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Visual reasoning tasks involving comparison provide

interesting insights into how people make similarity and

difference judgments. This review summarizes work that

provides evidence that the same structure-mapping

comparison processes that appear to be used elsewhere in

cognition can also be used to model comparison in human

visual reasoning tasks. These models rely on qualitative

representations, which provide symbolic descriptions of

continuous properties, an important kind of relational

representation. Cognitive simulations of multiple human visual

reasoning tasks, using the same model of high-level vision to

compute relational representations, achieve human-like

performance, both in terms of accuracy and estimating the

relative difficulty of problems.
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Comparison in visual reasoning tasks
Many visual tasks have been explored in psychology and

other areas of cognitive science. We focus here on visual

reasoning tasks that involve comparison, since those shed

light on how concepts such as same and different are

conceptualized. We begin with a summary of hypotheses

about visual representations, since the contents of visual

representations help determine what are more or less

similar, the spectrum for which same and different pro-

vide end-points. We then summarize key ideas of struc-

ture-mapping theory and the Structure-Mapping Engine,

which is used in many of the models below, as well as

examine alternatives. We then outline models for three

different visual reasoning tasks: Geometric analogies, an

Oddity task, and Ravens’ Progressive Matrices. For each

task we compare and contrast models that have been
www.sciencedirect.com 
proposed for them. Finally, we summarize some lessons

that can be drawn from these models. A key conclusion is

that structure-mapping notions of same/different apply in

visual reasoning as well as other areas of cognition.

Human visual representations
The nature of human visual representations is still very

much under investigation. However, there is already

ample evidence that our visual systems compute struc-
tural representations, consisting of a set of entities with

relationships between them [1–3]. These visual relation-

ships include qualitative representations [4��], which pro-

vide symbolic abstractions of continuous information.

These qualitative representations provide a bridge

between perception and cognition. For example, it has

long been known that edges are an important interme-

diate representation computed by our visual cortex [5,6].

Edges, as Marr argued, constitute a primitive form of

symbolic representation, where discrete properties are

grounded in metric information (i.e. the specific loca-

tions construed as part of an edge). Edges themselves

can be described in terms of qualitative properties, for

example, straight/curved, concavity/convexity, and posi-

tions relative to each other. Moreover, networks of edges

appear to be important for human shape perception, as

indicated by the results of Scholl and his collaborators

who studied the role of the medial axis transform in

people’s shape judgments [7�] and modulate perceived

similarity [8]. Networks of edges help segment scenes

into regions, which can then be grouped into hypothe-

sized entities. Additional relationships can then be com-

puted between these entities, for example, people are

sensitive to qualitative relations in visual same/different

tasks [9].

As argued by Palmer et al. [10] and others, visual repre-

sentations are computed at multiple levels, such as group-

ing into entities based on gestalt principles. The nature of

visual entities can vary along a hierarchy [5,11,12], from

parts within an object—for example, the edges making up

the ‘T’ shape in Figure 1—to objects, to larger-scale

groupings of objects. Critically, as perceivers, humans

can strategically focus on different levels in the hierarchy,

depending on the task they are performing. For example,

if we want to compare two shapes, we can focus on the

relationships between each shape’s edges, noting parallel

edges, convex and concave corners, and relative length.

These types of qualitative relationships—which abstract

away precise, quantitative details—remain largely con-

stant as shapes rotate and transform in space, making it

easier to find commonalities during comparison [1].
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Figure 1
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Examples of levels of shape representation in CogSketch. Color is

used to show CogSketch’s decomposition into elements at that level.

The top illustrates how a basic object level description can be re-

represented into groups based on internal similarity. The bottom

illustrates how CogSketch’s edge-finding and description capabilities

can decompose a shape into edges.
The most comprehensive computational model for such

visual representations is CogSketch [13], which automat-

ically computes properties of edges and shapes, given

initial networks of edges computed automatically from

other inputs. (These inputs include digital ink, stimuli

copy/pasted from vector graphics programs such as

PowerPoint, and vision systems operating on images (e.

g. Ref. [14]). CogSketch uses algorithms from computer

vision and the qualitative reasoning community to con-

struct these representations. These include relationships

between entities, for example, positional relations (e.g.

above, left) and qualitative topological relations (e.g.

inside, touching, disjoint). Where possible, these are

constrained from results from the vision science literature

(e.g. its representational repertoire includes medial axis

transforms, as cited above). As the studies of visual

reasoning below illustrate, flexible re-representation is

an important capability to explain human performance.

CogSketch is capable of representing the same stimulus

at the level of edges, objects, or groups, as Figure 1

illustrates, and at each level it can compute a structural

representation by identifying qualitative relationships

between the elements. A catalog of CogSketch’s visual

representations is beyond the scope of this survey, see

Ref. [15] for details.

Visual comparison
One of the interesting surprises in research on visual

problem solving is that a general purpose model of analogy

and similarity, Gentner’s [16] structure-mapping theory,
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can account for many visual similarity judgments. In struc-

ture-mapping, same/different judgments are performed by

computing mappings between two descriptions, placing

them into alignment. A mapping consists of three things.

It includes a set of correspondences indicating what goes with

what, for example, comparing two visual arrays would

involve correspondences between visual objects within

the arrays, while comparing two edge-level descriptions

would involve correspondences between edges. Mappings

include candidate inferences that suggest, based on the cor-

respondences, how the patterns compared might be com-

pleted. For example, a candidate inference might propose a

new entity in an array which would make it more similar to

another, or that a corner which isn’t quite 90 degrees might

be 90 degrees, to increase visual similarity with another

edge-level description. And finally, mappings include a

numerical score, indicating how similar the items are. Thus

mappings provide valuable information for making same/

different judgments: the correspondences specify how two

things are similar, and the candidate inferences specify how

they differ. There is evidence that these alignable differences
are psychologically salient [3,17].

The Structure-Mapping Engine (SME; [18]) provides a

computational model of the structure-mapping compari-

son process. SME works via a middle-out process, first

constructing local hypotheses about correspondences in

parallel between two symbolic representations with rela-

tional and attribute information, and then coalesces these

into structurally consistent mappings. This two stage

process explains an important finding in same/different

judgments, namely that it is easier to determine that two

things are different when they are very different, but

easier to say how they are different when they are very

similar [19]. When two things are very different, the

number of hypothesized correspondences is very small.

When two things are very similar, the candidate infer-

ences provide alignable differences.

There are many computational models of analogy [20].

For example, LISA [21], DORA [22] and DRAMA [23] all

explore neural models of versions of structure-mapping. It

is unclear whether their relational capacity is sufficient to

support visual reasoning. DORA, for example, only han-

dles up to 2.5 relations at once [22], whereas existing

models of geometric analogies and oddity tasks that

provide human-level performance require, on average,

16 and 20 relations, respectively [18]. Some argue (e.g.

Ref. [24]) that different domains require different models

of analogy, but the domain-general nature of SME, which

handles visual representations, linguistic representations,

causal representations, problem-solving, and moral rea-

soning [18] suggests otherwise.

Visual reasoning tasks and their models
This section outlines three visual comparison tasks, and

describes how they have been modeled. Critically, these
www.sciencedirect.com
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Figure 2
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A geometric analogy problem.

Figure 3
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An oddity task problem.
models highlight the close relationship between visual

comparison and the hierarchy of visual representations

(edges, objects, and groups). Any comparison necessarily

must be performed at a particular level in this hierarchy. If

the comparison fails to reveal a good solution to a prob-

lem, then the reasoner must try again, using a different

level. Thus, a key component of same/different detection

in visual reasoning is finding the appropriate level of

representation for the things being compared.

Geometric analogies
The earliest computational model of analogy was by

Evans [25�], who studied geometric analogy problems

of the kind that used to be on the Miller Analogy Test, a

psychometric instrument. Given a pair of visual stimuli A
and B and a third, C, the goal is to identify which of four

alternatives best completes the analogy ‘A is to B as C is to

D’ (Figure 2). Evans cast the problem as defining trans-

formations from one figure to another, and had domain-

specific algorithms for computing those transformations.

The CogSketch model of geometric analogies [26,27�], by

contrast, uses SME, a domain-general model of compari-

son. The CogSketch model has two methods for deriving

answers. The first is second-order comparison, where A and

B are compared, and C is compared to each of the four

answers. The mappings themselves are then compared,

via the same structure-mapping process, with the most

similar 2nd order analogy selected as the answer. In

solving the problem of Figure 2, for example, the first-

stage comparison process includes decomposing objects

into edges and comparing their edges, which enables the

system to determine that the rectangle in the top left

elements of Figure 2 is inside the triangle (A) versus left

of the triangle (B). These differences in relationships are

part of what is output from the first-stage processing. The

differences between C and element 2 (e.g. inside to left,

vanishing dot) are the most similar to the differences

between A and B, hence that answer is chosen. The
www.sciencedirect.com 
second method is projection, for example, it compares A

to B, then compares A to C, using candidate inferences

from the A:B comparison to construct what should be the

correct answer. This answer is then compared against the

four candidates, and the closest one is picked. Projection

requires fewer comparisons but is not always possible.

Attempting projection, and then reverting to second-

order comparison when needed, helps explain the distri-

bution of human response times across problems [27�],
and is consistent with evidence that humans prefer pro-

jection but can adjust their strategy depending on prob-

lem difficulty [28].

Since Evans’ original program, several other computa-

tional models of geometric analogy have been developed

[29–31]. These models rely exclusively on a projection

strategy, limiting their ability to explain human response

times. In addition, none of them possess the CogSketch

model’s ability to flexibly move between levels of abstrac-

tion, making it difficult, for example, to compare shapes

and identify spatial transformations between them, such

as rotations.

Oddity task
An oddity task asks participants to select, from an array of

stimuli, which one is ‘different’ or ‘doesn’t fit’. An exam-

ple from Dehaene et al. [32] is illustrated in Figure 3, who

tested participants from two cultures, majority-culture

Americans and Munduruku, from the Amazon. In finding

what is different, participants must find ways to construe

the other elements as the same, hence same/different

judgments are at the heart of the task. Lovett and Forbus’

[33��] CogSketch model divides the array into two sub-

sets, randomly. For each subset, a generalization is com-

puted by using SME to compare the three stimuli,

keeping their commonalities. Then each of the remaining
Current Opinion in Behavioral Sciences 2021, 37:63–68
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Figure 4
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An RPM problem.
stimuli is compared against that generalization, to see

whether the similarity score drops for one of them more

than the others. If so, that is the oddity. If no oddity is

identified, then the model re-represents the stimuli at a

different level in the visual hierarchy and tries again.

The model achieves accuracy comparable to people, and

the problems that are difficult for people are also the ones

the simulation fails on. Moreover, by doing ablation

studies on the model, hypotheses about differences

between the two cultural groups can be generated. Nota-

bly, it appears that the Americans perform well with

groups of objects but struggle to reason about the edges

within each object, whereas the Munduruku show the

opposite pattern. The hypotheses suggested by the

model can be tested by future behavioral studies.

Another class of model uses a fractal approach to solve

oddity problems: each image is divided into subimages,

and these subimages are exhaustively compared at the

pixel level to determine the degree of commonalities in

two images [34]. Then, an oddity is identified as an image

that has a lower degree of commonalities with its neigh-

bors. Although the fractal approach achieves a high

degree of accuracy on the task, its error patterns look

less human-like than the CogSketch model’s, and it is

unclear what the approach can tell us about representa-

tion and comparison in humans.

Ravens’ Progressive Matrices
The Ravens’ Progressive Matrices test ([35]; hereafter

RPM) is one of the best predictors of human fluid

intelligence. This is fascinating because it is essentially

a suite of visual geometric analogy problems, of increasing

difficulty (hence progressive). Figure 4 illustrates a

Ravens-style problem. There is a long history of attempts

to model the RPM. An early influential model was devel-

oped by Carpenter et al. [36], who identified several

important strategies for solving such problems. However,

their computational model relied on hand-generated

input representations, rather than automatic encoding.

In contrast, the CogSketch model [37��], automatically

generates representations from PowerPoint images and

solves problems using projection and second-order com-

parison strategies, similar to the geometric analogy model.

The model achieves human-level performance on the

test, and problems that are difficult for the model are also

difficult for humans. Furthermore, ablation studies on the

model suggest a key factor that makes RPM problems

challenging: problems that require flexibly reorganizing

one’s visual representation, for example, by breaking

objects down into their edges, comparing images at the

edge level to find correspondences, and then grouping the

corresponding edges to form new objects, are particularly

difficult for human test-takers. Such representational

challenges can only be identified by models that must

generate their own visual representations.
Current Opinion in Behavioral Sciences 2021, 37:63–68 
Several other RPM models rely on hand-generated repre-

sentations, either for the overall images or for the shapes

within each image [38,39]. McGreggor et al. [40] devel-

oped a fractal model that operates directly on the images,

similar to their fractal model for the oddity task. However,

again it is unclear what the model can tell us about

representation and comparison in humans. Kunda et al.
[41] developed a simpler model that computes affine

transformations between images, but the model is unable

to solve many of the more difficult RPM problems.

More recently, several deep learning models have proven

effective at solving RPM problems (e.g. Refs. [42,43]).

Typically, such models can be difficult to interpret

because they lack explicit knowledge structures or pro-

cesses that align with psychological theories—they sim-

ply learn a mapping from RPM problem to solution.

Interestingly, one recent model was able to solve pro-

blems after training on a set of general images, rather than

training directly on RPM examples [44]. However, it was

primarily able to solve easier problems that involve filling

in the missing piece of a pattern.

Summary
There are multiple sources of evidence suggesting that

qualitative representations, computed over entities orga-

nized into a visual hierarchy, are used in visual reasoning.

Structure-mapping over such representations provides a

modeling framework that has been shown to handle a
www.sciencedirect.com
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variety of visual reasoning tasks, achieving human-level

performance with predictions of other properties of

human behavior. Moreover, the structure-mapping

notions of same/different apply in visual reasoning, as

well as other areas of cognition.

A clear lesson from visual problem-solving is that finding

the appropriate level of representation is crucial to mak-

ing same/different determinations. We expect that this is

true for same/different judgments more broadly, which

suggests that one path to a better understanding of such

judgments might be computational modeling of encoding

and re-representation processes more broadly.
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