
 

 

Recognizing the Goals of Uninspectable Agents 

Irina Rabkina1, Pavan Kathnaraju2, Mark Roberts3,  

Jason Wilson4, Kenneth Forbus5, Laura Hiatt6 

Northwestern University1,4,5, Drexel University2, Naval Research Laboratory3,6 

irabkina@u.northwestern.edu1, pk398@drexel.edu2, mark.roberts@nrl.navy.mil3,  

jrw@northwestern.edu4, forbus@northwester.edu5, laura.hiatt@nrl.navy.mil6 

 

 

Abstract  

Effective interaction between agents requires reasoning about 
other agents’ internal states. In some situations, such as in the 
case of multiagent systems with a shared policy, agents may 
have full knowledge of each other’s knowledge, preferences, 
and goals. When interacting with humans or independent ar-
tificial agents, however, such direct inspection is not availa-
ble. Instead, agents must model the internal states of their 
compatriots through observations of their behaviors in the 
world. In humans, such reasoning is called theory of mind 
(ToM). It has been argued that ToM reasoning can improve 
performance for artificial agents in team scenarios, as well. 
Here, we compare the performance of a model of ToM (An-
alogical Theory of Mind; Rabkina et al., 2017) with that of a 
state-of-the-art goal recognition system (Holler et al., 2018) 
on goal recognition tasks of increasingly uninspectable 
agents. We show that ToM reasoning is beneficial for agents 
when direct access to the internal states of their compatriots 
is not available. 

Introduction   

Successfully collaborating with other agents requires know-

ing their objective(s). Sometimes, this information is readily 

available such as when multiagent systems share a policy 

(e.g., Velagapudi et al., 2007) or when agents are capable of 

communication (e.g., Morgan & Pollack, 1990). However, 

when communication about internal states is imperfect or 

unavailable, agents must infer their compatriots’ objectives 

by observing external actions. This task is referred to as goal 

recognition (E-Martin, R-Moreno & Smith, 2015). The mo-

tivation of our work is creating an online software assistant 

that recognizes the goal(s) of another agent and recommends 

actions or provides information to assist the agent in com-

pleting its goals more quickly.   

 While other goal recognition systems1 exist, state-of-the-

art goal recognition systems make strong assumptions about 
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the kind of information that is available during goal recog-

nition. They typically receive an observation trace of an 

agent’s activities as a sequence of action-state pairs, includ-

ing the action’s parameters, and reconcile these actions with 

a set of known or learned possible plans to infer the plan that 

the agent is performing, and thereby its top-level goal 

(Ramírez & Geffner, 2009). Alternatively, hierarchical plan 

recognition (Geib & Goldman, 2011; Holler et al., 2018) 

reconciles the observation trace using decomposition meth-

ods that aggregate the primitive actions into high-level 

tasks.  

 Since these recognition approaches access the same infor-

mation about the observed agent’s actions that the agent re-

ceives (i.e., the recognition algorithm observes the action-

state pairs sent to the agent, including all parameters), the 

observation trace actually contains information about the in-

ternal state of the observed agent that cannot be gleaned 

from external observations alone. This type of internal in-

formation is not available when the agent is, for example, a 

human. Instead, observations of humans and other unknown 

agents consist only of external observation information, 

which is both noisy (i.e., imperfect) and incomplete (i.e., 

lacking internal information, such as action parameters). 

 Although prior research has examined the impact of noisy 

observations on goal recognition (Sohrabi et al., 2016; 

Vattam & Aha, 2015), few have examined the benefit of in-

ternal knowledge for recognition vs. the less informative 

value provided by external information.  We view this as a 

major limitation of prior work, given that such tight and syn-

chronous communication cannot always be assumed for 

multi-agent teams, especially those involving humans  

 On the other hand, the use of only external information to 

infer the mental (i.e., internal) states of another agent, in-

cluding its goals, has been studied extensively in humans 

(e.g., Premack & Woodruff, 1978) and is called Theory of 

1 We use the term goal recognition to refer to goal, plan, and task recogni-
tion systems, since all of the above are capable of recognizing the objective 
of an observed trace (i.e., the goal). 
 



Mind (ToM) reasoning. Computational models of ToM 

(e.g., Baker et al., 2011; Hiatt & Trafton, 2010; Rabkina et 

al., 2017) have shown promise in modeling human judg-

ments, but have not yet been applied to complex goal recog-

nition tasks.  

 To address this gap, we examine the extent to which in-

corporating internal knowledge, in addition to external 

knowledge, impacts goal recognition for two models: (1) a 

computational ToM model called Analogical ToM (AToM) 

by Rabkina et al. (2017) and (2) the state-of-the-art task 

recognition system PANDA by Holler et al. (2018).  We per-

form an initial demonstration of AToM’s ToM reasoning ca-

pabilities on a widely accepted ToM task, stag-hunt 

(Skyrms, 2004). We then extend to a series of more complex 

tasks in the open-world domain of Minecraft, at three levels 

of information: (1) observation trace with full internal infor-

mation, directly from the observed agent’s planner, (2) ob-

servation trace with partial internal information, from the 

agent’s execution of its plans, and (3) observation trace with 

external knowledge only, adapted from the agent’s plan ex-

ecution. When both systems have perfect internal 

knowledge, AToM is slightly worse than PANDA at recog-

nizing an agent’s goals.  However, as knowledge is reduced, 

PANDA’s performance drops while AToM degrades grace-

fully.   

 The contributions of this paper include: (1) demonstrating 

that AToM performs well at recognizing goals on a standard 

ToM task, thus establishing it as a fair baseline for state-of 

the-art ToM techniques; (2) developing a new benchmark 

for goal recognition tasks based on Minecraft; (3) demon-

strating that removing internal knowledge causes a drop in 

goal recognition accuracy in PANDA, but not AToM, which 

continues to perform near ceiling.  

AToM on Stag-hunt 

Stag-hunt (Skyrms, 2004) is a prisoner’s dilemma-style 

game that has recently been used to test ToM models’ ability 

to recognize cooperation between agents (e.g., Shum et al., 

2019; Xiong et al., 2018). During gameplay, players can 

choose to pursue a high reward (i.e., a stag) cooperatively or 

a low reward individually. ToM models are then tasked with 

recognizing whether other agents intend to cooperate. Two 

formulations of this task exist: (1) the ToM model is a player 

in the game (e.g., Microsoft’s Malmo Collaborative AI 

Challenge2) and (2) the ToM model is an observer, making 

judgments about other players (e.g., Shum et al., 2019). For 

direct comparison with a computational cognitive model of 

ToM (i.e., Bayesian ToM, BToM; Shum et al., 2019), we 

take the latter formulation.  
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 The stag-hunt task is similar to goal recognition, to the 

extent that observed agents have an underlying goal to co-

operate (or not). However, the observations typically consist 

only of movements on a small grid. Furthermore, coopera-

tion is assumed to be a shared goal between two agents.  

 By showing that AToM is as accurate as both humans and 

BToM on this task, we aim to show that it is competitive on 

tasks that are specifically designed to test ToM reasoning. A 

full discussion of this work can be found in Rabkina & For-

bus, 2019. 

Stag-hunt Task Description 

For direct comparison, we use the stag-hunt dataset de-

scribed by Shum et al. (2019). Recall that the goal of this 

formulation of the stag-hunt task is to recognize cooperation 

between observed agents. Agents can cooperate to catch a 

high-value target (i.e., a stag) or work individually to catch 

a low-value target (i.e., a hare).  

 The dataset from Shum et al. (2019) consists of nine ex-

amples of the stag-hunt game, each on a partially traversable 

7x5 grid map (Figure 1). Each example contains three hunt-

ers, two stags, and two hares. Stags can be captured via co-

operation by two or three hunters for a high number of 

points; hares must be captured by a single hunter for a lower 

number of points. Three timesteps are simulated per exam-

ple. Cooperation predictions are made at the end of each 

timestep.  

Stag-hunt Results 

AToM’s accuracy in recognizing intended cooperation be-

tween agents in the stag-hunt game can be found in Figure 

2. We also report the accuracy of BToM and humans (both 

Shum et al., 2019) for comparison. BToM made decisions 

over a model of team hierarchies, while AToM learned to 

identify cooperation via leave-one-out cross-validation (see 

Rabkina & Forbus, 2019 and Approach, below). 

 Note that at all timesteps, the two models and humans do 

not differ (all p>0.05). This suggests that both AToM and 

 

Figure 1. An example stag-hunt scenario. Agents A and C have 

cooperated to capture a stag, while agent B has acted alone to 

capture a hare. Figure adapted from Shum et al. (2019). 



BToM successfully model human judgments on this task 

and are competitive with each other in terms of accuracy. 

Agent Simulation in Minecraft 

We define a problem space in the open-world game Mine-

craft (see Roberts et al., 2016 for a description of the game 

and the supporting framework we leverage, and Johnson et 

al., 2016 for information on Minecraft’s Malmo platform for 

AI experimentation). An agent, Alex, is placed in a flat 

Minecraft world with a small farm in the middle and items 

randomly distributed around the perimeter. These include 

crop seeds, bone meal, chickens, cows, buckets of milk, 

eggs, and sugar. After a period of exploring, Alex chooses a 

goal that will maximize its food points, given the items it 

has observed. We use Minecraft’s internal food points3 sys-

tem for value calculations, shown in the left column of Table 

1. The goal recognition systems must recognize which goal 

Alex is pursuing. We assume that it pursues one goal at a 

time (i.e., no interleaved goals).  

 Many of Minecraft's crafting tasks have natural hierar-

chical structures. For example, crafting bread requires three 

wheat, and wheat is grown and harvested using wheat seeds. 

Growth can additionally be sped up using an item called 

bone meal. Due to these natural hierarchies, the agent’s be-

haviors are defined using Hierarchical Task Networks.  

Hierarchical Task Networks 

Hierarchical Task Networks (HTNs; Erol, Hendler, & Nau, 

1994) provide a way to encode hierarchical plan knowledge. 

We define an HTN planning model as a tuple 𝐷 = (𝑀, 𝑇), 

where 𝑀 is a finite set of methods and 𝑇 is a finite set of 

primitive and compound tasks. Primitive tasks are executa-

ble actions with preconditions and effects. Compound tasks 
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are more abstract and are composed of compound or primi-

tive tasks.  Methods are used to decompose compound tasks 

into a sequence of other tasks. 

 An HTN planning problem 𝑃 = (𝐷, 𝑠0, 𝕋 ) is a tuple, 

where 𝐷 is an HTN planning model, 𝑠0 is an initial state, and 

𝕋 is a list of non-primitive tasks, where 𝑇 ⊆  𝕋. A solution 

to 𝑃, 𝜋 = < 𝑎0, 𝑎1, … , 𝑎𝑛 >, is a plan where each action 𝑎𝑖 

corresponds to a primitive task, 𝜋 completes all tasks in 𝕋, 

and there exist no compound tasks in 𝕋.   An HTN planner 

constructs this plan using the methods defined in the domain 

to decompose tasks in 𝕋 into a sequence of actions. In this 

work |𝕋| = 1, since the agent pursues only one goal at a 

time. 

HTN Planning and Execution in Minecraft 

We used the HTN planner SHOP2 (Nau et al., 2003) to gen-

erate plans for an agent to execute in the Minecraft environ-

ment. Planning with SHOP2 requires two components of 

knowledge: state model and HTN planning model. The state 

model used by SHOP2 defines the Minecraft game state as 

a set of first-order predicates. These predicates can have 

both numerical and symbolic arguments. More specifically, 

the state model contains information about the inventory of 

the agent, such as items in inventory and location of items 

in the hotbar. This model also contains information about 

entities and locations the agent has observed, and infor-

mation about the agent itself, such as its current location and 

view location. An example of the state model is {(en-

tity_at cow123 loc123), (inventory_count 

wheat_seeds 10)}. 

 The HTN planning model contains primitive and com-

pound tasks that the agent can do in the environment. Spe-

cifically, we categorize primitive tasks in the HTN domain 

model into the following: movement, look, item selection, 

item crafting, and item gathering. We also categorize com-

pound tasks into top-level tasks and helper tasks. Top-level 

tasks are objectives that the agent directly wants to pursue 

(such as making pumpkin pie and cake). Helper tasks are 

Table 1. Minecraft Model for Planning with SHOP2 

Top-Level Tasks  

(Food Point Values) 

Helper Task 

Categories 

Action 

Categories 

Obtain Chicken (2) Crafting Items Movement 

Obtain Beef (3) Gathering Items Look 

Obtain Pumpkin Pie (8) Growing Crops Item Selection 

Obtain Cake (14) Using Inventory Item Item Crafting 

Obtain Carrot (3)  Item Gathering 

Obtain Potato (1)   

Obtain Bread (5) 

 

 

Figure 2. A comparison of AToM, BToM, and human accu-

racy on cooperation recognition in stag-hunt, per time step.  



those that the agent does in order to complete top-level tasks. 

Helper tasks can be categorized into crafting items, gather-

ing items, growing crops, and consuming/using items in in-

ventory. These categorizations are summarized in Table 1. 

An example of a plan generated by the SHOP2 planner for 

obtaining beef would be: {(move-near-entity 

cow123), (look-at-entity cow123) (select 

iron-sword) (attack cow123) (gather beef)}. 

 Plans generated by the SHOP2 planner are used by an 

agent to construct executable actions in Minecraft. At a high 

level, a plan is parsed and converted into an executable se-

quence of actions (i.e., an executable plan). This executable 

plan is then executed in the Minecraft environment to com-

pletion. However, the behavior can be different for crafting-

related tasks if the agent does not have the necessary items 

in inventory to craft. Specifically, if the items have been ob-

served in the environment, but are not in the agent’s inven-

tory, it constructs a plan to retrieve them. If items have not 

been observed in the environment, the entire plan is ignored. 

Once all items have been retrieved, the agent then replans to 

get a new plan for crafting the item. Replanning makes sense 

here because the agent may observe items for more im-

portant objectives while retrieving items for crafting. In this 

case, during replanning, the agent should execute the more 

important objective. 

Approach 

We compare the goal recognition accuracy of a model of 

human ToM reasoning (AToM; Rabkina et al., 2017) with 

the performance of a goal recognition system (Holler et al., 

2018) to show the strengths and weaknesses of each when 

reasoning about other agents. We describe these systems 

here. 

Planning and Acting in a Network Decomposition 

Architecture (PANDA) 

Similar to the work by Holler et al. (2018), we use the Plan-

ning and Acting in a Network Decomposition Architecture 

(PANDA; Bercher, Keen, & Biundo, 2014) as an off-the-, 

shelf HTN planner for planning as goal recognition. 

PANDA is a hybrid planning algorithm, which combines 

HTN planning concepts with partial-order causal link plan-

ning. We refer to HTN planning for plan and goal recogni-

tion using PANDA, as PANDA-REC.  

 At a high level, PANDA-REC takes as input a sequence 

of actions and an HTN planning model and converts the 

planning model into a model for goal recognition. This 

model is then passed into PANDA, and the recognized goal 

is extracted (i.e. a single top-level task). We chose to use 

PANDA for the goal recognition task, rather than SHOP2, 

because code for the conversion process was readily availa-

ble. Note that that this approach (i.e., using PANDA for goal 

recognition) is currently state-of-the-art (Holler et al., 2018). 

Analogical Theory of Mind (AToM) 

We use the Analogical Theory of Mind model (AToM; Rab-

kina et al., 2017) as a model of theory of mind (ToM) and 

apply it to the task of goal recognition. The central claim of 

AToM is that ToM occurs through analogical processes. It 

is implemented using the analogy stack in the Companion 

cognitive architecture (Forbus & Hinrichs, 2017). AToM is 

trainable and does not require an HTN to recognize goals. 

 We treat goal recognition as a classification problem for 

AToM. Using the Sequential Analogical Generalization En-

gine (SAGE; McLure et al., 2015), a generalization pool is 

learned for every potential goal type. Intuitively, a generali-

zation pool is a model, learned from previous observed 

traces, of the goal it represents. It consists of individual and 

generalized cases; here, a case consists of the trace of the 

agent accomplishing the given goal. Depending on the ex-

perimental condition (see Experiments, below) this may be 

the output of the SHOP2 planner, a report of the agent’s ac-

tual actions, or sensor-like observations of those actions. 

 During training, cases are passed to SAGE one at a time. 

If one exists, the most similar previously observed case is 

retrieved via MAC/FAC (Forbus, Gentner & Law, 1995). 

We refer readers to the original paper for specifics of the 

retrieval algorithm. Importantly, however, MAC/FAC com-

putes a structural similarity score between the original case, 

o, and the retrieved case, r. At a high level, this score rep-

resents the amount and depth of overlapping structure be-

tween o and r (see Forbus et al., 2016 for algorithm and im-

plementation details). If the structural similarity score is 

above a preset threshold (the default value of 0.8 is used in 

the present work), the two cases are merged into a general-

ization, g, which is assimilated back into the generalization 

pool (see McLure et al., 2015).  

 Generalizations contain frequentist probabilities of the 

facts contained in their constituent cases. For example, if a 

generalization contains a case with the facts {(movesTo 

cow123), (swingsAt cow123)} and another with the 

facts {(movesTo cow456), (throws cow456)}, the gen-

eralization would contain the fact that a cow is being moved 

to with a probability of 1.0 and that it is being swung at and 

thrown each with probability 0.5. As more cases are added 

to the generalization, the probabilities are updated. Eventu-

ally, facts with probabilities below a preset threshold (the 

default value of 0.2 is used in the present experiments) fall 

out of the generalization. Thus, a generalization can be 

treated as a schema for a given type of case. 

 If the similarity score between o and r is not above the 

threshold needed to form a generalization, o is added to the 



generalization pool as an individual example. Note that gen-

eralizations are treated as cases for the purposes of retrieval 

and r may itself be a generalization. 

 During testing, MAC/FAC is once again used for re-

trieval. However, retrieval occurs across all generalization 

pools. The pool from which r is actually retrieved is as-

sumed to represent the agent’s goal in o. 

Experiments 

The objective of our experiments is to compare different 

ways to infer an agent’s goals given different types of ob-

served sequences of actions. Specifically, we extract se-

quences of actions (i.e., traces) from both planner output and 

agent action executions in Minecraft. We then compare 

AToM with PANDA-REC described in the Approach sec-

tion above.  

 All traces used in our experiments were extracted from 

Minecraft play sessions logs. A play session corresponds to 

an agent being placed on a map and executing top-level 

tasks from Table 1 for a predefined amount of time. From 

this session, a single log is generated and consists of all plan-

ner output and executed actions of an agent throughout the 

session. 

 We constructed a dataset of play session logs by having 

an agent play 10 pseudo-randomly generated maps 5 times, 

with simulations running for 180 seconds each. Once the log 

dataset was constructed, we randomly extracted datasets of 

100 plan traces (i.e. planner output) and 100 action execu-

tion traces. Note that obtain_carrot did not appear in the ac-

tion execution trace dataset.  

 Two random baselines were computed for each experi-

ment. The first generated its interpretation of the agent’s 

goal by sampling uniformly across goals that appear in the 

dataset. The second was biased, with each potential goal 

weighted by its prevalence in the dataset. All results are re-

ported in Table 2. Where available, standard deviations are 

reported in parentheses. The highest accuracy for each test 

is bolded. 

How well do PANDA and AToM perform on plan 

traces (full internal information)?  

The first experiment focuses on recognition of goals when  

the list of executable actions generated by the planner (in 

this case, SHOP2) is directly observable. We note that these 

plans are direct internal information about an agent, as plans 

are constructed by the agent internally, converted into 

actions that can be executed, and then executed in an 

environment. In this experiment, PANDA-REC was 

provided the HTN model used by SHOP2 while AToM 

learned from SHOP2 outputs via 10-fold cross-validation. 

 PANDA-REC was 100% accurate in recognizing goals 

based on the SHOP2 planner’s output. This fit our intuition, 

as PANDA-REC is given the HTN planning model used by 

the SHOP2 planner. AToM performed worse, with 92% ac-

curacy. Both systems performed substantially better than the 

uniform and biased baselines.  

How well do PANDA and AToM perform on exe-

cution traces (partial internal information)? 

Planner traces provide perfect information about the plans 

being attempted. However, the execution of a plan is rarely 

perfect, and may not correspond exactly to a plan.  In this 

experiment, PANDA-REC and AToM were tested on goal 

recognition using the agent’s report of its actions. We note 

that some of these actions (i.e. move and look at) contain 

internal information about the agent.  PANDA-REC was 

provided an HTN model corresponding to the executed ac-

tions (HTN-EXEC), while AToM once again learned the 

model through training. As before, AToM was trained via 

10-fold cross-validation. 

 PANDA-REC’s accuracy dropped substantially when 

working from agent actions but remained above both base-

lines. It performed at 63% accuracy. AToM’s performance 

did not change significantly from the planner traces outputs. 

It maintained 90% accuracy. 

Table 2. Results for Goal Recognition Experiments 

 PANDA-REC AToM Uniform Baseline Biased Baseline 

SHOP Traces 1.0 0.92 (0.075) 0.14 0.226 

Execution Traces 0.63 0.90 (0.077) 0.167 0.237 

Train Exec / Test Ext. 0.30 0.90 ( --- ) 0.167 0.237 

Train & Test Ext. 0.63 0.88 (0.98) 0.167 0.237 

 



How sensitive are PANDA and AToM to external 

knowledge traces? 

In many multi-agent scenarios, communication is limited or 

impossible. Instead, agents must reason based only on their 

own observations of compatriots’ behavior without internal 

state. In this experiment, we removed information about the 

parameters of actions.   Thus, traces consisted only of what 

could be observed externally (e.g., that the agent is moving 

in a certain direction, but not where it is going) and lacked 

internal state (e.g., the target of the movement).  

 We tested PANDA-REC and AToM’s sensitivity to ex-

ternal knowledge traces under two conditions: (1) with a 

model that includes internal information from agent traces 

and (2) with a model that only includes external information. 

For (1), PANDA-REC was given the action execution HTN 

model (i.e., HTN-EXEC) used in the previous experiment. 

AToM learned a model using the whole execution trace da-

taset. For (2), PANDA was given a modified action execu-

tion HTN model (HTN-TOM), which did not contain inter-

nal information, and AToM was trained using 10-fold cross-

validation, as in previous experiments. 

 When tested on the external knowledge-only traces using 

the HTN-EXEC model, PANDA-REC’s performance 

dipped again to 30% accuracy. However, when tested using 

the HTN-TOM model, it performed as well as it had when 

using HTN-EXEC on execution traces (i.e., 63% accuracy). 

AToM performed equivalently across tasks: 90% accuracy 

when trained on execution traces and 88% accuracy when 

trained on external knowledge-only traces. 

Discussion and Future Work 

For these Minecraft recognition tests, AToM outperformed 

PANDA-REC on goal recognition conditions when given 

partial internal information or external information only. 

This is the hallmark of human ToM reasoning, which AToM 

models. Thus, our results suggest that ToM reasoning in 

general, and ToM reasoning via AToM in particular, can 

help agents reason about others.  

 The chief claim of AToM as a cognitive model is that 

ToM reasoning and development occur via analogical pro-

cesses. Here, those same processes allow AToM to robustly 

reason about the internal states of agents, without direct 

knowledge of those states. Specifically, analogy allows 

AToM to make inferences based on its previous observa-

tions. For example, if it has learned that agents walk up to 

cows before slaughtering them (e.g., from agent action 

traces), it can infer that the object the agent was walking to-

ward before slaughtering it (e.g., in an anonymized agent 

action trace) was also a cow. Furthermore, analogy’s focus 

on structure makes retrieval with complete object uncer-

tainty possible. That is, if all objects were removed from a 

trace, AToM would guess that throwing something at the 

ground and later harvesting something else is a planting 

task—perhaps mistaking obtain_potato for ob-

tain_carrot, but not obtain_beef. It remains to be seen 

whether other ToM models can do similar reasoning. 

 From a practical standpoint, one disadvantage of AToM, 

as compared to PANDA-REC, is its need to be trained. 

When recognizing from planner output, PANDA-REC was 

able to use the planner. While the model did need to be mod-

ified further for the other conditions, training data was never 

necessary.  On the other hand, PANDA-REC has the disad-

vantage of requiring a hand-crafted model. 

 Interestingly, the generalizations learned by AToM were 

often similar to the individual plans in PANDA-REC’s 

model. This suggests that the models used by PANDA-REC, 

when converted to cases of a format similar to observation 

trace outputs, may be sufficient to populate AToM’s case 

library. That is, explicit training may not be necessary. Al-

ternatively, the AToM model might provide insights into 

learning, rather than hand-crafting, the PANDA model.  We 

will explore these possibilities in future work.  

 More generally, we would like to give agents the ability 

to not only recognize compatriots’ goals, but also to change 

their own behavior accordingly. This requires online goal 

recognition that is accurate while reasoning from partial data 

(i.e., before the compatriot finishes its task). PANDA-REC 

can be configured to make a recognition decision prior to 

seeing a complete plan trace (Holler et al., 2018). However, 

the computations for this can become too slow for online 

recognition. On the other hand, analogical retrieval allows 

AToM to be relatively fast. It remains to be seen whether 

AToM can maintain accuracy with partial traces. It is likely 

that other components of ToM reasoning (e.g., about 

knowledge and desire states) will need to be integrated in 

order to increase robustness of AToM’s predictions from 

partial traces. We will explore applications of PANDA-REC 

and AToM to online goal recognition in future work. 

Related Work 

Goal Recognition is the process of inferring the top-level 

goal of a partial plan executed by an agent (E-Martin, R- 

Moreno, & Smith, 2015) and has been extensively applied 

to games. For example, Gold (2010) uses an Input-Output 

Hidden Markov Models (Bengio & Fransconi, 1994) to rec-

ognize player goals from low-level actions in a top-down 

action adventure game. Ha et al. (2011) uses a Markov 

Logic Network (Richardson & Domingos, 2006) to recog-

nize goals in the educational game Crystal Island. Min et al. 

(2014) and Min et al. (2016) use deep learning techniques 

(i.e., stacked denoising autoencoders, Vincent et al., 2010; 

and Long Short-Term Memory, Hochreiter and Schmidhu-

ber 1997) to also recognize goals in Crystal Island. In con-



trast, we apply goal recognition to Minecraft. Goals in Crys-

tal Island are tied to the narrative. However, Minecraft does 

not have a narrative and has an undefined number of possi-

ble goals. 

 Plan recognition (Schmidt, Sridharan, & Goodson, 1978), 

the sibling problem to goal recognition, entails finding the 

set of plans and goals an agent is believed to be pursuing 

given some observed sequence of actions. One way to view 

plan recognition is presented in the seminal theoretical work 

by Kautz and Allen (1986). In particular, they viewed plan 

recognition as a form of McCarthy’s circumscription (1980) 

and represented the plan library in the form of a plan hierar-

chy/graph. Other work viewed plan recognition as a form of 

parsing using a formal grammar that defines a set of possible 

plans that can be executed by an agent. Such grammars in-

clude Context-Free Grammars (CFGs; Villain, 1990), Prob-

abilistic Context-Free Grammars (Pynadath & Wellman, 

2000), plan tree grammars (Geib & Goldman, 2009), Plan 

Frontier Fragment Grammars (Geib, Maraist, & Goldman, 

2008; Geib & Goldman,  2010), and Combinatory Catego-

rial Grammars (Geib, 2009; Geib & Goldman, 2011). 

 Other techniques viewed plan recognition as planning. To 

the best of our knowledge, the first work to do this was by 

Ramirez and Geffner (2009). Specifically, this approach 

used off-the-shelf classical planners to solve the plan recog-

nition problem. The main advantage of this approach is that 

it only requires a model of the domain’s actions. Other 

works that follow this view include Ramirez and Geffner 

(2010), and Sohrabi, Riabov, and Udrea (2016).  

 Our work focuses on applying the work by Holler et al., 

(2018) to goal recognition in Minecraft. Their work outlines 

a technique that uses off-the-shelf Hierarchical Task Net-

work (HTN; Erol, Hendler & Nao, 1994) planning to recog-

nize plans and goals. Unlike prior plan recognition as plan-

ning approaches, this does require a plan library. 

 While there are many different approaches to plan and 

goal recognition in the literature, this work aimed to provide 

an initial study comparing AToM to goal recognition. There 

is currently another study being done on applying Combina-

tory Categorial Grammar plan recognition to the traces pre-

sented in the experiments. As such, we aim to look at the 

remaining plan and goal recognition algorithms presented in 

this section for future work. 

Conclusion 

In this work, we have analyzed the performance of two sys-

tems on goal recognition as availability of internal infor-

mation changes. We found that, while the state-of-the-art 

goal recognition system (Holler et al., 2018) performs at 

100% accuracy when outputs from the observed agent’s 

planner (i.e., perfect internal information) are available, its 

performance decreases significantly when only agent ac-

tions or observations (i.e., external information) are availa-

ble. On the other hand, the system that models human theory 

of mind reasoning (Rabkina et al., 2017), maintains accu-

racy at approximately 90% as availability of internal infor-

mation changes. These findings suggest that incorporating 

theory of mind when reasoning about other agents’ internal 

states can lead to better understanding, which may lead to 

better interactions between agents. 
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