
Improving Graph Neural Network Representations
of Logical Formulae with Subgraph Pooling

Maxwell Crouse
mvcrouse@u.northwestern.edu

Northwestern University

Ibrahim Abdelaziz
ibrahim.abdelaziz1@ibm.com

IBM Research

Cristina Cornelio
cor@zurich.ibm.com

IBM Research

Veronika Thost
veronika.thost@ibm.com

MIT-IBM AI Lab

Lingfei Wu
wuli@us.ibm.com
IBM Research

Kenneth Forbus
forbus@northwestern.edu
Northwestern University

Achille Fokoue
achille@us.ibm.com

IBM Research

ABSTRACT
Recent advances in the integration of deep learning with auto-
mated theorem proving have centered around the representation
of logical formulae as inputs to deep learning systems. In particu-
lar, there has been a growing interest in adapting structure-aware
neural methods to work with the underlying graph representa-
tions of logical expressions. While more effective than character
and token-level approaches, graph-based methods have often made
representational trade-offs that limited their ability to capture key
structural properties of their inputs. In this work we propose a
novel approach for embedding logical formulae that is designed to
overcome the representational limitations of prior approaches. Our
architecture works for logics of different expressivity; e.g., first-
order and higher-order logic. We evaluate our approach on two
standard datasets and show that the proposed architecture achieves
state-of-the-art performance on both premise selection and proof
step classification.

KEYWORDS
Premise Selection, Theorem Proving, Graph Neural Networks

1 INTRODUCTION
Automated theorem proving studies the design of automated sys-
tems that reason over logical theories (collections of axioms that
are formulae known to be true) to generate formal proofs of given
conjectures. It has been a longstanding, active area of artificial in-
telligence research that has demonstrated utility in the design of
operating systems [1; 2], distributed systems [3; 4], compilers [5; 6],
microprocessor design [7], and in general mathematics [8].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD’20 Deep Learning on Graphs Workshop, August 2020, San Diego, California, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Classical automated theorem provers (ATPs) have historically
been most useful for solving problems that require complex chains
of reasoning steps to be executed over smaller sets of axioms (see
TPTP [9] for examples). When faced with problems for which thou-
sands to millions of axioms are provided (only a handful of which
may be needed at a time), even state-of-the-art theorem provers
have difficulty [10; 11]. This deficiency has become more evident
in recent years, as large logical theories [12–14] have become more
widely available. A natural way to scale ATPs to broader domains
has been to design sophisticated mechanisms that allow them to
determine which axioms or intermediate proof outputs merit explo-
ration in the proof search process. These mechanisms thus prune
an otherwise unmanageably large proof search space down to a size
that can be handled efficiently by classical theorem provers. The
task of classifying axioms as being useful to prove a given conjec-
ture is referred to as premise selection, while the task of classifying
intermediate proof steps as being a part of a successful proof for a
conjecture is referred to as proof step classification.

Initial approaches for solving these two tasks proposed heuris-
tics based on simple symbol co-occurrences between formulae [11;
15; 16]. While effective, these methods were soon surpassed by
machine-learning techniques which could automatically adjust
themselves to the needs of particular domains [17; 18]. At present,
there has been a rising interest in developing neural approaches
for both premise selection and proof step classification [19–21];
however, the complex and structured nature of logical formulae
has made this development challenging. Neural approaches that
take into account a formula’s structure (e.g., parse tree), have been
shown to outperform their more basic counterparts which operate
on only symbols [22; 23]. The two most commonly used structure-
aware neural methods have been Tree LSTMs [24] and GNNs [25].
However, as they have been applied in this domain, these methods
appear to be leaving out useful structural information.

When used to embed the parse tree of a logical formula, Tree
LSTMs generate embeddings that represent the parse tree globally,
but they miss logically important information like shared subex-
pressions and variable quantifications. Conversely, traditional GNN
approaches appear to better capture shared subexpressions and
variable quantifications; however, the global graph embedding they

https://doi.org/10.1145/nnnnnnn.nnnnnnn

KDD’20 Deep Learning on Graphs Workshop, August 2020, San Diego, California, USA Crouse, et al. 2020

produce for the whole formula consists of a simple pooling op-
eration over individual node embeddings; each representing only
themselves and their local neighborhoods. Additionally, most prior
approaches have embedded the premise and conjecture formulae
independently of each other [18; 21–23]. They first embed the graph
of the premise and then separately embed the conjecture graph,
resulting in the contents of one formula having no influence on the
embedding of the other.

To address these issues, we present a novel, two-phase embed-
ding approach that operates over the DAG representations of logical
formulae and is designed with careful consideration to their par-
ticular properties. Our method first produces an initial set of high-
quality embeddings for nodes that incorporates more than just their
local neighborhoods. Then, it pools the embeddings together in a
structure-dependent way to generate a single graph-level embed-
ding. This decoupling provides a clear point at which information
between formulae can be exchanged, which allows us to define an
attention-based exchange mechanism that can regulate information
flow between the concurrent formula embedding processes.

We demonstrate the effectiveness and generality of our approach
by evaluating classification performance on two standard datasets
that involve different logical formalisms; the Mizar dataset [13; 18]
for first-order logic and the Holstep dataset [20] for higher-order
logic. Our experiments show the approach of this paper outperforms
all previous approaches on the binary classification tasks of premise
selection and proof step classification for both datasets. We also
demonstrate how to easily integrate our approach with E, a well-
established theorem prover [26], as its premise selectionmechanism,
allowing it to find more proofs (61.6% improvement) in a large-
theory setting.

To summarize, our main contributions are: 1)We show how to
leverage the DAG structure implicit in logical formulae to produce
more effective embeddings than traditional approaches operating
over the local neighborhoods of individual nodes; 2)We introduce a
novel neural architecture that employs a localized attention mecha-
nism to allow formulae to exchange information during the embed-
ding process; 3)We provide an extensive series of experiments and
compare a range of neural architectures, showing significant im-
provement over existing state-of-the-art methods on two standard
ATP classification datasets.

2 RELATEDWORK
We note that premise selection and proof step classification are
not intrinsically machine learning tasks. The earliest approaches to
premise selection [11] were simple heuristics capturing the (tran-
sitive) co-occurrence of symbols in a given axiom and conjecture.
Soon after, it was recognized that machine-learning techniques
would be effective tools for solving this problem. The work of [17]
introduced a kernel method for premise selection where the similar-
ity between two formulae was computed by the number of common
subterms and symbols. Deepmath [18] was the first deep learning
approach to this problem, comparing the performance of sequence
models over character and symbol-level representations of logical
formulae. In [27], the authors proposed a symbol-level method that
learned low-dimensional distributed representations of function
symbols and used those to construct embedded representations of

Figure 1: Shared subexpression graph representation

given formulae for premise selection. The work of [28] introduced
a GNN for representing specifically first-order logic formulae in
conjuctive normal form that captured certain logical invariances
like reorderings of clauses and literals.

Recently, Holstep [20], a new formal dataset designed to be large
enough to evaluate neural methods for premise selection and proof
step classification (among other tasks), was introduced. Along with
the dataset came a set of benchmark deep learning models that
operated over character and symbol-level representations of higher-
order logic formulae. FormulaNet [22] was the first approach to
transform a formula into a rooted DAG (a modified version of the
parse tree) and then process the resulting graph with a GNN. Their
GNN produced embeddings for each node within a formula’s graph
representation and then max pooled across node embeddings to
get a formula-level embedding.

There are several other related works in this area that focus on
different tasks (e.g., proof guidance, the combined, online version
of the aforementioned two tasks). Deep learning approaches to
proof guidance include [21], where the authors explored a number
of neural architectures in their implementation (including a Tree
LSTM that encoded parse trees of logical formulae). [23] represented
formulae as DAGs with shared subexpressions and used message-
passing GNNs (MPNNs) to generate embeddings that could be used
to guide theorem proving on the higher-order logic benchmark of
[19]. However, like [22], the graph-level embeddings produced by
their approach were simple, consisting only of a max pooling over
individual node embeddings. The work of [29] introduced a dataset
for evaluating neural models on entailment for propositional logic
and explored the use of several popular neural architectures on the
proposed task. [30] where the authors introduced the GamePad
dataset for evaluating neural models on the tasks of position evalu-
ation and tactic prediction.

3 FORMULA REPRESENTATION
3.1 Logical Formulae as Graphs
While the earliest work on integrating deep learning with reasoning
techniques used symbol- or word-level representations of input for-
mulae [18; 20] (considering formula strings as words), subsequent
work explored using formula parse trees [21; 29; 30] or rooted DAG

Improving Graph Neural Network Representations
of Logical Formulae with Subgraph Pooling KDD’20 Deep Learning on Graphs Workshop, August 2020, San Diego, California, USA

forms [22; 23]. On the Holstep [20] and Holist [19] datasets, the
DAG forms of logical formulae were found to be the more useful
than bag-of-symbols and tree-structured encodings [22; 23]. We fo-
cus on rooted-DAG representations of formulae; Figure 1 shows an
example of such a representation. The DAG associated to a formula
corresponds to its parse tree, where directed edges are added from
parents to their arguments and shared subexpressions are mapped
to the same subgraphs. As in [22], all instances of the same variable
are collapsed into a single node and the name of each variable is
replaced by a generic variable token.

3.2 Edge Labeling
Capturing the ordering of arguments of logical expressions is still
an open topic of research. [22] used a so-called treelet encoding
scheme that represents the position of a node relative to other
arguments of the same parent as triples. [23] used positional edge
labels, assigning to each edge a label reflecting the position of its
target node in the argument list of the node’s parent. We follow
the latter strategy, albeit, with modifications. In our formulation,
edge labels are determined by a partial ordering. For unordered
logical connectives (e.g.,∧,⇔) and predicates (e.g., =) all arguments
are of the same rank. For other predicates, functions, and logical
connectives the arguments are instead linearly ordered. However,
we also support hybrid cases like simultaneous quantification over
multiple variables. The label given to each argument edge in the
graph is the rank of the corresponding argument with respect to
the parent concatenated with the type of the parent.

4 OUR APPROACH
In this work, we broadly distinguish between node embedding
methods by reachability. More formally, consider a binary adjacency
relation R defined for a set of graphs G. The 𝑘-reachability relation
R𝑘 is given as the 𝑘-th power of R, which is defined recursively
with R𝑘 = R𝑘−1 ◦ R and R1 = R. We can define the transitive
closure of R as simply R+ = R∞. Letting the set of all nodes be
𝑉 =

⋃
𝐺=(𝑉 ,𝐸) ∈G 𝑉 , we say that a graph embedding function 𝑓 is a

R𝑘 embedding method if there exists a 𝑘 ∈ N such that R𝑘 ≠ R+

where for every 𝑢 in 𝑉 we have that 𝑓 computes the value of
𝑢 as a function of only the embeddings for {𝑣 ∈ 𝑉 | R𝑘 (𝑢, 𝑣)}.
Naturally, we define a R+ embedding method as one for which the
opposite holds, i.e. for each 𝑢 we have that 𝑓 computes the value
of 𝑢 as a function of the embeddings for all 𝑣 where R+ (𝑢, 𝑣) holds.
This distinction is particularly useful to make for graphs in the
logic domain, as the transitive closure of adjacency is necessary for
many key logical operations. As a trivial but important example,
consider checking for the resolvability or unifiability of two ground
formulas. Potentially all nodes of the two formulas would need to
be examined, meaning that if both formulas had depth > 𝑘 then a
procedure defined with R𝑘 that checks only some subset of nodes
within a fixed range of the root would be insufficient.

We view R+ embedding methods as those that perform a sophis-
ticated type of subgraph pooling. That is, a R+ node embedding
method computes the embedding for a node 𝑢 as a function of the
embeddings of all nodes reachable from 𝑢, i.e. a pooling of all such
node embeddings. By definition, they incorporate as much graph
context as is possible (i.e., the transitive closure of R). While R+

Figure 2: The overall embedding process with an MPNN ini-
tial node embedder and DAG LSTM pooling method.

node embedding methods naturally lend themselves to graph-level
readout functions (and we will also use them in this way), we note
that these concepts are defined for node-level embeddings (an im-
portant distinction to make, as for certain applications the input
graphs could be disconnected).

Our approach operates in two stages (see Figure 2). First, a neural
network generates embeddings for each node of an input formula’s
graph representation. Then, the node embeddings are passed into a
follow-upR+ embeddingmethod, referred to as the poolingmethod,
that has R as the parent relation. The embedding for the root node
of the input formula is returned, which is a function of all nodes
in its graph. Our approach is very modular, with any node-level
embedding method capable of serving as the initial node embedder
(though we are mainly interested in R+ embedding methods) and
any R+ embedding method being usable as the pooling method.
Thus, in the next sections we describe the node embedding methods
independently, and then we describe the classification process.

4.1 R𝑘 Embedding Methods
4.1.1 Message-Passing Graph Neural Networks: The MPNN frame-
work can be thought of as an iterative update procedure that rep-
resents a node as an aggregation of information from its local
neighborhood. To begin, our MPNN assigns each node 𝑣 and edge
𝑒 of the input graph 𝐺 = (𝑉 , 𝐸) an initial embedding, 𝑥𝑣 and 𝑥𝑒 .
Then, following [22], initial node states are computed by passing
each such embedding through batch normalization [31] and a ReLU,
producing node states ℎ (0)𝑣 = 𝐹𝑉 (𝑥𝑣) and edge states ℎ𝑒 = 𝐹𝐸 (𝑥𝑒).
Lastly, a message-passing phase runs for 𝑡 = 1, . . . , 𝑘 rounds

𝑚
(𝑡)
𝑣𝑝 =

∑
𝑤∈PA (𝑣)

𝐹
(𝑡)
𝑀𝐴

(
[ℎ (𝑡−1)

𝑣 | |ℎ (𝑡−1)
𝑤 | |ℎ𝑒𝑣𝑤]

)
𝑚

(𝑡)
𝑣𝑐 =

∑
𝑤∈PC (𝑣)

𝐹
(𝑡)
𝑀𝐶

(
[ℎ (𝑡−1)

𝑣 | |ℎ (𝑡−1)
𝑤 | |ℎ𝑒𝑣𝑤]

)
ℎ
(𝑡)
𝑣 = ℎ

(𝑡−1)
𝑣 + 𝐹

(𝑡)
𝐴

(
[ℎ (𝑡−1)

𝑣 | |𝑚 (𝑡)
𝑣𝑝 | |𝑚 (𝑡)

𝑣𝑐]
)

where PA and PC are functions that take a node 𝑣 and return the
immediate ancestors / children of 𝑣 in 𝐺 , and 𝐹

(𝑡)
𝑀𝐴

, 𝐹 (𝑡)
𝑀𝐶

, and 𝐹
(𝑡)
𝐴

are feed-forward networks unique to the 𝑡-th round of updates,
and | | denotes vector concatenation. The reachability relation R
in this context is defined as R(𝑢, 𝑣) = A(𝑢, 𝑣) ∨ C(𝑢, 𝑣) where A

KDD’20 Deep Learning on Graphs Workshop, August 2020, San Diego, California, USA Crouse, et al. 2020

and C are relations that hold true for immediate ancestor and child
relationships, respectively. Similar to [32],𝑚 (𝑡)

𝑣𝑝 and𝑚 (𝑡)
𝑣𝑐 should be

considered the messages to be passed to ℎ𝑣 , and ℎ
(𝑡)
𝑣 represents the

node embedding for node 𝑣 after 𝑡 rounds of iteration.

4.1.2 Graph Convolutional Neural Networks: Like with ourMPNNs,
for our GraphConvolutional Networks (GCNs) [25], the reachability
relation R is given as the undirected adjacency relation, i.e., for
nodes 𝑢 and 𝑣 we have R(𝑢, 𝑣) = A(𝑢, 𝑣) ∨C(𝑢, 𝑣). First, each node
𝑣 ∈ 𝑉 is associated with an embedding ℎ𝑣 . Then, for 𝑡 = 1, . . . , 𝑘
rounds, updated embeddings are computed as

ℎ
(𝑡)
𝑣 = 𝜙

(
𝑊 (𝑡) (ℎ (𝑡−1)

𝑣

|N (𝑣) | +
∑

𝑤∈N(𝑣)

ℎ
(𝑡−1)
𝑤√

|N (𝑣) | |N (𝑤) |
))

where 𝜙 is a non-linearity (in this work, a ReLU),N(𝑢) = PA (𝑢) ∪
PC (𝑢), and𝑊 (𝑡) is a learned matrix for the 𝑡-th round of updates.

4.2 R+ Embedding Methods
4.2.1 DAG LSTMs: DAG LSTMs can be viewed as the generaliza-
tion of Tree LSTMs [24] to DAG-structured data. With initial node
embeddings 𝑠𝑣 , the DAG LSTM uses the same N-ary equations as
the Tree LSTM to compute node states ℎ𝑣

𝑖𝑣 = 𝜎
(
𝑊𝑖𝑠𝑣 +

∑
𝑤∈PR (𝑣)

𝑈
(𝑒𝑣𝑤)
𝑖

ℎ𝑤 + 𝑏𝑖
)

𝑜𝑣 = 𝜎
(
𝑊𝑜𝑠𝑣 +

∑
𝑤∈PR (𝑣)

𝑈
(𝑒𝑣𝑤)
𝑜 ℎ𝑤 + 𝑏𝑜

)
𝑓𝑣𝑤 = 𝜎

(
𝑊𝑓 𝑠𝑣 +𝑈

(𝑒𝑣𝑤)
𝑓

ℎ𝑤 + 𝑏 𝑓
)

𝑐𝑣 = 𝑖𝑣 ⊙ 𝑐𝑣 +
∑

𝑤∈PR (𝑣)
𝑓𝑣𝑤 ⊙ 𝑐𝑤

𝑐𝑣 = tanh
(
𝑊𝑐𝑠𝑣 +

∑
𝑤∈PR (𝑣)

𝑈
(𝑒𝑣𝑤)
𝑐 ℎ𝑤 + 𝑏𝑐

)
ℎ𝑣 = 𝑜𝑣 ⊙ tanh

(
𝑐𝑣
)

where ⊙ denotes element-wise multiplication, 𝜎 is the sigmoid
function and 𝑈 (𝑒𝑣𝑤)

𝑖
, 𝑈 (𝑒𝑣𝑤)

𝑜 , 𝑈 (𝑒𝑣𝑤)
𝑐 , and 𝑈 (𝑒𝑣𝑤)

𝑓
are learned ma-

trices (different for each edge type). 𝑖 and 𝑜 represent input and
output gates, while 𝑐 and 𝑐 are intermediate computations (memory
cells), and 𝑓 is a forget gate that modulates the flow of information
from individual arguments into a node’s computed state. PR is
a predecessor function that returns the set of nodes for which R
holds true, i.e. PR (𝑢) = {𝑣 ∈ 𝑉 | R(𝑢, 𝑣)}. In this work, it returns
either the parents or the children, depending on whether the di-
rection of accumulation is desired to go upwards or downwards.
For readability, we omitted the layer normalization [33] applied to
each matrix multiplication (e.g.,𝑊𝑖𝑠𝑣 , 𝑈𝑖ℎ𝑤 , etc.) from the above
equations. Each instance of layer normalization maintained its own
separate parameters.

The DAG LSTM we propose here is nearly the same as the Tree
LSTM of [24], however there are key implementational differences
between the two approaches. In Tree LSTMs, PR typically returns
child nodes (since a node can have only one parent), while in our
work it can return either children or parents. In addition, batching
together node updates in a Tree LSTM can be done at the level

of depth (i.e., all nodes at the same depth in the tree can have
their updates computed simultaneously); however, with DAGs this
batching strategy could cause a node to be updated and overwritten
multiple times. To solve this, we propose the use of topological
batching. In our approach, node updates are computed in the order
given by a topological sort of the graph, starting from the leaves (or
root depending on P), with updates batched together at the level
of topological equivalence, i.e., every node with the same rank can
have the updates computed simultaneously.

4.2.2 Attention-Enhanced DAG LSTMs: In order to allow the con-
tents of the premise and conjecture to influence one another during
the embedding process, we introduce a localized attention mecha-
nism that exchanges information between the two graph embed-
dings. Let 𝑆𝑃 and 𝑆𝐶 be the sets of node embeddings computed by
some initial node embedder for the premise and conjecture graphs.
LetI be a function that takes a node and either 𝑆𝑃 or 𝑆𝐶 and returns
all node embeddings from the set where the associated node has
an identical label to the given node, i.e. I(𝑢, 𝑆𝐶) = {𝑠𝑣 ∈ 𝑆𝐶 |𝑢 ≡ 𝑣}.
Our approach computes multi-headed attention scores [34] between
identically labeled nodes and uses those attention scores to build
new embeddings that provide cross graph information to the pool-
ing procedure. For an input 𝑢, for each 𝑘 𝑗 ∈ I(𝑢, 𝑆𝐶) we compute

𝑞𝑖 =𝑊
(𝑞)
𝑖

𝑠𝑢 , 𝑘𝑖 𝑗 =𝑊
(𝑘)
𝑖

𝑘 𝑗 , 𝑣𝑖 𝑗 =𝑊
(𝑣)
𝑖

𝑘 𝑗

where𝑊 (𝑞)
𝑖

,𝑊 (𝑘)
𝑖

, and𝑊 (𝑣)
𝑖

are learned matrices for each of the
𝑖 = 1, . . . , 𝑁 attention heads.

𝑤𝑖 𝑗 =
𝑞⊤
𝑖
𝑘𝑖 𝑗√
𝑏𝑞

, 𝛼𝑖 𝑗 =
exp (𝑤𝑖 𝑗)∑
𝑗 ′ exp(𝑤𝑖 𝑗 ′)

,

where 𝑏𝑞 is the dimensionality of 𝑞𝑖 and 𝛼𝑖 𝑗 is computed as

𝑞𝑖 =
∑
𝑗

𝛼𝑖 𝑗𝑣𝑖 𝑗 , 𝑠 ′𝑢 = 𝜎 (𝑊 (𝑔)𝑟𝑢) ⊙ (𝑊 (𝑜)
𝑁n

𝑖=1
𝑞𝑖)

The final vector 𝑠 ′𝑢 for input 𝑠𝑢 is a combination of its 𝑁 transfor-
mations, with𝑊 (𝑔) and𝑊 (𝑜) being learned matrices, 𝑟𝑢 a learned
vector for the type (e.g., quantifier, predicate, etc.) of node 𝑢, and

f

denoting vector concatenation over the 𝑁 attention vectors. The
gating mechanism 𝜎

(
𝑊 (𝑔)𝑟𝑢) we propose here simply allows for

the architecture to cut off information flow between the two graphs
if doing so improves loss, thus turning the architecture into the
simpler DAG LSTM introduced previously. Following the attention
computation, each 𝑠𝑢 is replaced by 𝑠𝑢 = 𝑠𝑢 | |𝑠 ′𝑢 and a DAG LSTM
then processes each node embedding.

4.2.3 Bidirectional DAG LSTMs: We also explore a simple exten-
sion of the DAG LSTM from above to a Bidirectional DAG LSTM.
In this method, the embeddings for a node are computed with the
node’s complete set of ancestors and descendants, i.e. with respect
to A+ ∪ C+. For a node 𝑢 and graph 𝐺 , the embedding 𝑠𝑢 is

𝑠𝑢 = 𝐹𝐵𝐷
(
[DAG-LSTM↑(𝑢,𝐺) | | DAG-LSTM↓(𝑢,𝐺)]

)
where 𝐹𝐵𝐷 is a feed-forward network, and DAG-LSTM↑ / DAG-
LSTM↓ are both DAG LSTMs (following the design presented be-
fore) which set R as A and C, respectively.

Improving Graph Neural Network Representations
of Logical Formulae with Subgraph Pooling KDD’20 Deep Learning on Graphs Workshop, August 2020, San Diego, California, USA

4.3 Classification Process
In our approach, the final graph embeddings for the premise and
conjecture are taken to be the embeddings for the root nodes of
the premise and conjecture, 𝑠𝑃 = ℎ𝑃𝑟𝑜𝑜𝑡 and 𝑠𝐶 = ℎ𝐶𝑟𝑜𝑜𝑡 . For ablation
experiments using only local neighborhood-based node embedders
(MPNN / GCN from Section 4.1), the inputs to the classifier network
would be a max pooling of the individual node embeddings for each
graph. In either case, the two graph embeddings are concatenated
and passed to a classifier feed-forward network 𝐹𝐶𝐿 for the final
prediction 𝐹𝐶𝐿 ([𝑠𝑃 ; 𝑠𝐶]).

5 EXPERIMENTS AND RESULTS
In this section, we evaluate our approach to show 1) how accurately
can it predict the label of an axiom or proof step and 2) an ablation
study that shows the effect of different node embedding and pooling
mechanisms. We compare our approach to prior works using two
standard datasets: Mizar1 [13] and Holstep2 [20].

5.1 Datasets
5.1.1 Mizar Dataset: Mizar [13] is a corpus of 57,917 theorems.
Like [18; 27; 28], we use only the subset of 32,524 theorems which
have an associated ATP proof, as those have been paired with both
positive and negative premises (i.e., axioms that do / do not entail
a particular theorem) to train our approach. We randomly split
the 32,524 theorems as 80% / 10% / 10% for training, development,
and testing (yielding 417,763 / 51,877 / 52,880 individual premises).
Following [28], each example given to the network consisted of
a conjecture paired with the complete set of both positive and
negative premises. The task was then to classify each individual
premise as positive or negative.

5.1.2 Holstep Dataset: Holstep [20] is a large corpus designed to
test machine learning approaches on automated reasoning. Follow-
ing prior work [20; 22], we use only the portion needed for proof
step classification. That part has 9,999 conjectures for training and
1,411 conjectures for testing, where each conjecture is paired with
an equal number of positive and negative proof steps (i.e., proof
steps that were / were not part of the final proof for the associated
conjecture). Using that data, we obtain 2,013,046 training examples
and 196,030 testing examples, where each example is a triple with
the proof step, conjecture, and a positive or negative label. We held
out 10% of the training set to be used as a development set. We
follow the binary classification problem setting of [22] and [20].

5.2 Classification Experiments
5.2.1 Baselines: For premise selection on Mizar, we compare with
two existing systems: the distributed formula representation of [27]
and the property-invariant formula representation of [28]. For proof
step classification on Holstep, we compare against 4 systems imple-
mented in two prior works: 1) DeepWalk [35] and FormulaNet [22],
both of which were applied to Holstep in [22]. 2) CNN-LSTM and
CNN, both introduced with the Holstep dataset [20].

5.2.2 Main Results: Table 1 shows the performance for the version
of our approach that incorporates the entire context surrounding a
1https://github.com/JUrban/deepmath
2http://cl-informatik.uibk.ac.at/cek/holstep/

Table 1: Experimental results (accuracy) for Mizar and Hol-
step test, best result for both datasets in bold

Formula Embedding Method Mizar Holstep

Kucik & Korovin (2018) [27] 76.5% –
DeepWalk (2014) [35] – 61.8%
CNN-LSTM (2017) [20] – 83.0%
CNN (2017) [20] – 82.0%
FormulaNet (2017) [22] – 90.3%
BidirDagLSTM-AttDagPool (this work) 81.0% 91.4%

node into its embedding and jointly embeds premises / proof steps
with the conjecture, i.e., a Bidirectional DAG LSTM with attention-
enhanced DAG LSTM pooling. Overall, our system outperforms all
state-of-the-art systems on both datasets using a standard evalu-
ation on held-out test data. It outperforms by a large margin on
Mizar (+4.5%, which is statistically significant with 𝑝 < 0.01) and
by a moderate, but still statistically significant, margin on Holstep
(+1.1% with 𝑝 < 0.01). In addition to the standard evaluation using
a held-out test dataset reported on Table 1, we also compare to [28],
which introduced a GNN designed to process specifically first-order
logic theories in conjunctive normal form. In their evaluation on
Mizar, they split their data into only a train and test set and evalu-
ated the model obtained at each epoch on their test set, reporting an
accuracy of “around 80%” as the best performance across all test set
evaluations. Following their setup, our best validation performance
is 81.9%, a roughly 2% gain over [28].

Table 1 confirms our hypothesis that a more holistic treatment of
logical formulae can result in a more effective embedding process
than simpler methods that, by their implementation, consider less
structure and embed premises and conjectures independently.

5.2.3 Ablation Studies. We present the results of our ablations in
Table 2. On Mizar, we can see that variants with attention-based
pooling were the most performant by a large margin. When con-
trolling for pooling type, the R+ node embedders provided better
performance than the R𝑘 node embedders. Similarly, when con-
trolling for node embedding type, R+ pooling methods provided
improvement over max pooling.

For Holstep, when controlling for node embedding type the R+

pooling methods had better performance than max pooling. Inter-
estingly, when controlling for pooling type, the difference between
the MPNN and R+ node embedding methods was not significant.
Within approaches introduced here, those variants using AttDag-
Pool did not significantly improve over those using DagPool. We
suspect that this is due to the fundamental difference between
proof step classification and premise selection. Intermediate proof
steps are typically much larger and noisier than actual premises,
which may have led to Holstep example pairs being independent
(i.e., there were properties of an individual proof step without the
conjecture that would give away the positive or negative label).
This is partially supported by both [22] and [20], who observed
that their architectures performed just as well when classifying
with only the proof step, rather than on both the proof step and
conjecture (90.0% vs. 90.3% for FormulaNet and 83.0% vs. 83.0% for
CNN-LSTM). On validation data, we also explored higher numbers

KDD’20 Deep Learning on Graphs Workshop, August 2020, San Diego, California, USA Crouse, et al. 2020

Table 2: Ablation study on Mizar and Holstep test sets.

Node Embedding Pool Type 𝒌 Mizar Holstep

MPNN MaxPool 2 76.9% 90.5%
MPNN DagPool 2 77.4% 91.3%
MPNN AttDagPool 2 79.7% 91.3%
GCN MaxPool 2 74.7% 89.0%
GCN DagPool 2 77.3% 90.9%
GCN AttDagPool 2 79.8% 90.8%
DagLSTM DagPool – 78.4% 91.4%
DagLSTM AttDagPool – 80.7% 91.5%
BidirDagLSTM DagPool – 78.1% 91.4%
BidirDagLSTM AttDagPool – 81.0% 91.4%

of update rounds (i.e., the 𝑘 parameter) for variants of our approach
using an MPNN as the initial node embedder; however, like [22]
we found insignificant change beyond 𝑘 = 2.

5.3 Premise Selection for Automated Theorem
Proving

To show that our approach could be used to improve the perfor-
mance of an actual theorem prover, we ran a traditional premise
selection experiment with E [26]. We first trained newmodels using
our settings from the classification experiments, however, this time
optimizing for binary classification between pairs of individual
formulae. In addition to our Mizar training set from before, we also
augmented our training data by adding randomly selected negative
examples for each example from our original training set. For test-
ing, we paired the conjecture of each of the 3,252 problems from
our Mizar validation set with the complete set of statements from
all chronologically preceding problems (as described in [18]) in the
union of our training and validation sets. For each problem, our
model then ranked the premises with respect to each conjecture
and returned the top 𝑘 ∈ {16, 32, 64, 128, 256, 512, 1024, 2048,∞}
premises (where ∞ indicates including all premises).

E was run on each problem in auto-schedule mode (which tries
several expert heuristics based on the given problem) with a time
limit of 10 seconds per 𝑘 , stopping at the first 𝑘 where the problem
was solved. To validate that our approach solves more problems
than E would have by itself in the same amount of time, we also
measured the performance of E when run with all premises (identi-
cal to 𝑘 = ∞) for 90 seconds per problem. Out of 3,252 problems,
E by itself was able to solve 918; however, using our approach as
its premise selection mechanism, E was capable of solving 1484.
In both settings, E had the same amount of time (90 seconds) per
problem to find a proof, but with our approach it was able to solve
566 more problems (a 61.6% improvement) which is statistically
significant with 𝑝 < 0.01.

6 CONCLUSIONS AND FUTUREWORK
In this work, we introduced a novel method for computing neural
representations of logical formulae that was designed with care-
ful consideration to their unique structural properties. Our ap-
proach achieved new state-of-the-art performances on two standard
datasets, despite the datasets involving different logical formalisms.

We also showed how to easily incorporate our method with an
existing theorem prover as its premise selection mechanism; where
its inclusion led to a 61.6% improvement in terms of number of
proofs found.

An interesting future line of research could be in exploring the
attention mechanism introduced in Section 4.2.2. One could see if
different pairing operations than identicality (e.g., structural simi-
larities derived from works like [36]) lead to more efficiency with
better performance. One might also explore the effect that the
initial node embedder has on the similarities computed by the at-
tention mechanism. When using an MPNN for node embeddings,
one might expect the attention mechanism to be computing local
neighborhood similarity; however, when using a DAG LSTM, it is
less obvious what type of similarity is being captured. Inspecting
what the neural network learns to be the most useful subgraphs to
match could lead to insights that produce new heuristics for proof
guidance.

REFERENCES
[1] Gerwin Klein. Operating system verification—an overview. Sadhana, 34(1):27–69,

2009.
[2] Gerwin Klein, June Andronick, Kevin Elphinstone, Toby Murray, Thomas Sewell,

Rafal Kolanski, and Gernot Heiser. Comprehensive formal verification of an os
microkernel. ACM Transactions on Computer Systems (TOCS), 32(1):1–70, 2014.

[3] Stephen J Garland and Nancy A Lynch. The ioa language and toolset: Support
for designing, analyzing, and building distributed systems. Technical report,
Technical Report MIT/LCS/TR-762, Laboratory for Computer Science . . . , 1998.

[4] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R Lorch, Bryan Parno,
Michael L Roberts, Srinath Setty, and Brian Zill. Ironfleet: proving practical
distributed systems correct. In Proceedings of the 25th Symposium on Operating
Systems Principles, pages 1–17, 2015.

[5] Paul Curzon and P Curzon. A verified compiler for a structured assembly lan-
guage. In TPHOLs, pages 253–262, 1991.

[6] Xavier Leroy. Formal verification of a realistic compiler. Communications of the
ACM, 52(7):107–115, 2009.

[7] Warren A Hunt. Microprocessor design verification. Journal of Automated
Reasoning, 5(4):429–460, 1989.

[8] Thomas Hales, Mark Adams, Gertrud Bauer, Tat Dat Dang, John Harrison, Hoang
Le Truong, Cezary Kaliszyk, VictorMagron, SeanMcLaughlin, Tat Thang Nguyen,
et al. A formal proof of the kepler conjecture. In Forum of Mathematics, Pi,
volume 5. Cambridge University Press, 2017.

[9] Geoff Sutcliffe. The tptp problem library and associated infrastructure. Journal
of Automated Reasoning, 43(4):337, 2009.

[10] Deepak Ramachandran, Pace Reagan, and Keith Goolsbey. First-orderized re-
searchcyc: Expressivity and efficiency in a common-sense ontology. In AAAI
workshop on contexts and ontologies: theory, practice and applications, 2005.

[11] Kryštof Hoder and Andrei Voronkov. Sine qua non for large theory reasoning. In
International Conference on Automated Deduction, pages 299–314. Springer, 2011.

[12] Cynthia Matuszek, Michael Witbrock, John Cabral, and John DeOliveira. An
introduction to the syntax and content of cyc. UMBC Computer Science and
Electrical Engineering Department Collection, 2006.

[13] Cezary Kaliszyk and Josef Urban. Mizar 40 for mizar 40. J. Autom. Reasoning,
55(3):245–256, 2015.

[14] Adam Pease, Ian Niles, and John Li. The suggested upper merged ontology: A
large ontology for the semantic web and its applications. In Working notes of the
AAAI-2002 workshop on ontologies and the semantic web, volume 28, pages 7–10,
2002.

[15] Alex Roederer, Yury Puzis, and Geoff Sutcliffe. Divvy: An atp meta-system based
on axiom relevance ordering. In International Conference on Automated Deduction,
pages 157–162. Springer, 2009.

[16] Daniel Kühlwein, Twan van Laarhoven, Evgeni Tsivtsivadze, Josef Urban, and
Tom Heskes. Overview and evaluation of premise selection techniques for large
theory mathematics. In International Joint Conference on Automated Reasoning,
pages 378–392. Springer, 2012.

[17] Jesse Alama, Tom Heskes, Daniel Kühlwein, Evgeni Tsivtsivadze, and Josef Urban.
Premise selection formathematics by corpus analysis and kernel methods. Journal
of Automated Reasoning, 52(2):191–213, 2014.

[18] Geoffrey Irving, Christian Szegedy, Alexander A Alemi, Niklas Een, François
Chollet, and Josef Urban. Deepmath-deep sequence models for premise selection.
In Advances in Neural Information Processing Systems, pages 2235–2243, 2016.

Improving Graph Neural Network Representations
of Logical Formulae with Subgraph Pooling KDD’20 Deep Learning on Graphs Workshop, August 2020, San Diego, California, USA

[19] Kshitij Bansal, Sarah Loos, Markus Rabe, Christian Szegedy, and Stewart Wilcox.
Holist: An environment for machine learning of higher order logic theorem
proving. In International Conference on Machine Learning, pages 454–463, 2019.

[20] Cezary Kaliszyk, François Chollet, and Christian Szegedy. Holstep: A machine
learning dataset for higher-order logic theorem proving. International Conference
on Learning Representations, 2017.

[21] Sarah Loos, Geoffrey Irving, Christian Szegedy, and Cezary Kaliszyk. Deep
network guided proof search. International Conference on Logic for Programming,
Artificial Intelligence, and Reasoning, 2017.

[22] Mingzhe Wang, Yihe Tang, Jian Wang, and Jia Deng. Premise selection for
theorem proving by deep graph embedding. In Advances in Neural Information
Processing Systems, pages 2786–2796, 2017.

[23] Aditya Paliwal, Sarah Loos, Markus Rabe, Kshitij Bansal, and Christian Szegedy.
Graph representations for higher-order logic and theorem proving. Proceedings
of AAAI 2020, 2019.

[24] Kai Sheng Tai, Richard Socher, and Christopher D Manning. Improved semantic
representations from tree-structured long short-term memory networks. In
Proceedings of the 53rd Annual Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 1556–1566, 2015.

[25] Thomas N Kipf and Max Welling. Semi-supervised classification with graph
convolutional networks. International Conference on Learning Representations,
2016.

[26] Stephan Schulz. System description: E 1.8. In International Conference on Logic
for Programming Artificial Intelligence and Reasoning, pages 735–743. Springer,
2013.

[27] Andrzej Stanisław Kucik and Konstantin Korovin. Premise selection with
neural networks and distributed representation of features. arXiv preprint
arXiv:1807.10268, 2018.

[28] Miroslav Olšák, Cezary Kaliszyk, and Josef Urban. Property invariant embedding
for automated reasoning. arXiv preprint arXiv:1911.12073, 2019.

[29] Richard Evans, David Saxton, David Amos, Pushmeet Kohli, and Edward Grefen-
stette. Can neural networks understand logical entailment? International Confer-
ence on Learning Representations, 2018.

[30] Daniel Huang, Prafulla Dhariwal, Dawn Song, and Ilya Sutskever. Gamepad: A
learning environment for theorem proving. International Conference on Learning
Representations, 2019.

[31] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In International Conference
on Machine Learning, pages 448–456, 2015.

[32] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E
Dahl. Neural message passing for quantum chemistry. In Proceedings of the 34th
International Conference on Machine Learning-Volume 70, pages 1263–1272. JMLR.
org, 2017.

[33] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization.
arXiv preprint arXiv:1607.06450, 2016.

[34] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need.
In Advances in neural information processing systems, pages 5998–6008, 2017.

[35] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning
of social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 701–710. ACM, 2014.

[36] Brian Falkenhainer, Kenneth D Forbus, and Dedre Gentner. The structure-
mapping engine: Algorithm and examples. Artificial intelligence, 41(1):1–63,
1989.

[37] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
Automatic differentiation in pytorch. 2017.

[38] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

7 APPENDIX
7.1 Network Configurations
For Holstep, our hyperparameters were chosen to be compara-
ble to [22]. In our model, node embeddings were 256-dimensional
vectors and edge embeddings were 64-dimensional vectors. All
feed-forward networks (each 𝐹

(𝑡)
𝑀𝐴

, each 𝐹
(𝑡)
𝑀𝐶

, each 𝐹
(𝑡)
𝐴

, 𝐹𝐵𝐷 , and
𝐹𝐶𝐿) followed mostly the same configuration, except for their input
dimensionalities. Each had one hidden layer with dimensionality
equal to the output layer (except for 𝐹𝐶𝐿 where the dimension-
ality was half the input dimensionality). Every hidden layer for
all feed-forward networks (except for 𝐹𝐶𝐿) was followed by batch

normalization [31] and a ReLU. The final activation for 𝐹𝐶𝐿 was
a sigmoid; for all other feed-forward networks, the final activa-
tions were ReLUs. For the DAG LSTMs, the hidden states were
256-dimensional vectors. Each𝑈 (𝑒𝑣𝑤)

𝑖
,𝑈 (𝑒𝑣𝑤)

𝑜 ,𝑈 (𝑒𝑣𝑤)
𝑐 , and𝑈 (𝑒𝑣𝑤)

𝑓

were learned 256 × 256 matrices and each of𝑊𝑖 ,𝑊𝑜 ,𝑊𝑓 ,𝑊𝑐 ,𝑊𝑎 ,
and𝑊𝑔 were learned 256 × 256 matrices. For Mizar, all above di-
mensionalities were halved to be comparable to [27; 28]. For the
attention-enhanced DAG LSTM, the multi-headed attention mech-
anism used two heads, with each𝑊 (𝑞)

𝑖
,𝑊 (𝑣)

𝑖
, and𝑊 (𝑘)

𝑖
mapping

from the node state dimensionality to double the node state dimen-
sionality.

7.2 Training
Our models were constructed in PyTorch [37] and trained with
the Adam Optimizer [38] with default settings. The loss function
optimized for was binary cross-entropy. We trained each model
for 5 epochs on Holstep and 30 epochs on Mizar, as validation
performance did not improve with more training. Performance on
the validation sets was evaluated after each epoch and the best
performing model on validation was used for the single evaluation
on the test data.

7.3 Hardware Setup
All experiments were run on Linux machines with 72-core Intel
Xeon(R) 6140 CPUs @ 2.30 GHz and 750 GB RAM, and two Tesla
P100 GPUs with 16 GB GPU memory.

	Abstract
	1 Introduction
	2 Related Work
	3 Formula Representation
	3.1 Logical Formulae as Graphs
	3.2 Edge Labeling

	4 Our Approach
	4.1 Rk Embedding Methods
	4.2 R+ Embedding Methods
	4.3 Classification Process

	5 Experiments and Results
	5.1 Datasets
	5.2 Classification Experiments
	5.3 Premise Selection for Automated Theorem Proving

	6 Conclusions and Future Work
	References
	7 Appendix
	7.1 Network Configurations
	7.2 Training
	7.3 Hardware Setup

