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Abstract.1 The naturalness of qualitative representations suggests 
that they have an important role to play in natural language 
semantics. Prior work has focused on extracting qualitative models 
from text, but very little work has been done on using qualitative 
reasoning in answering questions posed in natural language. The 
recent QuaRel dataset developed by AI2 provides a novel 
opportunity to explore understanding and answering comparative 
analysis questions expressed in natural language. While some 
machine learning models have been built at varying levels of 
performance, none have achieved human-level performance on this 
task, and we expect that their performance is actually brittle, 
susceptible to adversarial attacks. This paper proposes an alternate 
approach, using relational representations, including qualitative 
relations, to achieve high-precision understanding of the language 
used in such problems. We describe our approach and progress on 
quantity identification in this task. 

1 Introduction 
Comparative analysis [1] uses qualitative representations to 
ascertain the causal consequences of differences. This includes the 
effects of a hypothetical change to a system, e.g. using a stiffer 
spring in a mechanical design, or the differences between two 
physical systems, e.g. the difference in the periods of two pendulums 
based on differences in their lengths. Traditional mathematical 
models can be used for this task, but at the cost of specifying many 
numerical parameters. For many tasks such parameters are 
unknown. Commonsense reasoning is one such task – when 
reasoning about a situation expressed in a diagram [2] or via natural 
language, we must rely on qualitative models, since that is the level 
of information that is available. Here is an example from the QuaRel 
[3] dataset of comparative analysis problems: 

 
“Alan noticed that his toy car rolls further on a wood floor than 
on a thick carpet. This suggests that: 

 (A) The carpet has more resistance 
 (B) The floor has more resistance” 
 

Since the distance of an episode of rolling is qualitatively inversely 
proportional to the friction of the floor, rolling further on the wood 
floor implies that (A) is the correct choice. Here the qualitative 
reasoning is straightforward, the complexities lie in  comprehending 
the problem sufficiently well to enable the qualitative model to be 
formulated. That is what we focus on in this paper. 

Natural language understanding remains a fertile source of open 
problems. Broadly speaking, there are two approaches to NLU 
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today. The first is to engineer systems via machine learning, by 
gathering massive amounts of data, often annotated, for training ML 
systems, often using neural networks. With enough data and craft in 
dataset construction and in the training process, such systems can 
produce surprisingly good results on ML datasets and in some real-
world applications (e.g. speech recognition, machine translation). 
However, such models are generally uninspectable (a problem made 
more concerning by their susceptibility to adversarial attacks, e.g. 
[4][5]), they require massive amounts of data, and they do not 
provide the kinds of causal explanations that traditional QR 
provides. The second approach is to use combinations of hand-
engineering and relational learning. People do not learn language 
from scratch for each new task that they do. Instead, they adapt what 
they already know to new problems. Thus, a larger starting point of 
knowledge and skill enables systems to learn with higher data-
efficiency. The use of expressive relational representations, 
especially qualitative representations, provides robustness and 
explainability. 

Approaches that involve constructing explicit conceptual 
structures that capture important knowledge implied by language are 
what we call high-precision understanding. We have used this 
approach on many tasks now [6], including extracting useful 
qualitative knowledge from texts [7][8][9][10]. We believe that this 
approach not only yields more interpretable results, but also in the 
long run will be more effective in real-world problems, where 
distractions abound, unlike today’s carefully crafted ML datasets. 
Here we describe how we are applying these ideas to solving 
comparative analysis problems expressed in natural language text.  

We begin by summarizing prior work on comparative analysis 
and the QuaRel dataset. We then discuss our approach, including our 
layered approach to NLU which enables the same language system 
to be tuned for many purposes, and analogical Q/A training. Then 
we discuss our work on progress on applying these ideas to QuaRel, 
along with some pilot results on the quantity identification subtask. 
We end with conclusions and future work. 

2 Comparative Analysis and QuaRel 
Two techniques have been developed to solve comparative analysis 
problems. The first technique is differential qualitative analysis 
(DQA) [1], which uses a set of rules to compute relative values 
across the descriptions of two systems, based on assumed 
differences between them. For example, the duration rule says that 
if a rate is lower in one system versus another, then the time required 



to reach a limit point will be longer in that system.  In [1] the problem 
of aligning the two systems to be compared was simplified by only 
considering changes in parameters, but as [2] showed, the same 
techniques can be generalized by using analogical mappings to 
automatically align two systems under analysis. 

The second technique is exaggeration [1], which uses qualitative 
simulation with extreme values substituted to reason about 
perturbations. Given a proposed perturbation to a system, 
exaggeration first transforms the problem with the perturbation 
being an extreme value, i.e. infinite if increased, zero if decreased. 
For example, if asked how a car would roll on a carpet if the carpet 
had more resistance, the reformulated model would have the 
resistance of the carpet being infinite, and thus the rolling speed 
would decrease to zero. This result is then rescaled, to respond that 
there would be a decrease in speed. 

In our approach to QuaRel, we assume DQA with analogical 
mappings between situation descriptions constructed from language. 
Key to such descriptions are quantities identified by language, which 
is why we have focused on them first. 

 
2.1 QuaRel 
QuaRel uses the term world to denote an entity in a situation that is 
being compared, with each problem including two worlds. Worlds 
can be different entities (e.g. a rough ball versus a smooth ball) or 
the same entity at two different points in time. In the prior example 
of a car rolling on wood versus the same car rolling on carpet, the 
worlds would be the two rolling events, with the target comparative 
statement as qrel(friction, lower, world1, world2) that would be 
considered in conjunction with the domain theory to infer 
qrel(distance, higher, world1, world2). We implement worlds via 
Cyc-style microtheories, populated with facts extracted from 
language. The system defines three microtheories per question, one 
for each of the worlds and a microtheory for the problem as a whole, 
which inherits from both the world microtheories. In our system, 
microtheories can be treated as cases for analogical reasoning, and 
hence alignments can be constructed to support DQA. The set of 
facts in world microtheories includes the specification of which 
quantities apply (e.g., (hasQuantity world1-entity ((QPQuantityFn 
Friction) world1-entity))) and information like values (e.g., (valueOf 
((QPQuantityFn Friction) world2-entity) (HighAmountFn Friction)). 
The general microtheory contains facts that draw direct comparisons 
between the entities of both worlds (e.g., (qLessThan ((QPQuantityFn 
Friction) world1-entity) ((QPQuantityFn Friction) world2-entity))).. 

The QuaRel dataset provides a naïve domain theory2 regarding 
the relationships between quantities, posed as abstract qualitative 
proportionalities. For example, they write q-(speed, friction) to 
represent that if friction goes up, speed goes down. Note that this 
description does not provide any scoping as to the types of entities 
involved. This is a common feature of informal explanations, and 
one of the challenges of working with natural language is flexible 
reasoning with such descriptions. Prior to reasoning, these 
descriptions would be automatically translated into the qualitative 
proportionalities used in NextKB and added to the world-level 
microtheories. For instance, with q-(speed, friction), this would 
mean adding the statement (qprop- ((QPQuantityFn Speed) world1-
entity) ((QPQuantityFn Friction) world1-entity)) to the microtheory 
for the first world (and a similar statement for the second world).  

 
2 https://ai2-website.s3.amazonaws.com/publications/QuaRel-
Supplementary-AAAI2019.pdf 

QuaRel categorizes questions as either relative value questions or 
absolute value questions. Relative value questions have as their 
answer a comparative, e.g. in the car example, that the carpet has 
more resistance than the floor. These questions are given logical 
forms expressing this as (qGreaterThan ((QPQuantityFn Friction) 
world1-entity) ((QPQuantityFn Friction) world2-entity)). Absolute 
value questions still involve comparisons, but implicitly so, by using 
symbolic qualitative values. For example, the question “Does a bar 
stool slide faster along the bar surface with decorative raised bumps 
or the smooth wooden floor?” expresses that a bar surface with 
bumps has a high amount of friction (i.e., (valueOf ((QPQuantityFn 
Friction) bar-stool) (HighAmountFn Friction))) while a smooth bar 
surface has a low amount of friction. 

 
2.2 Prior QuaRel Approaches 
The original QuaRel work [3] provided two neural-based semantic 
parsing models that followed an encoder-decoder framework for 
generating logical forms. Given a question and answer option, the 
concatenation of the question and answer would be fed to an LSTM 
encoder which would produce a vector-space representation of the 
input text. A subsequent decoder architecture would take as input 
the vector representation and sequentially decode production rules 
from a formal grammar to build up an abstract syntax tree that would 
be considered the logical form. Notably, their method is completely 
neural, generating a logical form for both the question and answer 
simultaneously (i.e., no qualitative reasoner is used to generate the 
answer from the logical form of the question). Subsequent efforts on 
QuaRel have instead focused on only the multiple-choice portion of 
the dataset. For instance, [12] proposed translating the logical forms 
to text such that a BERT-based [13] textual entailment model could 
be used to improve multiple-choice performance. Similarly, [14] 
used logic-based rules to extend the training data for QuaRel and 
enhance a RoBERTa-based [15] multiple-choice selection model. 

3 Background 
We use qualitative process theory [16] for qualitative 
representations and reasoning because its notion of physical process 
and constructs have already been mapped to natural language [7][8]. 
Natural language processing is performed via the Companion 
Natural Language Understanding system (CNLU) [17]. The 
knowledge base for Companions and CNLU is NextKB3, which uses 
representations that integrate FrameNet [18] and OpenCyc [19], as 
well as a broad English lexicon. We next describe enough about 
CNLU to understand the rest of the paper, and the idea of analogical 
Q/A training, which we also build upon. 

 
3.1 Natural Language Understanding 
CNLU uses multiple layers of representation to analyze language. 
Syntactic analysis uses Allen’s parser [20], which produces a full 
syntactic analysis of every sentence. Higher-level phenomena, such 
as counterfactuals and logical quantification, are handled by a 
semantic interpreter based on Discourse Representation Theory 
[21]. 

3 http://www.qrg.northwestern.edu/nextkb/index.html, available 
via a Creative Commons Attribution Only license. 



Language is inherently ambiguous, and context is needed to make 
sense of it. CNLU represents ambiguities explicitly as choice sets in 
its analysis. Each choice set represents either a set of alternate word 
senses or a syntactic ambiguity. Logical constraints express the 
relationships between choices. For example, only one word sense for 
each word can be chosen in a consistent interpretation. Similarly, 
some word sense choices imply specific syntactic choices, and vice-
versa. CNLU uses abduction to construct interpretations, based on 
task-specific information. This has been done via rules that detect 
narrative functions [17] based on task constraints. Another method, 
which is what we are using here, is to use analogical Q/A training 
to learn query cases for driving interpretation. We discuss this next.  
 
3.2 Analogical Q/A Training 
By design, the outputs of the semantic parser introduced in Section 
3.1 are task agnostic. That is, the semantic forms it produces should 
be considered intermediate forms that require adaptation before 
being passed to task-specific reasoners (e.g., a qualitative reasoner) 
needed to solve a given problem. In analogical Q/A training, this 
adaptation is performed by analogical reasoning over query cases. 
Query cases (QCs) are rule-like constructs that treat semantic 
choices as antecedents and task specific logical forms as 
consequents. To apply a query case, the semantics for a question are 
aligned to the query case’s antecedents via analogy, which produces 
an instantiation of its consequent logical form with the entities of the 
question at hand. Previous work has used this approach for factoid 
question-answering [22], process identification [23], state change 
prediction [24], and question-answering in a kiosk [25]. 

The final version of our approach will generate query cases that 
tie the semantic choices of each scenario to logical forms that can be 
passed into an off-the-shelf qualitative reasoner that performs 
differential qualitative analysis (DQA). With QuaRel, the challenge 
is not in the actual reasoning required to solve each question. 
Instead, the difficulty lies in understanding which quantities and 
relationships are relevant in the provided scenario to derive the 
correct answers. Though the logical forms needed for this domain 
are quite simple (the original QuaRel work used only simple rule-
based inference as its form of reasoning), we believe that the 
interface we build between natural language and more powerful 
qualitative modeling techniques will lay the foundation for more 
complex reasoning over scenarios posed in natural language. 

4 Our Approach 
The objective of our approach is to learn query cases that can map 
from the natural language forms of the questions to the facts needed 

for DQA to infer the correct conclusions. The work presented here 
is still in progress, and we have yet to produce a system that can 
handle the full extent of the varied language found in the QuaRel 
dataset. Thus, our focus in this paper is to describe our approach as 
it has been applied to an important subproblem, determining the 
relevant quantities for the focus entities of a particular question. Our 
approach learns query cases of the form found in Figure 1. In the 
figure, the first argument to queryCaseFor is the consequent 
expression (in this case, a conjunction of quantity predictions for 
each of the world entities), while the second argument is the set of 
semantic choices produced by CNLU that was determined to be 
sufficient for inferring the consequent expression. In the example 
this query case was learned from, it was determined that a 
comparative relation involving Strength was sufficient for 
concluding that Strength was the quantity of interest. 
 
4.1 Inducing Query Cases 
Consider the question shown in Figure 1. We will refer to the 
question as Q and to its consequent logical form as L. We pair with 
Q a set of base statements SQ = { s1, ..., si } and a set of pairwise 
nogood constraints NQ = { n1, ..., nk } between pairs of elements in 
SQ. The elements of SQ include the semantic choices produced for Q 
(i.e., the set of outputs generated by CNLU) as well statements 
indicating the root forms of words present in Q. The elements of NQ 
are then the nogood constraints asserted between semantic choices 
(e.g., two semantic choices that represent alternative word senses). 

Figure 2 shows a subset of the semantic parse produced for Q. SQ 

includes semantic choices from this parse that express possible 
meanings of the words and phrases in the sentence. For instance, in 
our example question “weaker” is transformed into a set of semantic 
choices, two of which are (comparisonQtype weak294962 Strength) 
and (comparisonQtype weak294962 Effectiveness). These express 
different interpretations of the quantity being compared: "weaker" 
in the sense of strength versus "weaker" in the sense of effectiveness. 
The set of nogoods NQ includes a pairwise constraint between these 
two quantity statements that restricts them from both being true 
simultaneously. An example of a word-level statement added to SQ 
is (wordInSentence train-question-1741 weak). These are not 
alternative semantic choices, and are thus excluded from being a part 
of any nogood in NQ. 

(queryCaseFor 
  (and (hasQuantity world1-entity ((QPQuantityFn Strength) world1-entity)) 
           (hasQuantity world2-entity ((QPQuantityFn Strength) world2-entity)) 
  (and (comparer weak294962 world1-entity) 
           (isa weak294962 ComparisonEvent) 
           (comparisonQtype weak294962 Strength) 
           (comparee weak294962 world2-entity))) 
 

Figure 1. A query case generated for the fill-in-the-blank 
question, “The small child was much weaker than the adult and 

they _____.”  

“child” 
    - (isa world1 HumanChild) 
“small child” 
    - (isa world1 (SmallFn HumanChild)) 
 ... ... ... 
“weaker” 
    - (and (isa weak294962 ComparisonEvent)  
               (comparisonQtype weak294962 Strength) ...) 
    - (and (isa weak294962 ComparisonEvent) 
               (comparisonQtype weak294962 Effectiveness) ...) 
 ... ... ... 
“adult” 
    - (isa world2 HumanAdult) 
    - (isa world2 AdultAnimal) 

 
Figure 2. Choices from the semantic parse of “The small child 

was much weaker than the adult”, where the worlds being 
compared are the “child” and “adult” 



Given a set of positive examples Pos (i.e., the set of all questions 
for which the consequent L is the target logical form) and negative 
examples Neg (i.e., the set of all questions for which L is not the 
target logical form), our approach builds a query case QC 
incrementally (with QC = {} initially). At each step, it selects an 
element si from SQ to add to QC, i.e., QCÈ{ si }. We next describe 
how our approach picks an element to add at each step. 

The primary determination of which elements from SQ to add to 
QC is given by the information gain heuristic of FOIL [26]. Let E1 
and E2 be sets of expressions and let N2 be a conjunction of pairwise 
nogoods between the elements of E2 (i.e., a set of mutual exclusivity 
constraints between elements of E2). As E2 and N2 are considered an 
inseparable pair, we define the pair p = (E2, N2). E1 is said to cover 
the pair p if there exists a one-to-one substitution 𝜃 between the 
entities of E1 and E2 such that the following holds 
 

𝑐𝑜𝑣(𝐸!, 𝑝) = (𝜃𝐸! ⊆ 𝐸") ∧ (𝜃𝐸! ∧ 𝑁" ⊨ ⊤) 

Informally, this means that there exists a substitution that can be 
applied to the set of expressions E1 such that they can be found 
within E2 and the subset of E2 found is non-conflicting. We write 
that E1 covers p rather than the other way around because E1 is an 
abstraction that will be used to draw inferences from multiple other 
sets of expressions. We write the coverage score of a set of 
expressions to be E 
 

𝐸# = {	𝑝 ∈ 𝑃𝑜𝑠 ∶ 	𝑐𝑜𝑣(𝐸, 𝑝)	} 
 

𝐸$ = {	𝑝 ∈ 𝑁𝑒𝑔 ∶ 	𝑐𝑜𝑣(𝐸, 𝑝)	} 
 

𝑐𝑠(𝐸) = 	− log"
|𝐸#|

|𝐸#| + |𝐸$| 

With these definitions, we can define the value of adding a statement 
si to QC as 
 

𝑔𝑎𝑖𝑛(𝑠% , 𝑄𝐶) = |𝑄𝐶#| ∗ (𝑐𝑠(𝑄𝐶 ∪ {	𝑠%	}) − 𝑐𝑠(𝑄𝐶)) 

which can be thought of as a coverage-weighted information gain 
heuristic. At each iteration, the element from SQ maximizing the gain 
value is added to the query case. 

Intuitively, this can be viewed as adding statements that maximize 
the number of positive examples with matching constituent 
statements while minimizing the number of negative examples with 
matching constituent statements. In our example, the semantic 
choice (isa world1 HumanChild), while a seemingly relevant choice, 
is actually quite useless. Such a statement appears in 5 questions 
regarding Strength and 22 questions involving other quantities (e.g., 
“A child slips more easily on ice ...”, which involves Friction). 
Alternatively, the two choices for “weaker”, being 
(comparisonQtype weak294962 Strength) and (comparisonQtype 
weak294962 Effectiveness), both appear in 17 questions regarding 
Strength and only 3 questions involving other quantities (e.g., “Earth 
has stronger gravity than Mars because ...”, which involves Gravity). 
In this case, both of these statements have the same gain score 
because they cover the same numbers of positive and negative 
examples. To break the tie, we pick the statement that is most closely 
related to the target logical form L. 

Our approach chooses between elements of SQ with identical gain 
scores based on their relatedness to the target logical form L. The 
relatedness between two expressions is determined as in [24], using 

a score that measures how closely the conceptual entities in each 
expression are linked in the knowledge base. Formally, we define 
the knowledge base as a graph G with conceptual entities as nodes 
and structural relations (i.e., facts with a predicate that is a structural 
relation, such as resultIsa or genlPreds) as edges, the relatedness 
score between two concepts ce1 and ce1 is given by  
 

𝑟𝑠(𝑐𝑒!, 𝑐𝑒") = 	 G
∏ deg(𝐺, 𝑐𝑒&)$!'(!∈*

|Ψ(𝐺, 𝑐𝑒!, 𝑐𝑒")|*∈+(-,'(",'(#)

 

where Y is a procedure that takes a graph and two conceptual entities 
and returns all paths connecting the entities in the given graph, and 
deg is a function that takes a graph and a conceptual entity and 
returns the out degree of the conceptual entity in the graph. The 
product of inverse out degree gives lower values to more common 
paths (i.e., paths that connect through more ubiquitous conceptual 
entities). The relatedness score between two expressions is then the 
sum of relatedness scores between each of their entities. 

Relatedness leads to the preference of query cases connected 
through background knowledge to L. For our example, the statement 
(comparisonQtype weak294962 Strength) has a strong connection 
to the target logical form because they both share the conceptual 
entity Strength. Conversely, there is not a strong connection between 
the target logical form and Effectiveness, which thus means that the 
choice (comparisonQtype weak294962 Effectiveness) is 
dispreferred. 

Choices from SQ are added to QC until no elements from Neg are 
covered. The result is a set of expressions that can be interpreted as 
the antecedents to a query case (as seen in Figure 1). Additionally, 
we store with each query case its particular coverage of both positive 
and negative questions. This gives our approach a rough estimate of 
quality / confidence in the query case, as query cases that cover a 
substantial number of positive questions (and few negative 
questions) are more likely to be useful for answering questions than 
those that only cover a single positive question. 

5 Pilot Experiments 
Initially we have focused on extracting quantity information from 
problems, since without high-accuracy quantity identification, 
subsequent stages of understanding are likely to be very noisy. For 
each question, our approach first parses the question with our 
semantic parser to produce a set of semantic choices and constraints 
between said choices. Then, using the original query case framework 
from [22], our approach determines which quantity type is most 
likely applicable for the target entities of the question. As our 
approach can generate multiple logical forms (i.e., it can generate 
quantity predictions for any entity in the text, not just entities 
specified as the focus of the question), we filter out all predictions 
not relating to the entities of interest. 

The training, development, and test sets for QuaRel have 1941, 
278, and 552 questions, respectively. Table 1 presents our results for 
quantity prediction in terms of overall accuracy. On this task, 
random guessing would yield an accuracy of 5%. Our approach 
performs well above that simple baseline, however there is clear 
room for improvement. 



To better determine the quality of our learned query cases, we 
performed an error analysis on the development set where we 
measured which quantities tended to be confused with which other 
quantities. Each cell in the matrix shown in Figure 3 gives the 
number of times a quantity from the row was confused the quantity 
from the column (with the diagonal of the matrix showing correct 
quantity predictions). Inspecting the errors made by our approach, 
we can see that it tended to learn effective query cases for predicting 
the amount of sweat (3 / 4 predictions correct), flexibility (5 / 6 
predictions correct), and friction (26 / 30 predictions correct). 
Conversely, it was much less effective at predicting distance (28 / 
49 predictions correct), weight (7 / 14 predictions correct), time (5 / 
12 predictions correct), and speed (50 / 79 predictions correct). 
Interestingly, out of the 99 errors, 65 of them involved mixing 
quantities that were in a direct causal relationship with one another 
(i.e., either directly influencing or being directly influenced). This 
provides one possible direction for improving our approach, namely, 
that the training procedure should try to more strongly discriminate 
between related quantities. 

6 Conclusions 
Comparative analysis is an important form of qualitative reasoning. 
The QuaRel dataset provides a great opportunity to explore how to 
do qualitative reasoning from natural language information. We 
have argued that a high-precision approach, in which qualitative 
representations play a key role, should provide more robust 

comprehension of such problems, compared to machine learning 
systems whose distributed representations provide less precision. 
Our initial results on quantity identification suggest that this 
approach is promising. 

Our next step is to extend our techniques to handle the entire 
problem, including extracting the two descriptions to be compared, 
the relevant ordinal relationships, setting up the DQA analysis, and 
selecting the correct answer. We plan to adapt techniques for 
analogical dialogue act detection [27] to extract the two descriptions 
to be compared. A small amount of hand-extension of language 
knowledge has been done to handle comparatives that bundle 
quantities (e.g. “further” implies an ordinal comparison involving 
distance), with how those arguments are plugged into the semantics 
being learned by analogical Q/A training. We plan on selecting 
answers by interpreting them in terms of internal representations and 
matching on the internal representations, rather than using language-
level operations, as is common in machine learning systems.  In that 
way our technique will be usable on questions that require answers 
to be generated, and thereby likely to be far more robust than ML-
based language model approaches. A preliminary version of this 
system has been implemented and achieves 34.2% in answer 
generation accuracy for the development set. 
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Table 1. Results for quantity prediction on the 
development and test sets of QuaRel 

 
Split Accuracy 
Dev Set 64.4% 
Test Set 59.8% 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 

Figure 3. Quantity confusion heatmap  
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