
Abstract 

Episodic memory is crucial to an intelligent agent’s 
ability to cope with a diverse array of tasks. Follow-
ing Hayes’ notion of histories, we hypothesize that 
qualitative spatiotemporal representations play an 
important role in organizing episodic memories 
about continuous phenomena. This paper describes 
a novel representation (QualitativeSpatioTempora-
lEpisodicMemory) that carves up continuous prop-
erties into qualitative regions of space and time. 
These representations ground experience in local, 
qualitative, structured episodes. We evaluate this 
work by showing that our agent can effectively learn 
strategy game decisions from expert replays using 
these representations.  

1 Introduction 

Episodic memory is a persistent contextualized store of spe-
cific events (Tulving, 1983), often involving both spatial and 
temporal aspects. It is a powerful cognitive mechanism, since 
it supports learning by experience, e.g., using analogy to un-
derstand one’s options when making a decision based on 
prior experiences. 

In qualitative reasoning research, Hayes proposed the no-
tion of histories (Hayes, 1978;1989) as a general framework 
for representing change in continuous domains. Whereas the 
situation calculus describes changes in terms of discrete 
events and provides no spatial constraints (leading to the in-
famous Frame Problem), histories represent change in terms 
of pieces of space-time, based on the objects involved in the 
changes. 

Cognitive systems research has focused on representations 
of episodic memory that are either completely task independ-
ent (Laird & Derbinsky, 2009; Menager & Choi, 2016), or 
task specific (Brom et al., 2016). By contrast, we propose to 
utilize the notion of histories to ground episodic memory in 
local, qualitative, structured episodes. The idea is to use the 
spatial aspects of the entities involved in an event or situation, 
combined with their temporal duration, to provide a represen-
tation for changes over time. Histories have been heavily 
used in qualitative reasoning (Forbus, 2019); thus we hypoth-
esize that they will prove invaluable for organizing episodic 
memories for continuous aspects of domains.   

Previously, we showed that histories can provide a useful 
representation for strategic reasoning (Hancock et al., 2020).  
Our current hypothesis is that histories can provide a useful 
representation for episodic memories and therefore support 
learning from experience. This paper describes our novel rep-
resentation (QSTEM) and an investigation of this hypothesis 
using the strategy game Freeciv as a testbed.  

2 Background and Related Work 

We begin with a brief overview of our test domain (Freeciv), 
our visual processing system (CogSketch), and our learning 
mechanism (analogy). 

2.1 Freeciv 

Freeciv is an open-source strategy game based on Sid Meier’s 
Civilization II. The player must establish a multi-city civili-
zation and manage its growth, economic vitality, and scien-
tific progress, while simultaneously developing a military for 
defense and offense.  The player wins by either sending a col-
ony ship to Alpha Centauri or conquering the world.   
 Freeciv is an excellent domain for AI research due to its 
complexity. A typical game board consists of 4,000 tiles with 
varying terrain. Games typically last for hundreds of turns, 
and each turn involves many decisions. Some decisions are 
global across the entire civilization, such as setting the tax 
rate, determining the next technology to research, and engag-
ing in diplomacy. Workers must be kept busy modifying ter-
rain.  Military units must defend cities and conduct attacks on 
opponents when at war. By contrast, Go is played on a 19x19 
grid with uniform, immutable spatial properties which are al-
ways visible from the start. In addition, each turn in Go only 
involves a decision to place one piece. 
 Freeciv is especially useful for exploring histories because 
important behaviors happen at multiple grain sizes. For ex-
ample, there is typically an expansion phase, where a player 
builds out multiple cities, to stake out desirable territory and 
deny it to competitors. Wars can cause the expansion or con-
traction of a player’s civilization, depending on their success, 
making decomposing time based on the set of cities a useful 
distinction. While the expansion phase enables reasoning at 
the level of an entire civilization, reasoning must also occur 
at the level of individual units and cities. Deciding what re-
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source should be built next in a city should benefit from ana-
lyzing experiences built on histories similar spatially to its 
local area as well as temporally local to its needs. 

2.2 CogSketch  

CogSketch (Forbus et al., 2011) is a sketch understanding 
system that provides a model of high-level visual processing. 
It provides multiple, hierarchical levels of visual representa-
tion, including decomposing digital ink into edges, combin-
ing edges into entities, and grouping based on gestalt princi-
ples.  
 The basic level of organization for ink in CogSketch is the 
glyph, one or more ink strokes that are taken to represent 
some entity (abstract or concrete) in the sketch. People can 
generate glyphs using a pen or mouse to produce digital ink. 
Glyphs can also be automatically produced via visual analy-
sis of images (Chen et al. 2019). 
 CogSketch can compute various spatial relationships be-
tween glyphs, including adjacency, relative position, topo-
logical relationships, and relative size. Properties of individ-
ual glyphs can also be computed, such as shape attributes 
(roundness) as well as glyph decompositions, such as shape 
skeletons and Voronoi diagrams. Moreover, CogSketch can 
decompose glyphs into edges, and group visual entities based 
on gestalt properties. These capabilities have enabled it to 
model a variety of visual problem-solving tasks, including 
Ravens’ Progressive Matrices (Lovett & Forbus, 2017), mak-
ing it a useful platform for human-like visual reasoning. 
 Here we make use of topological relations automatically 
calculated between spatial regions. We rely mainly on the re-
gion connection calculus (RCC8) (Cohn et al., 1997) and de-
scribe our spatial representations further in section 3.5.  

Prior Work on Blobs 
(McLure et al., 2012) formalized an encoding schema for ge-
ographical regions within Freeciv. They introduced three dis-
tinct types: trafficability, terrain, and continent blobs. In this 
paper, we use continent blobs. Continent blobs correspond to 
the geographical concept of continents. There are two distinct 
types: land and water regions. Each blob consists of a contig-
uous set of Freeciv tiles of the same land or water type.  

Footprint Regions 
In addition to continent, terrain, and trafficability blobs, 
(Hancock et. al, 2020) introduced a new type of blob, the 
footprint of a compound entity. A footprint is the region de-
fined by a convex hull of a group of similar objects with spa-
tial extent.  That previous study used civilization footprints. 
This paper introduces two new types of footprints: 
 

1. City footprints: a city site and collection of sur-
rounding regions under a city’s control 

2. Unit footprints: a spatially local group of units under 
a single player’s control 

 
Information about each footprint is encoded along with its 

local spatial relations. Different footprint types exhibit differ-
ent behaviors over time. The civilization footprint grows and 
shrinks over time as cities are founded and destroyed. City 

footprints are static; they exist as long as the city exists and 
do not change in size. Unit footprints can grow and shrink, 
but also change location, as units are mobile. Trajectory in-
formation about enemy unit blobs is encoded relative to our 
player’s city and civilization footprints. Currently, trajectory 
is represented as a Boolean; either a unit blob is approaching 
some other region, or it is not. This information is only en-
coded when an enemy is approaching. We define this condi-
tion as a monotonically decreasing distance with a minimum 
history of some number of turns, in this study, three turns. 
Given this condition, we record the fact that an enemy unit 
blob is approaching the civilization footprint, as well as the 
closest city footprint. 

2.3 Analogical Learning  

One goal of this research is to demonstrate how analogy can 
support episodic memory retrieval. To do this, we use the 
Structure Mapping Engine (SME) (Forbus et al. 2017) for 
comparison, the MAC/FAC retrieval system (Forbus et al., 
1995), and the SAGE generalization system (McLure et al. 
2015). These analogical mechanisms are tightly integrated in 
the underlying reasoning engine and provide the mechanisms 
for retrieval, comparison, and transfer. SME not only assesses 
the similarity of a precedent to the current situation, but also 
projects the previous solution into the new case by translating 
entities to their mapped equivalents, in the form of candidate 
inferences. Thus, analogy provides adaptation automatically. 
The unit of comparison and retrieval is a case. In this ap-
proach, cases are not entire games but instead facts tempo-
rally and spatially local to some entity of interest. For exam-
ple, cases can capture a decision about what improvements to 
build, what tiles to work, and what technologies to research. 
This work focuses on the task of deciding what improvements 
to build (i.e. production decisions), (see section 3.7). 

When a production decision is made in the game, a spatio-
temporal snapshot is constructed and stored in the game con-
text. Case snapshots collected from expert replays form the 
corpus of relevant decisions. That is, each production deci-
sion type (city walls, warriors, etc.) has a SAGE generaliza-
tion pool which maintains a set of automatically constructed 
generalizations and outliers. A generalization pool is also a 
MAC/FAC case library, so adding a new case causes the most 
similar item to be retrieved. If the degree of similarity is over 
the assimilation threshold, then the new case is assimilated 
into the retrieved item. This assimilation process produces a 
new generalization if the retrieved item is an outlier, or if the 
retrieved item is a generalization, updates it with the contents 
of the new case. Every statement in a generalization has a 
probability based on the fraction of cases in which it was true, 
and non-identical entities are replaced by more abstract enti-
ties. If the similarity of the retrieved item is low, the new case 
is added to the pool as a new outlier.  

When our agent is playing autonomously, it makes produc-
tion decisions by considering what the expert chose to do in 
a similar context. First, a case is constructed in the same man-
ner as it was constructed for the expert’s action when it 
watched them play. This case is then used as a probe, and 



similar experiences (or generalizations built from experi-
ences) are retrieved (see section 4). 

3 Qualitative Spatiotemporal Representa-

tions 

This section describes our history representation. We start by 
describing our guiding principles for encoding. We then de-
scribe quantities, which form the basis for reasoning about 
continuous change. Next, we discuss how continuous quanti-
ties are incorporated into a temporal graph, giving a relational 
representation of a region in time. Finally, we discuss the in-
corporation of spatial information, as well as other domain 
information that is also relevant to strategic reasoning.  

3.1 Encoding Principles 

We seek to construct representations that are concise, sparse, 
and local. Concise means that the representations respect the 
relevance principle (Forbus, 2019) by not making unneces-
sary distinctions. Regions where a relevant property is con-
stant should be one entity, subdivided only when required due 
to some other important constraint. Sparsity is an aid to learn-
ing. There is always a tradeoff in the amount of information 
encoded. Too little, and there isn’t enough signal to learn the 
appropriate distinctions. Too much, and learning is made 
more difficult because the space of hypotheses is larger. More 
entities means more potential relations between them, which 
means more work to analogically match descriptions. All else 
being equal, keeping the number of entities small is prefera-
ble. This is one reason that qualitative representations are bet-
ter than, for example, using tiles or other highly granular 
quantitative representations as commonly done in reinforce-
ment learning research. Locality means that networks of rela-
tionships should be computed between entities that are spa-
tially and temporally local to one another. This makes the set 
of relationships computed for two descriptions more likely to 

match when they are similar. This locality heuristic is already 
built into several of CogSketch’s algorithms, e.g. positional 
relationships are only computed between adjacent glyphs. 
The same concept has been extended to computing relations 
between temporal intervals. 

3.3 Quantities 

Freeciv players must reason about a wide variety of continu-
ous properties and try to optimize many different aspects of 
their civilization at the same time. For instance, resource 
management involves maintaining gold supplies, production 
rates, and scientific output, while combat requires reasoning 
about relative unit strengths, horde sizes, and terrain types 
suitable for combat, etc. 
 These quantities have instantaneous values; the current 
gold in the treasury, the number of cities controlled by a 
player, and many more are directly available to the player. To 
effectively reason about the game, a player must also monitor 
the ways that these quantities are changing. The amount of 
gold may be the same in two different scenarios, but if it is 
rapidly increasing in one and diminishing in the other, these 
situations should be represented as two qualitatively distinct 
states. 
 Temporal bounds can be determined for a given quantity 
and its change over time. We first describe levels of quantity 
encodings and then describe how the spatial and temporal ex-
tent is determined for quantity encodings. Currently, we de-
fine three distinct levels of quantity encodings: 
 

1. Sign of the derivative: can be in one of three states, 
constant, monotonically increasing, or monoton-
ically decreasing 

2. Value sign: this quantity’s state is defined by its 
value being zero, positive, or negative. 

3. Value: this quantity’s state is determined solely by 
its value. 

 
We use one of these encoding levels for every Freeciv 

quantity used in cases. For example, the civilization footprint 
size is simply the area of the civilization footprint. We use 
sign of derivative for this quantity, i.e. its current growth is 
marked as constant, positive, or negative. Cities are usually 
founded on the first turn immediately making growth of the 
footprint area positive. Since many turns see no change in the 
number of cities, we treat periods of monotonic nondecreas-
ing as episodes. Hence growth occurs until a player loses a 
city; this may be attributed to enemy conquest, city starva-
tion, or other reasons. The first temporal interval for this 
quantity is thus defined by the bound of the initial growth pe-
riod. When a city is lost, a qualitative state is introduced cor-
responding to the period in which the size of the national foot-
print is monotonically nonincreasing. 

Certain game quantities are strictly monotonically nonde-
creasing or nonincreasing, such as the cardinality of scientific 
discoveries. When encoded into a QSTEM representation, 
quantity encoding (3) provides useful temporal information 
for these types of quantities. For example, a temporally local 

 

Figure 1: A gpool representing the decision to build settlers. 

Each white circle corresponds to a generalization, and each 

black dot a case in that generalization. 
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qualitative interval for scientific discovery will encode the 
time period since the last discovery until the present. 

3.4 Temporal Representations 

Our representation of time draws inspiration from Allen’s 
work on temporal graphs (Allen, 1983). Specifically, our rep-
resentation takes temporal intervals as primitives, with rela-
tions between intervals encoded as graph edges. We use Al-
len’s Interval Algebra (AIA) to denote these relations. Allen 
notes: “This representation is designed explicitly to deal with 
the problem that much of our temporal knowledge is relative, 
and hence cannot be described by a date”. 
 Intervals are defined by properties of continuous quanti-
ties. They correspond to concepts such as a specific period of 
growth or a period of invasion for a city. AIA encodes the 
relationship between intervals, e.g. the invasion began during 
a period of growth.  

The graph denoted by a collection of such intervals may 
contain many edges, thus violating the conciseness principle. 
We take a simple approach to limiting complexity, relating 
intervals only when adjacent or overlapping.  Figure 2 illus-
trates this, where the nonincreasing city size interval is re-
lated to other quantity intervals. Temporal relations between 
the number of defenders and national footprint size are not 
reified. This choice for encoding follows our general guide-
lines; representations should be concise. 

The nature of experience is that we do not know when a 
present temporal state will end. AIA relations between two 
intervals depend on knowing the endpoint of at least one of 
them. If one interval in question is complete, it may be possi-
ble to assign an AIA relation with an interval that is incom-
plete. If not, or if both are incomplete, we reduce the set of 
possible relations to (startsBefore, startsAfter, and startsAt-
SameTime). 

3.5 Representations of Space 

The spatial component of an episode is determined by the 
previously described blob regions and spatial relations be-
tween them. Our encoding focuses mainly on relations de-
fined by the region-connection calculus (RCC8). Briefly, 
RCC8 encodes connectivity between regions, including con-
tainment, partial overlap, non-connectedness, etc. 

 How might region relations guide strategic reasoning? We 
take the relationship between a city footprint and a national 
footprint as an example. A city footprint may lie on the border 
or interior region of the national footprint. RCC8 is able to 
distinguish these two situations (rcc8-NonTangen-
tialProperPart vs rcc8-TangentialProperPart). For the task of 
making a production decision, this distinction may mean life 
or death for a city, since cities on the border of a footprint are 
much more likely to be attacked than those on the interior. 
 A city footprint may also overlap an enemy region or may 
share a DMZ with an enemy. These concepts are also en-
coded into our representation (see section 3.7). 
 In addition to RCC8 relations, we also utilize the concept 
of bisection. A region A bisects a region B if the difference 
of B – A results in more than one contiguous region. This 
relation is computed between all glyphs and reified when it 
holds.  

3.6 Connecting Time and Space 

So far we have discussed both representation of time as well 
as space, but how should our representation connect them? 
To follow the locality principle, only quantity changes that 
are active in some spatial context should be considered. To 
support analogical learning, these relations should be reified 
to support higher-order structure. 

Locality is straightforward for space; all RCC8 relations 
except for rcc8-Disconnected constitute a local relation. Sim-
ilarly, locality is well-defined for time. The combination of 
space and time is less straightforward. Abstract quantities 
such as gold reserves (and its corresponding temporal inter-
vals of growth and decay) do not have a clear spatial extent. 
We use a simple heuristic: as gold reserves are an attribute of 
a civilization, their spatial extent is confined to the corre-
sponding civilization footprint. Similarly, attributes of indi-
vidual cities are confined to the footprints of their respective 
cities. 
 As mentioned previously, time is grounded by quantities 
and their values. Space is grounded by some region. For pro-
duction decisions, this means the national and city footprints 
corresponding to the city making a decision. In our represen-
tation, time and space meet where there is some target entity 
that has both a spatial and temporal extent. This is indeed the 
case for cities, and the spatial city footprint is associated with 
the temporal duration relating to the city’s size.  

For example, consider the representation for the Freeciv 
city of Chicago. The temporal qualitative state of Chicago is 
designated by the growth or decline of its city size. At the 
start of a game, this implies a period of growth. Since Chi-
cago also has a spatial extent (its footprint region), we asso-
ciate these two quantities: (spatialExtentOf citySizeInterval 
FootprintOfChicago). Temporal intervals specific to Chicago 
(e.g. number of defenders) are then related to citySizeInterval 
using the methods described in 3.4. 

3.7 Case Construction 

The episodes that we are constructing are part of a much 
larger spatiotemporal web. Limiting what facts should be in-
cluded is crucial to building concise representations. 

 

Figure 2: Carving up time; relating a period of decline (darker 
green) to other temporally local intervals (colored), resulting 

in three facts: (aia-OI cityDeclinePeriod someDefender-

sPeriod), (startsBefore cityDeclinePeriod noDefenderPeriod), 

and (startsAfter cityDeclinePeriod montonicallyNonincreas-

ingNtlFootprintPeriod). 

 



 Construction starts by taking a spatially bound entity as an 
argument (here, a Freeciv city). Facts about this city are in-
cluded, as defined by an existing case constructor that outputs 
any information known about the city. 
 Next, we query CogSketch for objects that share some re-
lation to the city’s footprint. For each of these objects, we 
reify the spatial relation, along with a list of minimal case 
facts for that object (figure 3). For an enemy national foot-
print region, this is the set of isa statements about that region 
(isa region HostileTerritory), for example. 

Parent/child relations between regions of the same type are 
handled separately. A city footprint region will always have 
some relation to its parent national footprint. In this case, the 
child’s temporal relation to the parent’s is reified, along with 
spatial and temporal facts relevant to the parent footprint. 
 Then, temporal intervals are reified for the city footprint. 
Its spatial change (growth, decline, constant) is related to 
quantity intervals relevant to that city (figure 2). 

4 Experiment 

Recalling past experience can assist an agent in deciding what 
actions to take. For this experiment, our agent learns produc-
tion decisions from expert replays.  
 Production decisions in Freeciv are crucial to performing 
well in the game. A city can make many different types of 
resources. Combat units and city walls are needed to ade-
quately defend a city. New settlers are needed to found new 
cities. There is an inherent tradeoff between growth and de-
fense early in the game. Too much growth leads to underde-
fended cities. Too little growth means that a civilization is 
unable to keep technological pace with its opponents.  

We hypothesize that using QSTEM to learn production de-
cision from an expert can improve the performance of our 
agent. Learning from experts can be complicated, however. 
A novice that watches a grandmaster chess game may make 
no improvement because they are unable to understand why 
the experts are making certain decisions. Reasoning in 
Freeciv certainly requires high level strategies, but simple 
spatial awareness is pertinent. Similarly, time matters as well. 
Different decisions are made when enemies are at the gate vs. 
when one is left alone. Our representation takes these types  
of factors into account, and thus we hypothesize that episodes 

represented this way should allow our agent to effectively 
learn from an expert player. 

To generate the expert scenarios, ten Freeciv games were 
played until turn 100, or until the player lost. Each time a pro-
duction decision was made, an episodic case was recorded. 
Overall, 460 cases were produced. The ten Freeciv maps used 
were partially revealed so that the entire starting continent 
was visible to the player. 

To learn from these episodes, our agent makes production 
decisions based on those made in similar spatiotemporal con-
texts to the expert replays. A probe case is first constructed 
for the city making the decision, and a list of generalizations 
is returned, ordered by their structural similarity to the probe 
case.  

In Freeciv, some resources are unavailable for production 
until a certain technology has been discovered. In the case 
where the most similar resource is unavailable, the next struc-
turally similar resource is considered. If the three most simi-
lar resources are unavailable, the system defaults to a deci-
sion that aligns with its current goals. This is the same deci-
sion-making process as our baseline agent. 

Our baseline agent builds upon existing work in qualitative 
reasoning (Forbus and Hinrichs, 2019). Fundamentally, it is 
a goal-based agent that leverages a learned qualitative model 
of Freeciv for decision making. The agent makes investment 
decisions about continuous quantities (e.g. should I increase 
the number of defenders in this city) and solely considers 
type-level goal activation as its decision criterion. That means 
that it only distinguishes alternatives on the basis of intrinsic 
properties i.e. properties shared by all members of their class. 
Extrinsic properties such as location, spatial configuration, 
and move points are therefore not considered. By contrast, 
our agent explicitly represents and learns these types of con-
tinuous extrinsic properties.  

5 Results 

Each agent type (baseline and episodic) was tested in ten new 
scenarios and statistics for the games were recorded. The 
maps in these scenarios were partially revealed in the same 
manner as the expert domains; the entire continent on which 

 

Figure 4: Number of cities over time for two experimental 

conditions, averaged over ten games. 
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Figure 3: Anatomy of a case. Local spatial regions may in-

clude continent blobs and other footprints.  



the agent started was unhidden. Success in Freeciv is compli-
cated; there is no single metric to gauge performance. Civili-
zation size, average city size, gold, science achievement, and 
many other factors go into determining an agent’s perfor-
mance. Overall, surviving later in the game corresponds to 
better performance. However, it may be possible to survive 
by focusing only on defense while ignoring other aspects of 
one’s civilization. For this reason, we look at the number of 
cities that have survived as well as the amount of gold accu-
mulated at turn 120. Both results are significant at p < .05. 
 While our results show an improvement, Freeciv is still a 
very difficult game. Evidence from watching our episodic 
agent play shows that it is making contextually relevant deci-
sions. Border cities adjacent to enemies tend to specialize in 
defense, whereas interior cities are more likely to produce 
settlers and gold. In figure 4, both conditions are increasing 
their territory size at turn 40. The episodic condition begins 
to specialize certain cities towards gold production around 
the same time (figure 5) and is still able to better defend its 
cities and survive to later turns than the baseline.  

6 Discussion and Future Work 

In this paper, we described a history-based representation for 
qualitative spatiotemporal episodic memories. Furthermore, 
we  showed that this representation is useful for learning pro-
duction decisions from expert replays in the game of Freeciv. 

The three quantity encodings outlined in this paper are a 
good start to reason with minimal domain knowledge about 
the complexities of a strategy game such as Freeciv. The 
learned episodes should be able to assist in further refining 
causal models. As the agent gains experience, it can learn 
limit points; the number of defenders sufficient to protect a 
city, the optimal number of cities for a particular spatiotem-
poral state, etc. 
 Another potential use for QSTEM in Freeciv is future state 
prediction. An episodic case encodes what is presently true in 
some circumstance; by retrieving similar cases from past ex-
perience tied with their eventual outcomes, analogy could be 
levered to predict spatial and temporal relations that might 
hold in the future. If my civilization is being invaded, looking 
at similar situation in the past might provide insight into 
whether my city will survive. This might be encoded with 

varying temporal relations, e.g. a candidate inference indicat-
ing that there is a future growth phase, or a city size decline 
phase outlasting an invasion phase. Knowing what is likely 
to hold in the future could help with decision making in the 
present.  
 We hypothesize that QSTEM may be useful outside of 
strategy games due to its flexibility in representing continu-
ous quantities. These representations may allow reframing an 
agent’s viewpoint; if larger pieces of space and longer tem-
poral durations are not proving to reliably explain phenome-
non, finer grained distinctions can be made by re-encoding. 
 Another possibility for extending this work is to support 
more general learning of continuous conceptual knowledge. 
We hypothesize that QSTEM will be useful for learning event 
types in interactive settings. Humans can identify behaviors 
such as rolling, bouncing, throwing, etc. Reasoning about 
these types of phenomena requires understanding continuous 
change in spatiotemporal contexts. 
 QSTEM provides both a framework for describing such 
changes, as well as a set of default encodings that make as-
sumptions about the types of limit points one expects to see 
in the world. These assumptions cover phenomena such as an 
object being in motion or not, but not the concept of an object 
being near to another one. We would like to investigate more 
in depth the kinds of representations that are necessary for 
both learning a broad array of concepts, as well as allowing 
an agent to demonstrate that it understandings these concepts 
by acting in the world.   
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