

Recognizing the Goals of Uninspectable Agents

Irina Rabkina1, Pavan Kathnaraju2, Mark Roberts3,

Jason Wilson4, Kenneth Forbus5, Laura Hiatt6

Northwestern University1,4,5, Drexel University2, Naval Research Laboratory3,6

irabkina@u.northwestern.edu1, pk398@drexel.edu2, mark.roberts@nrl.navy.mil3,

jrw@northwestern.edu4, forbus@northwester.edu5, laura.hiatt@nrl.navy.mil6

Abstract

Effective interaction between agents requires reasoning about
other agents’ internal states. In some situations, such as in the
case of multiagent systems with a shared policy, agents may
have full knowledge of each other’s knowledge, preferences,
and goals. When interacting with humans or independent ar-
tificial agents, however, such direct inspection is not availa-
ble. Instead, agents must model the internal states of their
compatriots through observations of their behaviors in the
world. In humans, such reasoning is called theory of mind
(ToM). It has been argued that ToM reasoning can improve
performance for artificial agents in team scenarios, as well.
Here, we compare the performance of a model of ToM (An-
alogical Theory of Mind; Rabkina et al., 2017) with that of a
state-of-the-art goal recognition system (Holler et al., 2018)
on goal recognition tasks of increasingly uninspectable
agents. We show that ToM reasoning is beneficial for agents
when direct access to the internal states of their compatriots
is not available.

Introduction

Successfully collaborating with other agents requires know-

ing their objective(s). Sometimes, this information is readily

available such as when multiagent systems share a policy

(e.g., Velagapudi et al., 2007) or when agents are capable of

communication (e.g., Morgan & Pollack, 1990). However,

when communication about internal states is imperfect or

unavailable, agents must infer their compatriots’ objectives

by observing external actions. This task is referred to as goal

recognition (E-Martin, R-Moreno & Smith, 2015). The mo-

tivation of our work is creating an online software assistant

that recognizes the goal(s) of another agent and recommends

actions or provides information to assist the agent in com-

pleting its goals more quickly.

 While other goal recognition systems1 exist, state-of-the-

art goal recognition systems make strong assumptions about

Copyright © 2020, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved.

the kind of information that is available during goal recog-

nition. They typically receive an observation trace of an

agent’s activities as a sequence of action-state pairs, includ-

ing the action’s parameters, and reconcile these actions with

a set of known or learned possible plans to infer the plan that

the agent is performing, and thereby its top-level goal

(Ramírez & Geffner, 2009). Alternatively, hierarchical plan

recognition (Geib & Goldman, 2011; Holler et al., 2018)

reconciles the observation trace using decomposition meth-

ods that aggregate the primitive actions into high-level

tasks.

 Since these recognition approaches access the same infor-

mation about the observed agent’s actions that the agent re-

ceives (i.e., the recognition algorithm observes the action-

state pairs sent to the agent, including all parameters), the

observation trace actually contains information about the in-

ternal state of the observed agent that cannot be gleaned

from external observations alone. This type of internal in-

formation is not available when the agent is, for example, a

human. Instead, observations of humans and other unknown

agents consist only of external observation information,

which is both noisy (i.e., imperfect) and incomplete (i.e.,

lacking internal information, such as action parameters).

 Although prior research has examined the impact of noisy

observations on goal recognition (Sohrabi et al., 2016;

Vattam & Aha, 2015), few have examined the benefit of in-

ternal knowledge for recognition vs. the less informative

value provided by external information. We view this as a

major limitation of prior work, given that such tight and syn-

chronous communication cannot always be assumed for

multi-agent teams, especially those involving humans

 On the other hand, the use of only external information to

infer the mental (i.e., internal) states of another agent, in-

cluding its goals, has been studied extensively in humans

(e.g., Premack & Woodruff, 1978) and is called Theory of

1 We use the term goal recognition to refer to goal, plan, and task recogni-
tion systems, since all of the above are capable of recognizing the objective
of an observed trace (i.e., the goal).

Mind (ToM) reasoning. Computational models of ToM

(e.g., Baker et al., 2011; Hiatt & Trafton, 2010; Rabkina et

al., 2017) have shown promise in modeling human judg-

ments, but have not yet been applied to complex goal recog-

nition tasks.

 To address this gap, we examine the extent to which in-

corporating internal knowledge, in addition to external

knowledge, impacts goal recognition for two models: (1) a

computational ToM model called Analogical ToM (AToM)

by Rabkina et al. (2017) and (2) the state-of-the-art task

recognition system PANDA by Holler et al. (2018). We per-

form an initial demonstration of AToM’s ToM reasoning ca-

pabilities on a widely accepted ToM task, stag-hunt

(Skyrms, 2004). We then extend to a series of more complex

tasks in the open-world domain of Minecraft, at three levels

of information: (1) observation trace with full internal infor-

mation, directly from the observed agent’s planner, (2) ob-

servation trace with partial internal information, from the

agent’s execution of its plans, and (3) observation trace with

external knowledge only, adapted from the agent’s plan ex-

ecution. When both systems have perfect internal

knowledge, AToM is slightly worse than PANDA at recog-

nizing an agent’s goals. However, as knowledge is reduced,

PANDA’s performance drops while AToM degrades grace-

fully.

 The contributions of this paper include: (1) demonstrating

that AToM performs well at recognizing goals on a standard

ToM task, thus establishing it as a fair baseline for state-of

the-art ToM techniques; (2) developing a new benchmark

for goal recognition tasks based on Minecraft; (3) demon-

strating that removing internal knowledge causes a drop in

goal recognition accuracy in PANDA, but not AToM, which

continues to perform near ceiling.

AToM on Stag-hunt

Stag-hunt (Skyrms, 2004) is a prisoner’s dilemma-style

game that has recently been used to test ToM models’ ability

to recognize cooperation between agents (e.g., Shum et al.,

2019; Xiong et al., 2018). During gameplay, players can

choose to pursue a high reward (i.e., a stag) cooperatively or

a low reward individually. ToM models are then tasked with

recognizing whether other agents intend to cooperate. Two

formulations of this task exist: (1) the ToM model is a player

in the game (e.g., Microsoft’s Malmo Collaborative AI

Challenge2) and (2) the ToM model is an observer, making

judgments about other players (e.g., Shum et al., 2019). For

direct comparison with a computational cognitive model of

ToM (i.e., Bayesian ToM, BToM; Shum et al., 2019), we

take the latter formulation.

2 https://www.microsoft.com/en-us/research/academic-program/collabora-
tive-ai-challenge/

 The stag-hunt task is similar to goal recognition, to the

extent that observed agents have an underlying goal to co-

operate (or not). However, the observations typically consist

only of movements on a small grid. Furthermore, coopera-

tion is assumed to be a shared goal between two agents.

 By showing that AToM is as accurate as both humans and

BToM on this task, we aim to show that it is competitive on

tasks that are specifically designed to test ToM reasoning. A

full discussion of this work can be found in Rabkina & For-

bus, 2019.

Stag-hunt Task Description

For direct comparison, we use the stag-hunt dataset de-

scribed by Shum et al. (2019). Recall that the goal of this

formulation of the stag-hunt task is to recognize cooperation

between observed agents. Agents can cooperate to catch a

high-value target (i.e., a stag) or work individually to catch

a low-value target (i.e., a hare).

 The dataset from Shum et al. (2019) consists of nine ex-

amples of the stag-hunt game, each on a partially traversable

7x5 grid map (Figure 1). Each example contains three hunt-

ers, two stags, and two hares. Stags can be captured via co-

operation by two or three hunters for a high number of

points; hares must be captured by a single hunter for a lower

number of points. Three timesteps are simulated per exam-

ple. Cooperation predictions are made at the end of each

timestep.

Stag-hunt Results

AToM’s accuracy in recognizing intended cooperation be-

tween agents in the stag-hunt game can be found in Figure

2. We also report the accuracy of BToM and humans (both

Shum et al., 2019) for comparison. BToM made decisions

over a model of team hierarchies, while AToM learned to

identify cooperation via leave-one-out cross-validation (see

Rabkina & Forbus, 2019 and Approach, below).

 Note that at all timesteps, the two models and humans do

not differ (all p>0.05). This suggests that both AToM and

Figure 1. An example stag-hunt scenario. Agents A and C have

cooperated to capture a stag, while agent B has acted alone to

capture a hare. Figure adapted from Shum et al. (2019).

BToM successfully model human judgments on this task

and are competitive with each other in terms of accuracy.

Agent Simulation in Minecraft

We define a problem space in the open-world game Mine-

craft (see Roberts et al., 2016 for a description of the game

and the supporting framework we leverage, and Johnson et

al., 2016 for information on Minecraft’s Malmo platform for

AI experimentation). An agent, Alex, is placed in a flat

Minecraft world with a small farm in the middle and items

randomly distributed around the perimeter. These include

crop seeds, bone meal, chickens, cows, buckets of milk,

eggs, and sugar. After a period of exploring, Alex chooses a

goal that will maximize its food points, given the items it

has observed. We use Minecraft’s internal food points3 sys-

tem for value calculations, shown in the left column of Table

1. The goal recognition systems must recognize which goal

Alex is pursuing. We assume that it pursues one goal at a

time (i.e., no interleaved goals).

 Many of Minecraft's crafting tasks have natural hierar-

chical structures. For example, crafting bread requires three

wheat, and wheat is grown and harvested using wheat seeds.

Growth can additionally be sped up using an item called

bone meal. Due to these natural hierarchies, the agent’s be-

haviors are defined using Hierarchical Task Networks.

Hierarchical Task Networks

Hierarchical Task Networks (HTNs; Erol, Hendler, & Nau,

1994) provide a way to encode hierarchical plan knowledge.

We define an HTN planning model as a tuple 𝐷 = (𝑀, 𝑇),

where 𝑀 is a finite set of methods and 𝑇 is a finite set of

primitive and compound tasks. Primitive tasks are executa-

ble actions with preconditions and effects. Compound tasks

3 https://minecraft.gamepedia.com/Food#Foods

are more abstract and are composed of compound or primi-

tive tasks. Methods are used to decompose compound tasks

into a sequence of other tasks.

 An HTN planning problem 𝑃 = (𝐷, 𝑠0, 𝕋) is a tuple,

where 𝐷 is an HTN planning model, 𝑠0 is an initial state, and

𝕋 is a list of non-primitive tasks, where 𝑇 ⊆ 𝕋. A solution

to 𝑃, 𝜋 = < 𝑎0, 𝑎1, … , 𝑎𝑛 >, is a plan where each action 𝑎𝑖

corresponds to a primitive task, 𝜋 completes all tasks in 𝕋,

and there exist no compound tasks in 𝕋. An HTN planner

constructs this plan using the methods defined in the domain

to decompose tasks in 𝕋 into a sequence of actions. In this

work |𝕋| = 1, since the agent pursues only one goal at a

time.

HTN Planning and Execution in Minecraft

We used the HTN planner SHOP2 (Nau et al., 2003) to gen-

erate plans for an agent to execute in the Minecraft environ-

ment. Planning with SHOP2 requires two components of

knowledge: state model and HTN planning model. The state

model used by SHOP2 defines the Minecraft game state as

a set of first-order predicates. These predicates can have

both numerical and symbolic arguments. More specifically,

the state model contains information about the inventory of

the agent, such as items in inventory and location of items

in the hotbar. This model also contains information about

entities and locations the agent has observed, and infor-

mation about the agent itself, such as its current location and

view location. An example of the state model is {(en-

tity_at cow123 loc123), (inventory_count

wheat_seeds 10)}.

 The HTN planning model contains primitive and com-

pound tasks that the agent can do in the environment. Spe-

cifically, we categorize primitive tasks in the HTN domain

model into the following: movement, look, item selection,

item crafting, and item gathering. We also categorize com-

pound tasks into top-level tasks and helper tasks. Top-level

tasks are objectives that the agent directly wants to pursue

(such as making pumpkin pie and cake). Helper tasks are

Table 1. Minecraft Model for Planning with SHOP2

Top-Level Tasks

(Food Point Values)

Helper Task

Categories

Action

Categories

Obtain Chicken (2) Crafting Items Movement

Obtain Beef (3) Gathering Items Look

Obtain Pumpkin Pie (8) Growing Crops Item Selection

Obtain Cake (14) Using Inventory Item Item Crafting

Obtain Carrot (3) Item Gathering

Obtain Potato (1)

Obtain Bread (5)

Figure 2. A comparison of AToM, BToM, and human accu-

racy on cooperation recognition in stag-hunt, per time step.

those that the agent does in order to complete top-level tasks.

Helper tasks can be categorized into crafting items, gather-

ing items, growing crops, and consuming/using items in in-

ventory. These categorizations are summarized in Table 1.

An example of a plan generated by the SHOP2 planner for

obtaining beef would be: {(move-near-entity

cow123), (look-at-entity cow123) (select

iron-sword) (attack cow123) (gather beef)}.

 Plans generated by the SHOP2 planner are used by an

agent to construct executable actions in Minecraft. At a high

level, a plan is parsed and converted into an executable se-

quence of actions (i.e., an executable plan). This executable

plan is then executed in the Minecraft environment to com-

pletion. However, the behavior can be different for crafting-

related tasks if the agent does not have the necessary items

in inventory to craft. Specifically, if the items have been ob-

served in the environment, but are not in the agent’s inven-

tory, it constructs a plan to retrieve them. If items have not

been observed in the environment, the entire plan is ignored.

Once all items have been retrieved, the agent then replans to

get a new plan for crafting the item. Replanning makes sense

here because the agent may observe items for more im-

portant objectives while retrieving items for crafting. In this

case, during replanning, the agent should execute the more

important objective.

Approach

We compare the goal recognition accuracy of a model of

human ToM reasoning (AToM; Rabkina et al., 2017) with

the performance of a goal recognition system (Holler et al.,

2018) to show the strengths and weaknesses of each when

reasoning about other agents. We describe these systems

here.

Planning and Acting in a Network Decomposition

Architecture (PANDA)

Similar to the work by Holler et al. (2018), we use the Plan-

ning and Acting in a Network Decomposition Architecture

(PANDA; Bercher, Keen, & Biundo, 2014) as an off-the-,

shelf HTN planner for planning as goal recognition.

PANDA is a hybrid planning algorithm, which combines

HTN planning concepts with partial-order causal link plan-

ning. We refer to HTN planning for plan and goal recogni-

tion using PANDA, as PANDA-REC.

 At a high level, PANDA-REC takes as input a sequence

of actions and an HTN planning model and converts the

planning model into a model for goal recognition. This

model is then passed into PANDA, and the recognized goal

is extracted (i.e. a single top-level task). We chose to use

PANDA for the goal recognition task, rather than SHOP2,

because code for the conversion process was readily availa-

ble. Note that that this approach (i.e., using PANDA for goal

recognition) is currently state-of-the-art (Holler et al., 2018).

Analogical Theory of Mind (AToM)

We use the Analogical Theory of Mind model (AToM; Rab-

kina et al., 2017) as a model of theory of mind (ToM) and

apply it to the task of goal recognition. The central claim of

AToM is that ToM occurs through analogical processes. It

is implemented using the analogy stack in the Companion

cognitive architecture (Forbus & Hinrichs, 2017). AToM is

trainable and does not require an HTN to recognize goals.

 We treat goal recognition as a classification problem for

AToM. Using the Sequential Analogical Generalization En-

gine (SAGE; McLure et al., 2015), a generalization pool is

learned for every potential goal type. Intuitively, a generali-

zation pool is a model, learned from previous observed

traces, of the goal it represents. It consists of individual and

generalized cases; here, a case consists of the trace of the

agent accomplishing the given goal. Depending on the ex-

perimental condition (see Experiments, below) this may be

the output of the SHOP2 planner, a report of the agent’s ac-

tual actions, or sensor-like observations of those actions.

 During training, cases are passed to SAGE one at a time.

If one exists, the most similar previously observed case is

retrieved via MAC/FAC (Forbus, Gentner & Law, 1995).

We refer readers to the original paper for specifics of the

retrieval algorithm. Importantly, however, MAC/FAC com-

putes a structural similarity score between the original case,

o, and the retrieved case, r. At a high level, this score rep-

resents the amount and depth of overlapping structure be-

tween o and r (see Forbus et al., 2016 for algorithm and im-

plementation details). If the structural similarity score is

above a preset threshold (the default value of 0.8 is used in

the present work), the two cases are merged into a general-

ization, g, which is assimilated back into the generalization

pool (see McLure et al., 2015).

 Generalizations contain frequentist probabilities of the

facts contained in their constituent cases. For example, if a

generalization contains a case with the facts {(movesTo

cow123), (swingsAt cow123)} and another with the

facts {(movesTo cow456), (throws cow456)}, the gen-

eralization would contain the fact that a cow is being moved

to with a probability of 1.0 and that it is being swung at and

thrown each with probability 0.5. As more cases are added

to the generalization, the probabilities are updated. Eventu-

ally, facts with probabilities below a preset threshold (the

default value of 0.2 is used in the present experiments) fall

out of the generalization. Thus, a generalization can be

treated as a schema for a given type of case.

 If the similarity score between o and r is not above the

threshold needed to form a generalization, o is added to the

generalization pool as an individual example. Note that gen-

eralizations are treated as cases for the purposes of retrieval

and r may itself be a generalization.

 During testing, MAC/FAC is once again used for re-

trieval. However, retrieval occurs across all generalization

pools. The pool from which r is actually retrieved is as-

sumed to represent the agent’s goal in o.

Experiments

The objective of our experiments is to compare different

ways to infer an agent’s goals given different types of ob-

served sequences of actions. Specifically, we extract se-

quences of actions (i.e., traces) from both planner output and

agent action executions in Minecraft. We then compare

AToM with PANDA-REC described in the Approach sec-

tion above.

 All traces used in our experiments were extracted from

Minecraft play sessions logs. A play session corresponds to

an agent being placed on a map and executing top-level

tasks from Table 1 for a predefined amount of time. From

this session, a single log is generated and consists of all plan-

ner output and executed actions of an agent throughout the

session.

 We constructed a dataset of play session logs by having

an agent play 10 pseudo-randomly generated maps 5 times,

with simulations running for 180 seconds each. Once the log

dataset was constructed, we randomly extracted datasets of

100 plan traces (i.e. planner output) and 100 action execu-

tion traces. Note that obtain_carrot did not appear in the ac-

tion execution trace dataset.

 Two random baselines were computed for each experi-

ment. The first generated its interpretation of the agent’s

goal by sampling uniformly across goals that appear in the

dataset. The second was biased, with each potential goal

weighted by its prevalence in the dataset. All results are re-

ported in Table 2. Where available, standard deviations are

reported in parentheses. The highest accuracy for each test

is bolded.

How well do PANDA and AToM perform on plan

traces (full internal information)?

The first experiment focuses on recognition of goals when

the list of executable actions generated by the planner (in

this case, SHOP2) is directly observable. We note that these

plans are direct internal information about an agent, as plans

are constructed by the agent internally, converted into

actions that can be executed, and then executed in an

environment. In this experiment, PANDA-REC was

provided the HTN model used by SHOP2 while AToM

learned from SHOP2 outputs via 10-fold cross-validation.

 PANDA-REC was 100% accurate in recognizing goals

based on the SHOP2 planner’s output. This fit our intuition,

as PANDA-REC is given the HTN planning model used by

the SHOP2 planner. AToM performed worse, with 92% ac-

curacy. Both systems performed substantially better than the

uniform and biased baselines.

How well do PANDA and AToM perform on exe-

cution traces (partial internal information)?

Planner traces provide perfect information about the plans

being attempted. However, the execution of a plan is rarely

perfect, and may not correspond exactly to a plan. In this

experiment, PANDA-REC and AToM were tested on goal

recognition using the agent’s report of its actions. We note

that some of these actions (i.e. move and look at) contain

internal information about the agent. PANDA-REC was

provided an HTN model corresponding to the executed ac-

tions (HTN-EXEC), while AToM once again learned the

model through training. As before, AToM was trained via

10-fold cross-validation.

 PANDA-REC’s accuracy dropped substantially when

working from agent actions but remained above both base-

lines. It performed at 63% accuracy. AToM’s performance

did not change significantly from the planner traces outputs.

It maintained 90% accuracy.

Table 2. Results for Goal Recognition Experiments

 PANDA-REC AToM Uniform Baseline Biased Baseline

SHOP Traces 1.0 0.92 (0.075) 0.14 0.226

Execution Traces 0.63 0.90 (0.077) 0.167 0.237

Train Exec / Test Ext. 0.30 0.90 (---) 0.167 0.237

Train & Test Ext. 0.63 0.88 (0.98) 0.167 0.237

How sensitive are PANDA and AToM to external

knowledge traces?

In many multi-agent scenarios, communication is limited or

impossible. Instead, agents must reason based only on their

own observations of compatriots’ behavior without internal

state. In this experiment, we removed information about the

parameters of actions. Thus, traces consisted only of what

could be observed externally (e.g., that the agent is moving

in a certain direction, but not where it is going) and lacked

internal state (e.g., the target of the movement).

 We tested PANDA-REC and AToM’s sensitivity to ex-

ternal knowledge traces under two conditions: (1) with a

model that includes internal information from agent traces

and (2) with a model that only includes external information.

For (1), PANDA-REC was given the action execution HTN

model (i.e., HTN-EXEC) used in the previous experiment.

AToM learned a model using the whole execution trace da-

taset. For (2), PANDA was given a modified action execu-

tion HTN model (HTN-TOM), which did not contain inter-

nal information, and AToM was trained using 10-fold cross-

validation, as in previous experiments.

 When tested on the external knowledge-only traces using

the HTN-EXEC model, PANDA-REC’s performance

dipped again to 30% accuracy. However, when tested using

the HTN-TOM model, it performed as well as it had when

using HTN-EXEC on execution traces (i.e., 63% accuracy).

AToM performed equivalently across tasks: 90% accuracy

when trained on execution traces and 88% accuracy when

trained on external knowledge-only traces.

Discussion and Future Work

For these Minecraft recognition tests, AToM outperformed

PANDA-REC on goal recognition conditions when given

partial internal information or external information only.

This is the hallmark of human ToM reasoning, which AToM

models. Thus, our results suggest that ToM reasoning in

general, and ToM reasoning via AToM in particular, can

help agents reason about others.

 The chief claim of AToM as a cognitive model is that

ToM reasoning and development occur via analogical pro-

cesses. Here, those same processes allow AToM to robustly

reason about the internal states of agents, without direct

knowledge of those states. Specifically, analogy allows

AToM to make inferences based on its previous observa-

tions. For example, if it has learned that agents walk up to

cows before slaughtering them (e.g., from agent action

traces), it can infer that the object the agent was walking to-

ward before slaughtering it (e.g., in an anonymized agent

action trace) was also a cow. Furthermore, analogy’s focus

on structure makes retrieval with complete object uncer-

tainty possible. That is, if all objects were removed from a

trace, AToM would guess that throwing something at the

ground and later harvesting something else is a planting

task—perhaps mistaking obtain_potato for ob-

tain_carrot, but not obtain_beef. It remains to be seen

whether other ToM models can do similar reasoning.

 From a practical standpoint, one disadvantage of AToM,

as compared to PANDA-REC, is its need to be trained.

When recognizing from planner output, PANDA-REC was

able to use the planner. While the model did need to be mod-

ified further for the other conditions, training data was never

necessary. On the other hand, PANDA-REC has the disad-

vantage of requiring a hand-crafted model.

 Interestingly, the generalizations learned by AToM were

often similar to the individual plans in PANDA-REC’s

model. This suggests that the models used by PANDA-REC,

when converted to cases of a format similar to observation

trace outputs, may be sufficient to populate AToM’s case

library. That is, explicit training may not be necessary. Al-

ternatively, the AToM model might provide insights into

learning, rather than hand-crafting, the PANDA model. We

will explore these possibilities in future work.

 More generally, we would like to give agents the ability

to not only recognize compatriots’ goals, but also to change

their own behavior accordingly. This requires online goal

recognition that is accurate while reasoning from partial data

(i.e., before the compatriot finishes its task). PANDA-REC

can be configured to make a recognition decision prior to

seeing a complete plan trace (Holler et al., 2018). However,

the computations for this can become too slow for online

recognition. On the other hand, analogical retrieval allows

AToM to be relatively fast. It remains to be seen whether

AToM can maintain accuracy with partial traces. It is likely

that other components of ToM reasoning (e.g., about

knowledge and desire states) will need to be integrated in

order to increase robustness of AToM’s predictions from

partial traces. We will explore applications of PANDA-REC

and AToM to online goal recognition in future work.

Related Work

Goal Recognition is the process of inferring the top-level

goal of a partial plan executed by an agent (E-Martin, R-

Moreno, & Smith, 2015) and has been extensively applied

to games. For example, Gold (2010) uses an Input-Output

Hidden Markov Models (Bengio & Fransconi, 1994) to rec-

ognize player goals from low-level actions in a top-down

action adventure game. Ha et al. (2011) uses a Markov

Logic Network (Richardson & Domingos, 2006) to recog-

nize goals in the educational game Crystal Island. Min et al.

(2014) and Min et al. (2016) use deep learning techniques

(i.e., stacked denoising autoencoders, Vincent et al., 2010;

and Long Short-Term Memory, Hochreiter and Schmidhu-

ber 1997) to also recognize goals in Crystal Island. In con-

trast, we apply goal recognition to Minecraft. Goals in Crys-

tal Island are tied to the narrative. However, Minecraft does

not have a narrative and has an undefined number of possi-

ble goals.

 Plan recognition (Schmidt, Sridharan, & Goodson, 1978),

the sibling problem to goal recognition, entails finding the

set of plans and goals an agent is believed to be pursuing

given some observed sequence of actions. One way to view

plan recognition is presented in the seminal theoretical work

by Kautz and Allen (1986). In particular, they viewed plan

recognition as a form of McCarthy’s circumscription (1980)

and represented the plan library in the form of a plan hierar-

chy/graph. Other work viewed plan recognition as a form of

parsing using a formal grammar that defines a set of possible

plans that can be executed by an agent. Such grammars in-

clude Context-Free Grammars (CFGs; Villain, 1990), Prob-

abilistic Context-Free Grammars (Pynadath & Wellman,

2000), plan tree grammars (Geib & Goldman, 2009), Plan

Frontier Fragment Grammars (Geib, Maraist, & Goldman,

2008; Geib & Goldman, 2010), and Combinatory Catego-

rial Grammars (Geib, 2009; Geib & Goldman, 2011).

 Other techniques viewed plan recognition as planning. To

the best of our knowledge, the first work to do this was by

Ramirez and Geffner (2009). Specifically, this approach

used off-the-shelf classical planners to solve the plan recog-

nition problem. The main advantage of this approach is that

it only requires a model of the domain’s actions. Other

works that follow this view include Ramirez and Geffner

(2010), and Sohrabi, Riabov, and Udrea (2016).

 Our work focuses on applying the work by Holler et al.,

(2018) to goal recognition in Minecraft. Their work outlines

a technique that uses off-the-shelf Hierarchical Task Net-

work (HTN; Erol, Hendler & Nao, 1994) planning to recog-

nize plans and goals. Unlike prior plan recognition as plan-

ning approaches, this does require a plan library.

 While there are many different approaches to plan and

goal recognition in the literature, this work aimed to provide

an initial study comparing AToM to goal recognition. There

is currently another study being done on applying Combina-

tory Categorial Grammar plan recognition to the traces pre-

sented in the experiments. As such, we aim to look at the

remaining plan and goal recognition algorithms presented in

this section for future work.

Conclusion

In this work, we have analyzed the performance of two sys-

tems on goal recognition as availability of internal infor-

mation changes. We found that, while the state-of-the-art

goal recognition system (Holler et al., 2018) performs at

100% accuracy when outputs from the observed agent’s

planner (i.e., perfect internal information) are available, its

performance decreases significantly when only agent ac-

tions or observations (i.e., external information) are availa-

ble. On the other hand, the system that models human theory

of mind reasoning (Rabkina et al., 2017), maintains accu-

racy at approximately 90% as availability of internal infor-

mation changes. These findings suggest that incorporating

theory of mind when reasoning about other agents’ internal

states can lead to better understanding, which may lead to

better interactions between agents.

References

Baker, C., Saxe, R., & Tenenbaum, J. (2011). Bayesian Theory of
Mind: Modeling Joint Belief-desire Attribution. In Proceedings of
the Annual Meeting of the Cognitive Science Society.

Bengio, Y., & Frasconi, P. (1995). An input output HMM architec-
ture. In Advances in neural information processing systems, 427-
434.

Bercher, P., Keen, S., & Biundo, S. (2014). Hybrid planning heu-
ristics based on task decomposition graphs. In Seventh Annual
Symposium on Combinatorial Search, 35-43.

E-Martin, Y., R-Moreno, M. D., & Smith, D. E. (2015) A fast goal
recognition technique based on interaction estimates. In Twenty-
Fourth International Joint Conference on Artificial Intelligence,
761-768.

Erol, K., Hendler, J., & Nau, D. S. (1994). HTN planning: Com-
plexity and expressivity. In Proceedings of the 8th AAAI Confer-
ence on Artificial Intelligence, 1123-1128.

Forbus, K. D., Ferguson, R. W., Lovett, A., and Gentner, D.
(2016). Extending SME to Handle Large-scale Cognitive Model-
ing. Cognitive Science, 1-50.

Forbus, K., Gentner, D., and Law, K. (1995). MAC/FAC: A model
of similarity-based retrieval. Cognitive Science, 19, 141-205.

Forbus, K. D., & Hinrich, T. (2017). Analogy and relational repre-
sentations in the companion cognitive architecture. AI Magazine,
38(4), 34-42.

Geib, C. W., & Goldman, R. P. (2005). Partial observability and
probabilistic plan/goal recognition. In Proceedings of the Interna-
tional Workshop on Modeling Other Agents from Observations, 1-
6.

Geib, C. W., & Goldman, R. P. (2009). A probabilistic plan recog-
nition algorithm based on plan tree grammars. Artificial Intelli-
gence, 173(11), 1101-1132.

Geib, C., & Goldman, R. (2010). Handling looping and optional
actions in YAPPR. In Workshops at the Twenty-Fourth AAAI Con-
ference on Artificial Intelligence, 17-22.

Geib, C., & Goldman, R. (2011). Recognizing plans with loops
represented in a lexicalized grammar. In Twenty-Fifth AAAI Con-
ference on Artificial Intelligence, 91-98.

Geib, C. W., Maraist, J., & Goldman, R. P. (2008). A New Proba-
bilistic Plan Recognition Algorithm Based on String Rewriting. In
Proceedings of the 18th International Conference on Automated
Planning and Scheduling, 91–98.

Geib, C. (2009). Delaying commitment in plan recognition using
combinatory categorial grammars. In Twenty-First International
Joint Conference on Artificial Intelligence, 1702-1707.

http://www.qrg.northwestern.edu/papers/Files/QRG_Dist_Files/QRG_2016/ISMEJ2016-preprint.pdf
http://www.qrg.northwestern.edu/papers/Files/QRG_Dist_Files/QRG_2016/ISMEJ2016-preprint.pdf
http://www.qrg.northwestern.edu/papers/Files/QRG_Dist_Files/QRG_1994/Forbus_1994_MAC_FAC_Model_Similarity-Based_Retrieval_CogSci.pdf
http://www.qrg.northwestern.edu/papers/Files/QRG_Dist_Files/QRG_1994/Forbus_1994_MAC_FAC_Model_Similarity-Based_Retrieval_CogSci.pdf

Gold, K. (2010). Training goal recognition online from low-level
inputs in an action-adventure game. In Sixth Artificial Intelligence
and Interactive Digital Entertainment Conference, 21-26.

Ha, E. Y., Rowe, J. P., Mott, B. W., & Lester, J. C. (2011). Goal
recognition with Markov logic networks for player-adaptive
games. In Seventh Artificial Intelligence and Interactive Digital
Entertainment Conference, 32-39.

Hiatt, L. M., & Trafton, J. G. (2010). A Cognitive Model of Theory
of Mind. In Proceedings of the 10th International Conference on
Cognitive Modeling, 91-96. Philadelphia, PA: Drexel University.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term
memory. Neural computation, 9(8), 1735-1780.

Höller, D., Behnke, G., Bercher, P., & Biundo, S. (2018). Plan and
goal recognition as HTN planning. In 2018 IEEE 30th Interna-
tional Conference on Tools with Artificial Intelligence, 466-473.
IEEE.

Johnson, M., Hofmann, K., Hutton, T., & Bignell, D. (2016). The
Malmo Platform for Artificial Intelligence Experimentation. In
Proceedings of the International Joint Conference on Artificial In-
telligence, 4246-4247.

Kautz, H. A., & Allen, J. F. (1986). Generalized Plan Recognition.
In Proceedings of the 5th AAAI Conference on Artificial Intelli-
gence, 32-37.

McCarthy, J. (1980). Circumscription—a form of non-monotonic
reasoning. Artificial intelligence, 13(1-2), 27-39.

McLure, M.D., Friedman S.E. and Forbus, K.D. (2015). Extending
Analogical Generalization with Near-Misses. In Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin,
Texas

Min, W., Ha, E. Y., Rowe, J., Mott, B., & Lester, J. (2014). Deep
learning-based goal recognition in open-ended digital games. In
Tenth Artificial Intelligence and Interactive Digital Entertainment
Conference, 37-43.

Min, W., Mott, B. W., Rowe, J. P., Liu, B., & Lester, J. C. (2016).
Player Goal Recognition in Open-World Digital Games with Long
Short-Term Memory Networks. In Proceedings of the 25th Inter-
national Joint Conference on Artificial Intelligence, 2590-2596.

Morgan, P. R. C. J. L., & Pollack, M. E. (1990). Intentions in com-
munication. MIT press.

Nau, D. S., Au, T. C., Ilghami, O., Kuter, U., Murdock, J. W., Wu,
D., & Yaman, F. (2003). SHOP2: An HTN planning system. Jour-
nal of artificial intelligence research, 20, 379-404.

Premack, D., & Woodruff, G. (1978). Does the Chimpanzee have
a Theory of Mind? Behavioral and Brain Sciences, 1(4), 515-526.

Pynadath, D. V., & Wellman, M. P. (2000). Probabilistic state-de-
pendent grammars for plan recognition. In Proceedings of the Six-
teenth Conference on Uncertainty in Artificial Intelligence, 507-
514. Morgan Kaufmann Publishers Inc.

Rabkina, I. & Forbus, K. D. (2019). Analogical Reasoning for In-
tent Recognition and Action Prediction in Multi-Agent Systems. In
Proceedings of the Seventh Annual Conference on Advances in
Cognitive Systems. Cambridge, MA.

Rabkina, I., McFate, C., Forbus, K. D., & Hoyos, C. (2017). To-
wards a Computational Analogical Theory of Mind. In Proceed-
ings of the 39th Annual Conference of the Cognitive Science Soci-
ety, 2949-2954.

Ramírez, M., & Geffner, H. (2009). Plan recognition as planning.
In Twenty-First International Joint Conference on Artificial Intel-
ligence.

Ramírez, M., & Geffner, H. (2010). Probabilistic plan recognition
using off-the-shelf classical planners. In Twenty-Fourth AAAI Con-
ference on Artificial Intelligence, 1121-1126.

Richardson, M., & Domingos, P. (2006). Markov logic networks.
Machine learning, 62(1-2), 107-136.

Roberts, M., Shivashankar, V., Alford, R., Leece, M., Gupta, S., &
Aha, D. W. (2016). Goal reasoning, planning, and acting with Ac-
torSim, the actor simulator. In Proceedings of the Fourth Annual
Conference on Advances in Cognitive Systems.

Schmidt, C. F., Sridharan, N. S., & Goodson, J. L. (1978). The plan
recognition problem: An intersection of psychology and artificial
intelligence. Artificial Intelligence, 11(1-2), 45-83.

Shum, M., Kleiman-Weiner, M., Littman, M. L., & Tenenbaum, J.
B. (2019). Theory of Minds: Understanding Behavior in Groups
Through Inverse Planning. In Proceedings of the 33rd AAAI Con-
ference on Artificial Intelligence.

Skyrms, B. (2004). The Stag Hunt and the Evolution of Social
Structure. Cambridge University Press.

Sohrabi, S., Riabov, A. V., & Udrea, O. (2016). Plan Recognition
as Planning Revisited. In Proceedings of the 25th International
Joint Conference on Artificial Intelligence, 3258–3264

Vattam, S. S., & Aha, D. W. (2015). Case-based plan recognition
under imperfect observability. In International Conference on
Case-Based Reasoning, 381-395. Springer, Cham.

Velagapudi, P., Prokopyev, O., Sycara, K., & Scerri, P. (2007).
Maintaining shared belief in a large multiagent team. In Proceed-
ings of the 10th International Conference on Information Fusion,
1-8. IEEE.

Vilain, M. B. (1990). Getting Serious About Parsing Plans: A
Grammatical Analysis of Plan Recognition. In Proceedings of the
8th AAAI Conference on Artificial Intelligence, 190-197.

Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., & Manzagol, P.
A. (2010). Stacked denoising autoencoders: Learning useful repre-
sentations in a deep network with a local denoising criterion. Jour-
nal of Machine Learning Research, 11, 3371-3408.

Xiong, Y., Chen, H., Zhao, M., & An, B. (2018). HogRider: Cham-
pion Agent of Microsoft Malmo Collaborative AI Challenge. In
Thirty-Second AAAI Conference on Artificial Intelligence.

http://www.qrg.northwestern.edu/papers/Files/QRG_Dist_Files/QRG_2015/McLure-Friedman-Forbus-AAAI15.pdf
http://www.qrg.northwestern.edu/papers/Files/QRG_Dist_Files/QRG_2015/McLure-Friedman-Forbus-AAAI15.pdf
http://www.qrg.northwestern.edu/papers/Files/QRG_Dist_Files/QRG_2019/rabkina_forbus_2019.pdf
http://www.qrg.northwestern.edu/papers/Files/QRG_Dist_Files/QRG_2019/rabkina_forbus_2019.pdf
http://www.qrg.northwestern.edu/papers/Files/QRG_Dist_Files/QRG_2017/rabkina-mcfate-forbus-hoyos-2017.pdf
http://www.qrg.northwestern.edu/papers/Files/QRG_Dist_Files/QRG_2017/rabkina-mcfate-forbus-hoyos-2017.pdf

