
Abstract 

Qualitative decision-making aims to make the for-
mulation of decision problems involving continuous 
aspects of the world automatic.  This paper proposes 
the idea of qualitative resource models, which can 
be used to rule out potential options and provide 
ranking information about alternatives from the per-
spectives of the resources they require.  Two kinds 
of scenarios are used to illustrate these ideas, de-
fense in a strategy game and figuring out what to do 
about dinner.   

1 Introduction 
Decision-making is one of the key problems that intelligent 
agents face, whether operating autonomously or in a support-
ing role with human collaborators.  In most decision-making 
research, the focus is on how to make decisions, often focus-
ing on optimality.  In qualitative decision-making (Forbus & 
Hinrichs 2018; 2019), the goal is to use ideas from qualitative 
reasoning to provide representations that enable systems to 
formulate their own decision problems, when there are con-
tinuous aspects to be considered.  Arguably any AI system 
capable of generating multiple plans to achieve a goal can be 
said to make decisions, but how should the alternatives in 
those decisions be evaluated?  Often they involve factors that 
can be considered as continuous, such as costs in time, 
money, or other material.  Moreover, the situations that 
agents are faced with are often only partially specified, espe-
cially when planning for the future.  In addition, exact models 
and data are rarely available in everyday circumstances.  
These reasons suggest that qualitative representations of con-
tinuous aspects of decision-making can potentially provide a 
valuable service in reasoning.   
 This paper extends our prior work on qualitative decision-
making with the idea of qualitative resource models.  Every 
alternative considered in a decision involves some form of 
costs, in terms of resources.  Qualitative resource models 
make such costs explicit and represent causal relationships 
among the parameters of the decision problem, in order to 

 
1 The NextKB knowledge base uses the OpenCyc ontology, 

and its documentation provides an introduction to its conventions 

support reasoning about alternatives with minimal infor-
mation.  We begin by describing qualitative resource models, 
including how they provide a layer over events, actions, and 
other conceptual structures used to describe alternatives.  
This includes both continuous resources and discrete re-
sources.  The role of investments, i.e. activities undertaken to 
improve the set of available resources, is also discussed.  
Next we illustrate resource models with two extended exam-
ples.  The first consists of deciding how to defend a city under 
attack in a strategy game.  The second consists of deciding 
what to do about dinner, an everyday decision which has be-
come more fraught during the pandemic.   

2 Qualitative Resource Models 
A resource is something that is used to carry out an action or 
event A.  We follow the standard definitions of a consuma-
ble resource being something that is used up and a durable 
resource being something needed in an event or action but 
persists after its use.  In baking, for example, the flour that 
went into a recipe is a consumable resource and the oven 
used is a durable resource.    The costs of A in consumable 
resources consist of a set of quantities, one per consumable 
resource.  We use the conventions of (Forbus & Hinrichs 
2019) for representing costs.  For example, a representation 
of the typical costs of dinner at a fancy restaurant can be de-
scribed as 
(valueOf-Type (CostFn Money) 
              DinnerNiceRestaurant 
              (Dollar 50 100)) 
(valueOf-Type (CostFn Time) 
              DinnerNiceRestaurant 
              (Hour 2 6)) 
That is, events that are instances of the concept of having 
dinner at a nice restaurant cost between $50-$100 and they 
last between 2-6 hours.  (We use the OpenCyc conventions1 
that units, here Dollar and Hour, are represented via logi-
cal functions, which with two arguments indicates an inter-
val and with one argument indicates a specific value.) 

and tools for using it: https://www.qrg.northwestern.edu/nextkb/in-
dex.html 
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Type-level qualitative models (Hinrichs & Forbus, 2012) 
are useful for reasoning abstractly, and enable the expres-
sion of general causal models, e.g.  
(qprop+TypeType (CostFn Money) 
                (CostFn Time) 
   DinnerNiceRestaurant DinnerNiceRestaurant 
   same) 
That is, the longer a dinner at a nice restaurant takes, the 
more expensive it is likely to be.   

Type-level models of costs can be derived from statistics 
gleaned from particular instances of events (Hancock et al. 
2018).  The instance-level relation connecting a specific flu-
ent for a quantity of an event to its value is valueOf.  For 
example, a specific dinner that has already occurred, D1, 
might lead to recorded costs such as 
(valueOf ((CostFn Money) D1)(Dollar 75)) 
(valueOf ((CostFn Time) D1)(Hour 3)) 
As usual in qualitative reasoning, we often will not know 
specific values.  There are several notions of value, in addi-
tion to intervals as introduced so far, that are useful in quali-
tative decision-making.  The first are ordinal relations.  We 
might not know the specific cost of dinner D2, but know 
only 
(greaterThan ((CostFn Money) D2) 
             ((CostFn Money) D1)) 
 
The second kind of qualitative value are stratified values.  
Order of magnitude representations (e.g. Agell et al. 2006) 
are one example of stratified values.  Another are common 
named ranges.  Some of these are defined in terms of spe-
cific intervals, e.g. TensOfMinuteDuration, Several-
HoursDuration from OpenCyc.  Others provide relative 
values.  For example, there is no specific interval associated 
with either of the OpenCyc values of Inexpensive and 
Expensive, but their relative ordering is known.   
 Durable resources, as noted above, are resources used by 
an alternative but not consumed during that usage.  Space is 
an example of a durable resource. For cooking a meal, for 
example, the burners on a stove are a commonly used dura-
ble resource whose availability shapes events. The AI plan-
ning literature addresses the assignment of durable re-
sources.  They are of interest here mainly because invest-
ment decisions often involve adding durable resources, e.g. 
buying a new piece of kitchen equipment.   
 Resources are a bridge between constructs used to design 
behavior and those actions and events used to implement 
said behaviors.  Possible behaviors, which form alternatives 
to decide among, are constructed by planning.  For example, 
one might consider eating dinner at a food truck versus a 
nice restaurant.  For any alternative A, we assume a set of 
events {E} which constitute A and whose costs define the 
cost of A.  Unsurprisingly, money costs are additive, e.g. 
(c+TypeType (CostFn Money) (CostFn Money) 
   DecisionAlternative Event 
   subEvent)  
(c+TypeType is the type-level version of c+, which in QP 
theory provides a term for the sum that constrains a quan-
tity.) Time costs can be additive as well, if the subevents are 

strictly sequential.  We will assume this to be the case here 
for simplicity.   

2.1 Decisions and alternatives 
We consider a decision to consist of a set of alternatives, 
one of which needs to be chosen in order to make that deci-
sion.  Decisions can have associated constraints indicating 
requirements for success.  Deadlines are a common form of 
constraint, e.g. money must arrive in a bank account before 
it can be spent.  Alternatives for a decision that violate a 
deadline may be ruled out, e.g. if an expense will be billed 
tomorrow, then mailing a check to a bank in another country 
is unlikely to be an effective way to deal with the situation.  
Stratified values can often rule out alternatives, e.g. some-
thing mailed typically takes several days to arrive, which is 
longer than one day.   
 Traditional decision-making often involves optimization, 
seeking the best alternative.  The use of qualitative represen-
tations for costs means that relative costs can sometimes, 
but not always, be determined. This degree of ambiguity 
means that qualitative decision-making will not always be 
able to identify an optimal solution, but it does provide the 
factors that need to be considered if a more quantitative 
model needs to be constructed. 

2.2 Investment Decisions 
 Investment decisions involve actions or events aimed at 
improving an agent’s resources, so that its other activities 
are more efficient and/or effective.  In strategy games, for 
example, building installations or units is a form of invest-
ment, as is researching new technologies, which in turn ex-
pand the range of capabilities an agent has.  We organize the 
set of capabilities around the idea of functional subsystems 
(Forbus & Hinrichs, 2019), e.g. a household might have a 
living space system consisting of the rooms that the partici-
pants live in, a financial system consisting of the finances of 
its participants, and a cooking system, the equipment availa-
ble for food preparation.  Deciding whether or not to buy a 
microwave oven, for example, may involve examining the 
typical activities conducted in the household to estimate 
how much that investment might improve them.   
 Shared resources means that decisions can interact.  The 
decision to purchase a microwave oven, for example, means 
those funds are not available to repair the bathroom.  Re-
source models provide a common perspective that identifies 
such potential interactions between decisions, due to shared 
influences on cost quantities. 

2.3 Modeling an Agent’s Activities 
Understanding what might make a good investment requires 
knowing about the intended mix of future activities.  How 
can the mix of activities of an agent or an organization to be 
modeled?  First, we need conventions for representing activ-
ities.  AI architectures have used several constructs for this.  
The most common are plan representations, e.g. Hierar-
chical Task Network (HTN) tasks (Georgievski & Aiello, 
2015).  These ground out in primitive actions, each of which 
has one or more associated type of event associated with its 



execution.  Thus the resource model for an instance of an 
HTN task network reduces to the resource model for the 
constituent events associated with their primitive actions.  
For example, in NextKB, the Freeciv primitive action do-
Move is understood to be representable in terms of instances 
of the Movement-TranslationEvent concept. High-level 
procedural representations, e.g. (Morley & Meyers, 2004) 
ground out similarly.  We assume an agent records instances 
of task/procedure executions, including in those records the 
events that they caused.   
 We propose that the SAGE model of analogical generali-
zation (McLure et al. 2015) can be used to learn models of 
the mix of an agent’s activities from experience.  SAGE as-
sociates a generalization pool with each concept to be 
learned.  These generalization pools incrementally accumu-
late examples, constructing and maintaining a set of general-
izations and outliers representing its model of that concept.   
The accumulation process uses analogical retrieval (Forbus 
et al. 1995) to find the closest prior example or generaliza-
tion when a new example is added.  If the new example 
matches something sufficiently similar (as measured via the 
Structure-Mapping Engine (SME; Forbus et al. 2017)), they 
are assimilated.  That is, if the retrieved item is an example, 
the structural alignment SME computes is used to initialize 
the generalization, with aligned facts having probability 1.0 
and non-aligned facts having probability 0.5.  If the re-
trieved item is a generalization, the probabilities associated 
with the aligned facts are updated accordingly.  Thus, each 
generalization is a probabilistic relational schema, where the 
probability of each statement is the frequency with which 
something matching it appeared in that very similar set of 
examples.  A generalization pool can have multiple general-
izations, thereby providing a means of modeling disjunctive 
concepts.  Examples not added to any generalization consti-
tute outliers, at least relative to the system’s experience at 
that point. 
 Activities involve functional subsystems, e.g. finding din-
ner might be solved via the activity of cooking a meal, 
which uses the kitchen system.  Similarly, defending a city 
might be solved by adding military units to it, which uses 
the military system.  Thus the sets of activities an agent is 
involved in provides information as to how its systems are 
used.  SAGE generalizations track the number of instances 
that have been assimilated into them, and by analyzing these 
statistics across a generalization pool, the relative usage of 
systems can be estimated.  This provides information that 
can be used to prioritize investments, since frequently used 
systems are more likely to be worth improving.  This is es-
pecially true if activities involving them have been less than 
successful – again, something that can be tracked via 
SAGE’s probabilities, assuming the success and failure of 
particular activities is recorded. 
 To explore how these ideas might play out in decision-
making, we next examine two extended examples, one from 
a strategy game, and one from everyday life. 

 
2 We are ignoring the maintenance costs of units here, which 

consume production points from their home city. 

3 Defending a City in Freeciv 
Strategy games like Freeciv, an open-source version of Civi-
lization 2, provide useful testbeds for exploring decision-
making for several reasons.  First, they involve multiple in-
teracting factors, thereby forcing players to consider 
tradeoffs, e.g. the classic guns/butter tradeoff in economic 
improvement versus military strength.  Second, they are 
constructive, requiring players to build cities, improve ter-
rain, and do research to improve capabilities.  Thus they 
provide a good testbed for investment decisions as well. 
 Here we examine a problem that comes up routinely in 
such games, namely defending a city from enemy attacks.  
The tactic for handling this problem is called DefendingA-
Position in our system.  Invoking this tactic introduces a 
new decision, namely which of several possible alternative 
sub-tactics should be used to address it.  For DefendingA-
Position, these include: 

1. DefendByReinforcement: Move a military unit 
into the city. 

2. DefendByBuilding: Use the city’s production ca-
pacity to create a new military unit.  This can take 
a few turns or many, depending on what is being 
built.   

3. DefendByBuying: By paying gold, production can 
be sped up to a single turn. 

Each of these sub-tactics are implemented in turn via taking 
actions, which if taken will give rise to events, each of 
which should have statements contributing to qualitative re-
source models.  Let us examine what these models should 
be.  Since DefendByReinforcement is reassigning an exist-
ing unit, its only cost is movement time2: 
(qprop+TypeType (CostFn Time) (DistanceFn path) 
        Movement Movement same) 
That is, the time cost depends on the distance for the path 
involved in moving the unit into the city.  Different units 
move at different rates, so a more complete model must take 
this factor into account as well.  For DefendByBuilding, the 
time cost is the number of turns required to build the object, 
a parameter that can be measured directly from the underly-
ing simulation: 
(qprop+TypeType (CostFn Time) 
      (MeasurableQuantityFn numTurnsToBuild) 
      CreationEvent FreeCiv-City doneby) 
The DefendByBuying tactic trades money for time: 
(qprop+TypeType (CostFn Money) 
      (MeasurableQuantityFn numTurnsToBuild) 
      Buying FreeCiv-City doneBy) 
That is, the further an improvement is from completion, the 
more money must be spent to finish it.  
 The circumstances in which DefendingAPosition is in-
voked can lead to additional constraints.  Some strategies 
pre-position defending units in cities even in peacetime.  
This represents both an opportunity cost, i.e. not building 
economic improvements, and depending on the type of gov-



ernment the civilization is under, a decrease in citizen hap-
piness.   Other strategies only add defenders when a war 
breaks out, or when an attacker is detected on their way to a 
city.  For tactics where the cost is time, that time must be 
smaller than the arrival time of the attackers.  For De-
fendByBuying, the danger is bankruptcy, where improve-
ments and military units are sold off to pay debts.  Thus if 
multiple cities are under attack, the tradeoffs between these 
strategies must be considered carefully.  
 

4 Investments in Cooking 
Households in modern societies have several categories of 
activities they can use to have dinner.  Abstractly, these in-
clude eating at a restaurant, getting takeaway food, and cook-
ing.  Each of these broad solutions have variations, such as 
dining at a nice restaurant versus a food truck, or shopping 
for high-quality ingredients and preparing multiple dishes, 
versus microwaving pre-packaged food.  The relative fre-
quency of these activities will vary from household to house-
hold, of course, and within the same household over time.  
We assume that, in the household participants’ experiences, 
they have robust generalizations for both the broad categories 
of activities as well as the more specific subcategories (e.g. 
picking up BBQ at Hecky’s).  A high-income household that 
prioritizes work activities might have a heavily refined set of 
models for restaurant dining and takeaway, with relatively 
sparse models for cooking.  On the other hand, a household 
that prioritizes saving money probably will have robust mod-
els for different solutions involving cooking, and relatively 
fewer restaurant and takeaway models.   
 The Covid-19 pandemic provides examples of how peo-
ple’s routines were upended, forcing them to come up with 
other ways to, among other things, find dinner.  During lock-
downs, restaurant dining was no longer an option, and some 
extreme lockdowns in some countries even forbade takeaway 
service. Whatever preferences households had before, with 
lockdowns, cooking (and in many places, takeaway) service 
suddenly gained higher priority.   This change in priority, we 
assume, provides a signal to consider investments that could 
improve the efficiency and/or effectiveness of the newly pri-
oritized activities.  Thus households that ignored or neglected 
their kitchen systems previously found themselves consider-
ing how they might improve them.  There is evidence that this 
is the case.  In the US, for example, sales of bread makers 
rose by over 600%, electric pasta maker sales rose by 462%, 
soda machines sales rose by 283%, and deep freezers sales 
rose by 45% in 20203.  This was, of course, for high-income 
households, which also had the option of simply relying on 
far more takeaway, leading to massive increases in orders 
through food delivery services.   
 One factor in these investment decisions is space.  Kitchen 
appliances must be stored somewhere when not in use, and 

 
3 Stockpiling Germaphobs Ignite Unlikely Boom: Appliances.  

Bloomberg News, May 13 2020, Deep Freezers, Bread Makers 
Sell Out in Coronavirus Spending Boom - Bloomberg 

take up counter space in use.  Deep freezers are typically rel-
egated to basements in houses, and there is rarely space for 
them in apartments.  The surge in home-buying during the 
US last year is commonly attributed to the perceived need to 
radically expand the spatial resources available for household 
systems, due to working from home.   
 Building out resource models to capture investment deci-
sions such as these will need more refined models of prefer-
ences, in order to evaluate benefits as well as costs.  How 
much is it worth spending to make a regularly cooked dish 
produced more efficiently, or expand the range of what can 
be prepared beyond current routines?  Prior work on qualita-
tive models in representing preferences and decision-making, 
outlined next, might be productively linked to qualitative re-
source models to tackle this.   
  
5  Related Work 
Several previous lines of research in qualitative reasoning on 
decision-making have inspired this research.  Rovira et al. 
(2018)’s use of linguistic term sets to map from language to 
values provides a promising approach for more flexible ex-
pressions of costs and other decision factors.  Rossi et al.’s 
(2011) and Santhanam et al.’s (2016) work on preferences 
shows that qualitative values can indeed be valuable in deci-
sion-making applications, including Benaroch & Dhar’s 
(1995) work on investment decisions. 
 Freeciv has been used by several researchers previously.  
Branavan et al. (2012) used reinforcement learning guided by 
NLP over a manual to learn to play Freeciv, but required the 
game engine to be used for lookahead, something which is 
not available in most decision-making situations.  Goel & Ru-
gaber (2015) examined how meta-reasoning could be used in 
designing game agents, whereas our concern is how to build 
autonomous agents that make their own decisions.   

6 Conclusions and Future Work 
This paper proposes qualitative resource models to provide a 
new kind of linkage between qualitative representations and 
other forms of knowledge.  That is, qualitative resource mod-
els reflect continuous properties of events, in terms of dimen-
sions of costs and the factors that drive them.  Resource mod-
els appear to be promising as part of the process of formulat-
ing decision problems.  In some cases, resource models 
should suffice to prune infeasible alternatives and ascertain 
which alternatives are best, based on partial information.  In 
other cases, more quantitative data might be needed, in which 
case the qualitative resource model helps identify what data 
is needed.  The use of analogical generalization to construct 
models of an agent’s activities also seems promising.   

We see two next steps in future work.  The first is to finish 
implementing qualitative resource models in the Companion 
cognitive architecture, and test them for decision-making in 
Freeciv.  The second is to formalize benefits, in terms of both 



reduction of costs and in terms of positive evaluative quanti-
ties (e.g. improving the strength of a system), to be able to 
reason better about opportunity costs and investment deci-
sions. 
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