  This new abstraction is relatively portable, since 

it has many fewer object details in common, and hence is 

retrieved when test pairs are presented.  Even if these test 

pairs are not fully encoded (because of novel objects), 

alignment with the abstraction leads to a projection of a 

sameObject or differentObject statement as a candidate 

inference (depending on whether habituation was for same or 

different). When a test pair is compatible with the learned 

relation, the candidate inference fits.  When a test pair is 

incompatible with the learned relation, the candidate 

inference is contradicted, and this novelty, we hypothesize, 

leads to greater looking times for the infant.  

 

Discussion 

The simulation captures the pattern of infant results across 

the two experiments: When given six different example pairs 

(Experiment 1), the simulation fails to form abstractions of 

same and different during habituation, and therefore fails to 

differentiate novel from familiar relations during test. When 

given two pairs (Experiment 2), the simulation forms 

abstractions of same and different during habituation, and 

therefore arrives at distinct matching scores for novel vs. 

familiar relations during test.  

Thus, we have shown that a reasonable set of assumptions 

about the visual encoding of infants, along with pre-existing 

encoding algorithms and analogical process models, can be 

used to simulate Anderson et al.’s (2018) results on 

analogical learning in 3 month old infants.  This provides 

evidence for their proposed explanation, in terms of partial 

infant encoding.   

This simulation assumed that something like sameObject 

and differentObject were already available to infants.  How 

might such relationships be learned, even perhaps during the 

experiment?  It is not unreasonable, given how ubiquitous 

analogy and similarity appear to be in human cognition 

(Gentner 2003), that infants can remember the qualitative 

feeling of high-similarity or low-similarity for pairs that they 

have just seen.  In other words, the alignments during 

analogical generalization could provide the basis for 

introducing a simple qualitative value on similarity, e.g. high 

or low (Forbus, 2019).  For example, given habituation on 

same trials, these similarity scores will tend to cluster quite 

high, and given habituation on different trials, these similarity 

scores will tend to cluster quite low (see Figure 3). Seeing a 

score for a pair in the same role that is substantially different, 

i.e. a different qualitative value, could also predict looking 

times and reifying such a difference into a pair of 

relationships would then make such information accessible in 

future comparisons.  This provides a possible explanation for 

how such relationships can be learned. 

Our general assumption is that the rather surprising 

pattern—that 3-month-olds can from an abstraction from two 

alternating pairs over six pairs but not from six different 

pairs—results from inefficiencies in their visual encoding 

process. In this simulation, we have focused on slow 

encoding to capture this inefficiency. Another interesting 

possibility is variable encoding. For example, different 

subsets of geons might be computed over different exposures, 

so that the perceived similarity of a pair over time would 

depend on the particular orders in which geons were found. 

Such models will be explored in future work.    

Despite the vast amount of research on analogical 

processing in children, there is very little research on how 

children learn relations in the first place.  One exception is 



DORA (Doumas et al. 2008).  DORA begins with 

unstructured representations of objects as simple feature 

vectors.  When DORA compares two or more objects, it 

forms explicit representations of any properties they share.  

These properties are then combined into relations.  This 

contrasts with our model, in which the relations are formed 

from online differences in qualitative similarity.   

 

Conclusion 

Our results lend support to the idea that 3-month-old infants 

have structure-mapping ability, but are limited by their 

encodings of examples. Here we have shown that a 

reasonable set of assumptions about encoding and the use of 

analogical generalization within working memory simulate 

the experiments from Anderson et al. (2018). The simulation 

provides an explanation for why 3-month old infants are able 

to learn, or not learn, same/different relations.   

We see a number of paths for future work.  First, we think 

encoding variability may be an important factor in explaining 

the conditions under which infants can learn. Second, we 

want to simulate a wider range of experiments with this 

model, including experiments with older infants (e.g. Ferry et 

al. 2015).  This will involve developing and testing plausible 

models for how encoding skills change across development 

with experience and building up models of long-term 

experiences and generalizations that infants accumulate. 
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