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Abstract

Automated theorem provers have traditionally relied on manu-
ally tuned heuristics to guide how they perform proof search.
Deep reinforcement learning has been proposed as a way to ob-
viate the need for such heuristics, however, its deployment in
automated theorem proving remains a challenge. In this paper
we introduce TRAIL, a system that applies deep reinforcement
learning to saturation-based theorem proving. TRAIL lever-
ages (a) a novel neural representation of the state of a theorem
prover and (b) a novel characterization of the inference selec-
tion process in terms of an attention-based action policy. We
show through systematic analysis that these mechanisms allow
TRAIL to significantly outperform previous reinforcement-
learning-based theorem provers on two benchmark datasets for
first-order logic automated theorem proving (proving around
15% more theorems).

1 Introduction
Automated theorem provers (ATPs) have established them-
selves as useful tools for solving problems that are express-
ible in a variety of knowledge representation formalisms.
Such problems are commonplace in areas core to computer
science (e.g., compilers (Curzon and Curzon 1991; Leroy
2009), operating systems (Klein 2009), and even distributed
systems (Hawblitzel et al. 2015; Garland and Lynch 1998)),
where ATPs are used to prove that a system satisfies some for-
mal design specification. Unfortunately, while the formalisms
that underlie such problems have been (more or less) fixed,
the strategies needed to solve them have been anything but.
With each new domain added to the purview of automated
theorem proving, there has been a need for the development
of new heuristics and strategies that restrict or order how an
ATP searches for proofs. This process of guiding a theorem
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prover during proof search is referred to as proof guidance.
Though proof guidance heuristics have been shown to have a
drastic impact on theorem proving performance (Schulz and
Möhrmann 2016), the specifics of when and why to use a
particular strategy are still often hard to define (Schulz 2017).

Many state-of-the-art ATPs use machine learning to auto-
matically determine heuristics for assisting with proof guid-
ance. Generally, the features considered by such learned
heuristics have been manually designed (Kaliszyk, Urban,
and Vyskočil 2015; Jakubuv and Urban 2017), though more
recently they have been learned through deep learning (Loos
et al. 2017; Chvalovský et al. 2019; Paliwal et al. 2019),
which has the appeal of lessening the amount of expert knowl-
edge needed compared with handcrafting new heuristics.
These neural approaches have just begun to yield impressive
results, e.g. Enigma-NG (Jakubuv and Urban 2019) showed
that purely neural proof guidance could be integrated into E
(Schulz 2002) to improve its performance over manually de-
signed proof-search strategies. However, in order to achieve
competitive performance with state-of-the-art ATPs, neural
methods (as they have been applied thus far) have critically
relied on being seeded with proofs from an existing state-
of-the-art reasoner (which itself will use a strong manually
designed proof-search strategy). Thus, such approaches are
still subject to the biases inherent to the theorem-proving
strategies used in their initialization.

Reinforcement learning a la AlphaGo Zero (Silver et al.
2017b) has been explored as a natural solution to this prob-
lem, where the system automatically learns proof guidance
strategies from scratch. More generally, reinforcement learn-
ing has been successfully applied to theorem proving with
first-order logic (Kaliszyk et al. 2018; Piotrowski and Ur-
ban 2019; Zombori et al. 2019; Zombori, Urban, and Brown
2020), higher-order logic (Bansal et al. 2019a), and also with
logics less expressive than first-order logic (Kusumoto, Ya-
hata, and Sakai 2018; Lederman, Rabe, and Seshia 2018;
Chen and Tian 2018).

In this work, we target theorem proving for first-order
logic, where tabula rasa reinforcement learning (i.e., learning



from scratch) has been integrated into tableau-based theorem
provers (Kaliszyk et al. 2018; Zombori et al. 2019; Zom-
bori, Urban, and Brown 2020). Connection tableau theorem
proving is an appealing setting for machine learning research
because tableau calculi are straightforward and simple, allow-
ing for concise implementations that can easily be extended
with learning-based techniques. However, the best perform-
ing, most widely-used theorem provers to date are saturation
theorem provers that implement either the resolution or super-
position calculi (Kovács and Voronkov 2013; Schulz 2002).
These provers are capable of much finer-grained management
of the proof search space; however, this added power comes
at the cost of increased complexity in terms of both the under-
lying calculi and the theorem provers themselves. For neural-
based proof guidance to yield any improvements when inte-
grated with highly optimized, hand-tuned saturation-based
provers, it must offset the added cost of neural network eval-
uation with more intelligent proof search. To date, this has
not been possible when these neural approaches have been
trained from scratch, i.e. when they are not bootstrapped with
proofs from a state-of-the-art ATP.

In this paper, we introduce TRAIL (Trial Reasoner for AI
that Learns), a theorem proving approach that applies deep
reinforcement learning to saturation-based theorem proving
to learn proof guidance strategies completely from scratch.
Key to TRAIL’s design is a novel neural representation of the
state of a theorem-prover in terms of inferences and clauses,
and a novel characterization of the inference selection process
in terms of an attention-based action policy. The neural rep-
resentations for clauses and actions that constitute TRAIL’s
internal state were based on a careful study of candidate
representations, which we describe in this paper.

We demonstrate the performance of TRAIL on two stan-
dard benchmarks drawn from the Mizar dataset (Kaliszyk and
Urban 2015): M2k (Kaliszyk et al. 2018) and MPTP2078
(Urban 2006), where we show that TRAIL, when trained
from scratch, outperforms all prior reinforcement-learning
approaches on these two datasets and approaches the perfor-
mance of a state-of-the-art ATP on MPTP2078 dataset.

2 Background
We assume the reader has knowledge of basic first-order logic
and automated theorem proving terminology and thus will
only briefly describe the terms commonly seen throughout
this paper. For readers interested in learning more about
logical formalisms and techniques see (Bergmann, Moor, and
Nelson 2013; Enderton and Enderton 2001).

In this work, we focus on first-order logic (FOL) with
equality. In the standard FOL problem-solving setting, an
ATP is given a conjecture (i.e., a formula to be proved true or
false), axioms (i.e., formulas known to be true), and inference
rules (i.e., rules that, based on given true formulas, allow for
the derivation of new true formulas). From these inputs, the
ATP performs a proof search, which can be characterized
as the successive application of inference rules to axioms
and derived formulas until a sequence of derived formulas is
found that represents a proof of the given conjecture. All for-
mulas considered by TRAIL are in conjunctive normal form.

That is, they are conjunctions of clauses, which are them-
selves disjunctions of literals. Literals are (possibly negated)
formulas that otherwise have no inner logical connectives. In
addition, all variables are implicitly universally quantified.

Let F be a set of formulas and I be a set of inference rules.
We write that F is saturated with respect to I if every infer-
ence that can be made using axioms from I and premises
from F is also a member of F , i.e. F is closed under in-
ferences from I. Saturation-based theorem provers aim to
saturate a set of formulas with respect to their inference rules.
To do this, they maintain two sets of clauses, referred to as
the processed and unprocessed sets of clauses. These two
sets correspond to the clauses that have and have not been
yet selected for inference. The actions that saturation-based
theorem provers take are referred to as inferences. Inferences
involve an inference rule (e.g. resolution, factoring) and a
non-empty set of clauses, considered to be the premises of
the rule. At each step in proof search, the ATP selects an in-
ference with premises in the unprocessed set (some premises
may be part of the processed set) and executes it. This gen-
erates a new set of clauses, each of which is added to the
unprocessed set. The clauses in the premises that are mem-
bers of the unprocessed set are then added to the processed
set. This iteration continues until a clause is generated (typi-
cally the empty clause for refutation theorem proving) that
signals a proof has been found, the set of clauses is satu-
rated, or a timeout is reached. For more details on saturation
(Robinson 1965) and saturation-calculi, we refer the reader
to (Bachmair and Ganzinger 1998).

3 TRAIL
We first describe our overall approach to defining the proof
guidance problem in terms of reinforcement learning. For this,
we detail (a) a sparse vectorization process which represents
all clauses and actions in a way compatible with subsequent
neural components, (b) a neural proof state which concisely
captures the neural representations of clauses and actions
within a proof state, and (c) an attention-based policy network
that learns the interactions between clauses and actions to
select the next action. Last, we describe how TRAIL learns
from scratch, beginning with a random initial policy.

3.1 Reinforcement Learning for Proof Guidance
We formalize the proof guidance as a reinforcement learning
(RL) problem where the reasoner provides the environment
in which the learning agent operates. Figure 1 shows how an
ATP problem is solved in our framework. Given a conjecture
and a set of axioms, TRAIL iteratively performs reasoning
steps until a proof is found (within a provided time limit).
The reasoner tracks the proof state, st, which encapsulates
the clauses that have been derived or used in the derivation
so far and the actions that can be taken by the reasoner at the
current step. At each step, this state is passed to the learning
agent - an attention-based model (Luong, Pham, and Manning
2015) that predicts a distribution over the actions it uses to
sample a corresponding action, at,i. This action is given to
the reasoner, which executes it and updates the proof state.

Formally, a state, st = (Ct,At), consists of two compo-
nents. The first is the set of processed clauses, Ct = {ct,j}Nj=1,
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Figure 1: Formulation of automated theorem proving as a RL problem

(i.e., all clauses selected by the agent up to step t); where
C0 = ∅. The second is the set of all available actions that the
reasoner could execute at step t, At = {at,i}Mi=1; where A0

is the cross product of the set of all inference rules (denoted
by I) and the set of all axioms and the negated conjecture.
An action, at,i = (zt,i, ĉt,i), is a pair comprising an inference
rule, zt,i, and a clause from the unprocessed set, ĉt,i.

At step t, given a state st (provided by the reasoner), the
learning agent computes a probability distribution over the
set of available actions At, denoted by Pθ(at,i|st) (where θ
is the set of parameters for the learning agent), and samples
an action at,i ∈ At. The sampled action at,i = (zt,i, ĉt,i) is
executed by the reasoner by applying zt,i to ĉt,i (which may
involve processed clauses). This yields a set of new derived
clauses, C̄t, and a new state, st+1 = (Ct+1,At+1), where
Ct+1 = Ct ∪ {ĉt,i} and At+1 = (At − {at,i}) ∪ (I × C̄t).

Upon completion of a proof attempt, TRAIL computes a
loss and issues a reward that encourages the agent to optimize
for decisions leading to a successful proof in the shortest
time possible. Specifically, for an unsuccessful proof attempt
(i.e., the underlying reasoner fails to derive a contradiction
within the time limit), each step t in the attempt is assigned
a reward rt = 0. For a successful proof attempt, in the final
step, the underlying reasoner produces a refutation proof
P containing only the actions that generated derived facts
directly or indirectly involved in the final contradiction. At
step t of a successful proof attempt where the action at,i is
selected, the reward rt is 0 if at,i is not part of the refutation
proof P; otherwise rt is inversely proportional to the time
spent proving the conjecture.

The final loss consists of the standard policy gradient
loss (Sutton and Barto 1998) and an entropy regularization
term to avoid collapse onto a sub-optimal deterministic policy
and to promote exploration.

L(θ) =− E
[
rt log(Pθ(at|st))

]
− λE

[ |At|∑
i=1

−Pθ(at,i|st) log(Pθ(at,i|st))
]

where at is the action taken at step t and λ is the entropy
regularization hyper-parameter. We use a normalized reward
to improve training stability, since the intrinsic difficulty
of problems can vary widely in our problem dataset. We
explored (i) normalization by the inverse of the time spent by
a traditional reasoner, (ii) normalization by the best reward

obtained in repeated attempts to solve the same problem,
and (iii) no normalization; the normalization strategy was a
hyper-parameter. This loss has the effect of giving actions
that contributed to the most direct proofs for a given problem
higher rewards, while dampening actions that contributed to
more time consuming proofs for the same problem.

3.2 Sparse Vectorization Process
For compatibility with subsequent neural components,
TRAIL transforms the formulas internal to the proof state
into real-valued vectors. To do this, TRAIL utilizes a set of
M vectorization modules,M = {m1, . . . ,mM}, that each
characterize some important aspect of the clauses and actions
under consideration.

Each module mk ∈ M follows the same general design:
given an input clause or action, mk produces a discrete, bag-
of-words style vector in Znk , where nk is a pre-specified
dimensionality specific to module mk. As an example, con-
sider a module intended to capture the symbols of a formula.
It would map each symbol present in its input to an index
ranging from 1, . . . , nk. The vector representation would
be created by assigning to each dimension of a sparse nk-
dimensional vector the number of times a symbol correspond-
ing to that dimension appeared in the input (i.e., a bag-of-
words representation). Letting mk(i) be the sparse vector for
an input i from module mk ∈M, the final vector represen-
tation vi is then the concatenation of the outputs from each
module. As actions are pairs of clauses and inference rules,
TRAIL represents the clause in each action pair using the
process described above and the inference rule as a one-hot
encoding of size |I|, where I is the set of inference rules.

This vectorization process allows TRAIL to trivially in-
corporate techniques from the large body of research on
vectorization strategies for machine learning guided theorem
proving (Bridge, Holden, and Paulson 2014; Kaliszyk, Ur-
ban, and Vyskočil 2015). For instance, TRAIL uses Enigma
(Jakubuv and Urban 2017) modules which characterize a
clause in terms of fixed-length term walks (with separate
modules for term walks of length l ∈ {1, 2, 3}).

In addition to term walks and chain-based vectorization
(described next), TRAIL uses general purpose modules for
representing clause age (the timestep at which a clause was
derived), weight (the number of symbols in the clause), literal
count, and set-of-support (whether or not the clause has a
negated conjecture clause as an ancestor in its proof tree).



Chain-Based Vectorization We refer to the vectorization
method introduced here as chain-based vectorization. Within
TRAIL, it functions as one of the available vectorization mod-
ules. Its development was inspired by the way inference rules
operate over clauses. Consider the resolution inference rule.
Two clauses resolve if one contains a positive literal whose
constituent atom is unifiable with the constituent atom of a
negative literal in the other clause. Hence, vector representa-
tions of clauses should both capture the relationship between
literals and their negations and reflect structural similarities
between literals that are indicative of unifiability.

Our approach captures these features by deconstructing
input clauses into sets of patterns. We define a pattern to
be a linear chain that begins from a predicate symbol and
includes one argument (and its argument position) at each
depth until it ends at a constant or variable. The set of all
patterns for a clause is then the set of all linear paths between
each predicate and the constants and variables they bottom
out with. Since the names of variables are arbitrary, they are
replaced with a wild-card symbol, “∗”. Argument position is
also indicated with the use of wild-card symbols.

We obtain a d-dimensional representation of a clause
by hashing the linearization of each pattern p using MD5
hashes (Rivest 1992) to compute a hash value v, and setting
the element at index v mod d to the number of occurrences of
the pattern p in the clause. We also explicitly encode the dif-
ference between patterns and their negations by doubling the
representation size and hashing them separately, where the
first d elements encode the positive patterns and the second
d elements encode the negated patterns. Chain vectorization
is intended to produce feature vectors useful for estimates
of structural similarity. Figure 2 shows how chain patterns
would be extracted from a clause along with term walks.

The use of hashing (provided that d is small enough) is
partially intended to discourage the learning of symbol or
pattern-specific interactions. That is, if hash collisions are
sufficiently frequent, we would expect them to act as a form
of regularization that inhibits the network from relying on
the presence or absence of specific patterns within a clause.
Ideally (though certainly not guaranteed), the network would
then instead learn to rely on more holistic features like the
overall structural similarity between pairs of clauses (given
by the dot product of pattern feature vectors).

An important design decision for TRAIL was to rely on
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Figure 2: Overview of chain and term walk vectorizers oper-
ating on the clause q(f(g(x, y), z), g(x, y))

a combination of simple and efficient vectorizers like the
pattern-based vectorizers described above, as opposed to
more complex graph neural network (GNN) approaches.
Though GNN-based approaches are powerful, they introduce
a noticeable additional run-time overhead (i.e., more time
spent looking for a better search strategy and less time left
to execute it). We contrast our approach with a graph neural
network based approach in Section 4.

3.3 Neural Representation of Proof State
Recall that the proof state consists of the sets of processed
clauses Ct and actions At. We write ct,i as the sparse vector
representation for processed clause ci at time t and (zt,i, ĉt,i)
as the vector representations for the inference rule and clause
pairing for action at,i. To produce dense representations
for the elements of Ct and At, TRAIL first transforms the
sparse clause representations (excluding inference rules for
actions) into dense representations by passing them through k
fully-connected layers. This yields sets {h(p)

t,1 , ...,h
(p)
t,N} and

{h(a)
t,1 , ...,h

(a)
t,M} of dense representations for the processed

and action clauses. TRAIL also collects the dense representa-
tions for the negated conjecture clauses as {h(c)

1 , . . .h
(c)
k }.

For each action pair, TRAIL concatenates the clause repre-
sentation h

(a)
t,i with the corresponding inference representa-

tion zt,i to form the new action at,i = [h
(a)
t,i , zt,i] and joins

each such action into a matrix A. To construct the processed
clause matrix, TRAIL first produces a dense representation
of the conjecture as the element-wise mean of dense negated
conjecture clause representations

h(c) =
1

k

k∑
i=1

h
(c)
i

where k is the number of conjecture clauses. New processed
clause representations are produced by combining the origi-
nal dense representations with the pooled conjecture. For a
processed clause embedding h

(p)
i , its new value would be

ĥ
(p)
i = h

(p)
i + h(c) + F (h

(p)
i || h

(c))

where F is a feed-forward network, || denotes the concate-
nation operation, and the original inputs are included with
skip connections (He et al. 2016). The new processed clause
embeddings are then joined into a matrix C.

The two resulting matrices C and A can be considered the
neural forms of Ct and At. Thus, they concisely capture the
notion of a neural proof state, where each column of either
matrix corresponds to an element from the formal proof state.
Following the construction of C and A, this neural proof state
is fed into the policy network to select the next inference.

3.4 Attention-Based Policy Network
Figure 3 shows how sparse representations are transformed
into the neural proof state and passed to the policy network.
Throughout the reasoning process, the policy network must
produce a distribution over the actions relative to the clauses
that have been selected up to the current step, where both the



Figure 3: Flow from sparse vectorization through the policy network

actions and clauses are sets of variable length. This setting is
analogous to ones seen in attention-based approaches to prob-
lems like machine translation (Luong, Pham, and Manning
2015; Vaswani et al. 2017) and video captioning (Yu et al.
2016; Whitehead et al. 2018), in which the model must score
each encoder state with respect to a decoder state or other en-
coder states. To score each action relative to each clause, we
compute a multiplicative attention (Luong, Pham, and Man-
ning 2015) as H = A>WaC, where Wa ∈ R(2d+|I|)×2d

is a learned parameter and the resulting matrix, H ∈ RM×N ,
is a heat map of interaction scores between processed clauses
and available actions. TRAIL then performs max pooling
over the columns (i.e., clauses) of H to produce unnormal-
ized action values P̂θ(at,i|st)

Prior work integrating deep learning with saturation-based
ATPs would use a neural network to score the unprocessed
clauses with respect to only the conjecture and not the pro-
cessed clauses (Loos et al. 2017; Jakubuv and Urban 2019).
TRAIL’s attention mechanism can be viewed as a natural
generalization of this, where inference selection takes into
account both the processed clauses and conjecture.

3.5 Learning From Scratch
TRAIL begins learning through random exploration of the
search space as done in AlphaZero (Silver et al. 2017a) to
establish performance when the system is started from a
tabula rasa state (i.e., a randomly initialized policy network
Pθ). At training, at an early step t (i.e., t < τ0, where τ0, the
temperature threshold, is a hyper-parameter that indicates the
depth in the reasoning process at which training exploration
stops), we sample the action at,i in the set of available actions
At, according to the following probability distribution Pθ
derived from the policy network’s output P̂θ:

Pθ(at,i|st) =
P̂θ(at,i|st)1/τ∑

at,j∈At

P̂θ(at,j |st)1/τ

where τ , the temperature, is a hyperparameter that controls
the exploration-exploitation trade-off and decays over the
iterations (a higher temperature promotes more exploration).
When the number of steps already performed is above the

temperature threshold (i.e., t ≥ τ0), an action, at,i, with the
highest probability from the policy network, is selected, i.e.

at,i = arg max
at,j∈At

Pθ(at,j |st) .

At the end of training iteration k, the newly collected ex-
amples and those collected in the previous w iterations (w
is the example buffer hyperparameter) are used to train, in
a supervised manner, the policy network using the reward
structure and loss function defined in Section 3.1.

4 Experiments and Results
In this section, we are trying to answer the following ques-
tions: (a) Is TRAIL effective at generalized proof guidance?
(b) What is the best vectorization strategy and how well does
it generalize / transfer to unseen problems?

Datasets We evaluated TRAIL on two datasets:
M2k (Kaliszyk et al. 2018) and MPTP2078 (Alama
et al. 2014a). Both datasets are exports of parts of
Mizar1 (Grabowski, Kornilowicz, and Naumowicz 2010)
into the TPTP (Sutcliffe 2017) format. The M2k dataset
contains 2003 problems selected randomly from the subset of
Mizar that is known to be provable by existing ATPs, while
MPTP2078 contains 2078 problems selected regardless of
whether or not they could be solved by an ATP system.

4.1 Effectiveness of TRAIL
For traditional ATP systems, we compare TRAIL to: 1)
E (Schulz 2002) in auto mode, a state-of-the-art saturation-
based ATP system that has been under development for
over two decades, 2) Beagle (Baumgartner, Bax, and Wald-
mann 2015), a newer saturation-based theorem prover that
has achieved promising results in recent ATP competitions,
and 3) mlCop (Kaliszyk, Urban, and Vyskočil 2015), an
OCaml reimplementation of leanCop (Otten and Bibel 2003),
which is a tableau-based theorem prover that was applied to
M2k in (Kaliszyk et al. 2018) and MPTP2078 in (Zombori,
Urban, and Brown 2020). For learning-based approaches,
we compare against two recent RL-based approaches: rl-
Cop (Kaliszyk et al. 2018) and plCop (Zombori, Urban, and

1https://github.com/JUrban/deepmath/



M2k MPTP2078

Traditional
E 1922 998
Beagle 1543 742
mlCop 1034 502

Learning-Based
Reinforcement rlCop 1235 733

plCop 1359 782
TRAIL 1561 910

Table 1: Number of problems solved in M2k and MPTP2078.
Best two approaches in bold

Brown 2020), both of which are connection tableau-based the-
orem provers that build off mlCop and leanCop, respectively.
All results for mlCop, rlCop, plCop, and E are those reported
in (Kaliszyk et al. 2018; Zombori, Urban, and Brown 2020),
except for E on M2k which we ran ourselves. We also repli-
cated plCop and rlCop numbers under our exact hardware
and time constraints and found comparable results.

Following (Kaliszyk et al. 2018; Zombori, Urban, and
Brown 2020), we report the best iteration completion per-
formance. In this setting, TRAIL starts from scratch and
is applied to M2k and MPTP2078 for 10 iterations, with
learning from solved problems occurring after each iteration
completes. The reported number of problems solved is then
the number solved in the best performing iteration.

Table 1 shows the performance of TRAIL against both tra-
ditional ATP systems and recent learning-based approaches.
Following (Zombori, Urban, and Brown 2020), we limit
TRAIL to a maximum of 2,000 steps per problem with a
hard limit of 100 seconds. As Table 1 shows, while TRAIL
outperformed Beagle, state-of-the-art saturation-based ATP
systems are still superior to RL-based systems, with E solving
the most problems on both datasets. Among learning-based
approaches, TRAIL solved 202 more problems on M2k com-
pared to plCop (Zombori, Urban, and Brown 2020), and on
MPTP2078, TRAIL solved 128 more problems. On both
datasets TRAIL outperformed its underlying reasoner, Bea-
gle, with a 22% relative improvement on MPTP2078. These
results show that TRAIL (when trained from a random ini-
tial policy) is a competitive theorem proving approach, as it
outperformed all other systems except for E, with significant
gains over prior RL-based approaches. Notably, TRAIL sub-
stantially narrows the gap between state-of-the-art traditional
and from-scratch RL approaches on MPTP2078.

Value of Attention Over Processed Clauses As refuting
the conjecture is the end goal of proof search, incorporating
the negated conjecture into action selection has clear value.
However, we would expect processed clauses to be useful
as well, since most inferences will involve premises from
both the unprocessed and processed clauses. To determine
the utility of including processed clauses in action selection,
we performed an ablation experiment that restricted TRAIL
to utilizing only the conjecture’s neural representation in the
processed clause matrix (i.e., the embedded representation
for each processed clause became ĥ

(p)
i = h(c)). This turned

the attention mechanism into a measure of how aligned an
action was to solely the conjecture representation.

When using only the conjecture representations, TRAIL
solved 1,561 problems on M2k and 854 problems on MPTP.
Recall that TRAIL when incorporating processed clause and
conjecture representations solved 1,561 problems on M2k
and 910 problems on MPTP. Though there was no differ-
ence for M2k, it is significant that TRAIL could solve 56
more problems (∼6% relative improvement) on MPTP when
incorporating processed clauses.

4.2 Effects of Vectorization Choice
The term walk and chain-based vectorization modules used
by TRAIL are intended to quickly extract structural features
from their inputs. Though they are not tailored to any partic-
ular domain within FOL, they are clearly feature engineering.
Graph neural network (GNN) approaches have been proposed
as a general alternative that can lessen the need for expert
knowledge by having a neural network automatically learn
salient features from the underlying graph representations
of logical formulas. Though GNN approaches have quickly
gained traction in this domain due to the graph-centric nature
of automated reasoning (Paliwal et al. 2019; Wang et al. 2017;
Olšák, Kaliszyk, and Urban 2019), they have not yet clearly
demonstrated that the value they provide in terms of formula
representation offsets their greater computational cost when
deployed in a comparison with a state-of-the-art FOL ATP.

We view TRAIL as providing a framework for further test-
ing this, as GNN-based vectorizers can be trivially substituted
into TRAIL’s operation as one of its initial vectorization mod-
ules (see Section 3.2) that feed into the computation of the
neural proof state. Consequently, we performed an experi-
ment where we varied the vectorization modules available to
TRAIL, comparing four different ablated versions: 1) TRAIL
using the chain-based vectorizer, 2) TRAIL using the term
walk vectorizer (Jakubuv and Urban 2017), 3) TRAIL using
a GCN-based vectorizer (Kipf and Welling 2016), and 4)
combinations of these vectorizers. For all ablations, TRAIL
had access to the general-purpose vocabulary-independent
features mentioned in Section 3.2. The GCN is the standard
GCN described in (Kipf and Welling 2016) operating over
the shared subexpression forms of clauses (Wang et al. 2017).

We report TRAIL’s performance using both the prior best
iteration performance metric (where the train and test sets
are the same) and a more standard evaluation where the train
and test sets are distinct. For the latter evaluation, we use
one dataset (i.e., M2k or MPTP) to train and the other to test
(see next Section). Table 2 shows the performance of TRAIL
for these two metrics on both datasets, with the distinction
between the sparse vectorization modules, the GNN-based
module, and all combinations of each explicitly indicated.

Performance Within Datasets Examining Table 2, we see
that while chain-based vectorization is weaker than term walk
vectorization, the combination of the two achieves signifi-
cantly better results as a whole. This suggests that they are
capturing non-redundant feature sets. Additionally, both the
term-walk vectorization and the GCN are very strong on M2k,
but they do not do well in every case (i.e., there seems to be
something important they are not capturing). Notably, while
the GCN alone provides quite reasonable performance, com-



No Transfer Transfer

M2k MPTP MPTP→M2k M2k→MPTP

Sparse Only
Chains 1473 653 1463 418
Term Walks 1552 737 1425 570
Chains + Term Walks 1561 910 1510 812

Neural Only GCN 1523 750 1394 712

Sparse & Neural
GCN + Chains 1495 734 1395 652
GCN + Term Walks 1549 660 1394 611
GCN + Chains + Term Walks 1555 706 1435 690

Table 2: TRAIL’s performance with different vectorization methods in terms of number of proved theorems. Best results in bold

bining it with other vectorization modules leads to a decrease
in performance; which we suspect is due to the more expen-
sive computational cost. However, that the GCN provides a
strong baseline is promising, as it required no domain-expert
knowledge. Our takeaway is that cheap vectorization meth-
ods are currently still quite useful; however, the gap between
those techniques and GNN-based approaches is closing.

Generalization Across Datasets Table 2 also shows the
performance of TRAIL when trained on M2k and tested on
MPTP dataset, and vice versa. In terms of transfer, the combi-
nation of chain-based and term walk vectorization produces
the best results. This provides evidence that these features are
reasonably domain-general (though, we again emphasize that,
while M2k and MPTP are different datasets and may require
different reasoning strategies, they are both generated from
Mizar). Notably, there was only a 11% loss of performance
when training on MPTP and testing M2K, and a 3% loss
when training on M2k and testing MPTP2078. From this ex-
periment we conclude that cheap structural features, though
hand-engineered, are relatively domain-general, which again
will make them tough for more complex approaches to beat.

5 Related Work
Several approaches have focused on the sub-problem of
premise selection (i.e., finding the axioms relevant to prov-
ing the considered problem) (Alama et al. 2014b; Blanchette
et al. 2016; Alemi et al. 2016; Wang et al. 2017). As is of-
ten the case with automated theorem proving, most early
approaches were based on manual heuristics (Hoder and
Voronkov 2011; Roederer, Puzis, and Sutcliffe 2009) and tra-
ditional machine learning (Alama et al. 2014b); though some
recent works have used neural models (Alemi et al. 2016;
Wang et al. 2017; Rawson and Reger 2020; Crouse et al. 2019;
Piotrowski and Urban 2020). Additional research has used
learning to support interactive theorem proving (Blanchette
et al. 2016; Bancerek et al. 2018).

Some early research applied (deep) RL for guiding infer-
ence (Taylor et al. 2007), planning, and machine learning
techniques for inference in relational domains (van Otterlo
2005). Several papers have considered propositional logic
or other decidable FOL fragments, which are much less ex-
pressive compared to TRAIL. Closer to TRAIL are the ap-
proaches described in (Kaliszyk et al. 2018; Zombori, Urban,
and Brown 2020) where RL is combined with Monte-Carlo

tree search for theorem proving in FOL. However they have
some limitations: 1) Their approaches are specific to tableau-
based reasoners and thus not suitable for theories with many
equality axioms, which are better handled in the superposi-
tion calculus (Bachmair, Ganzinger, and Waldmann 1994),
and 2) They rely upon simple linear learners and gradient
boosting as policy and value predictors.

Our work also aligns well with the recent proposal of an
API for deep-RL-based interactive theorem proving in HOL
Light, using imitation learning from human proofs (Bansal
et al. 2019b). That paper also describes an ATP as a proof-
of-concept. However, their ATP is intended as a baseline and
lacks more advanced features like our exploratory learning.

Non-RL-based approaches using deep-learning to guide
proof search include (Chvalovský et al. 2019; Loos et al.
2017; Paliwal et al. 2019). These approaches differ from ours
in that they seed the training of their networks with proofs
from an existing reasoner. In addition, they use neural net-
works during proof guidance to score and select available
clauses with respect only to the conjecture. Recent works
have focused on addressing these two strategies. For instance,
(Piotrowski and Urban 2019) explored incorporating more
than just the conjecture when selecting which inference to
make with an RNN-based encoding scheme for embedding
entire proof branches in a tableau-based reasoner. However,
it is unclear how to extend this method to saturation-based
theorem provers, where a proof state may include thousands
of irrelevant clauses. Additionally, (Aygün et al. 2020) inves-
tigated whether synthetic theorems could be used to bootstrap
a neural reasoner without relying on existing proofs. Though
their evaluation showed promising results, it was limited to
a subset of the TPTP (Sutcliffe 2017) that excluded equality.
It is well known that the equality predicate requires much
more elaborate inference systems than resolution (Bachmair
and Ganzinger 1998), thus it is uncertain as to whether their
approach would be extensible to full equational reasoning.

6 Conclusions
In this work we introduced TRAIL, a system using deep re-
inforcement learning to learn effective proof guidance in
a saturation-based theorem prover. TRAIL outperformed
all prior RL-based approaches on two standard benchmark
datasets and approached the performance of a state-of-the-art
traditional theorem prover on one of the two benchmarks.
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of the Mizar Mathematical Library for Interactive Proof Devel-
opment in Mizar. Journal of Automated Reasoning 61(1): 9–
32. ISSN 1573-0670. doi:10.1007/s10817-017-9440-6. URL
https://doi.org/10.1007/s10817-017-9440-6.

Bansal, K.; Loos, S. M.; Rabe, M. N.; and Szegedy, C. 2019a.
Learning to Reason in Large Theories without Imitation. CoRR
abs/1905.10501. URL http://arxiv.org/abs/1905.10501.

Bansal, K.; Loos, S. M.; Rabe, M. N.; Szegedy, C.; and Wilcox, S.
2019b. HOList: An Environment for Machine Learning of Higher-
Order Theorem Proving (extended version). CoRR abs/1904.03241.
URL http://arxiv.org/abs/1904.03241.

Baumgartner, P.; Bax, J.; and Waldmann, U. 2015. Beagle – A
Hierarchic Superposition Theorem Prover. In Felty, A. P.; and
Middeldorp, A., eds., CADE-25 – 25th International Conference on
Automated Deduction, volume 9195 of LNAI, 367–377.

Bergmann, M.; Moor, J.; and Nelson, J. 2013. The Logic Book.
McGraw-Hill Higher Education. ISBN 9780077578336. URL
https://books.google.com/books?id=-SYiAAAAQBAJ.

Blanchette, J. C.; Greenaway, D.; Kaliszyk, C.; Kühlwein, D.; and
Urban, J. 2016. A Learning-Based Fact Selector for Isabelle/HOL.
J. Autom. Reason. 57(3): 219–244. ISSN 0168-7433. doi:10.1007/
s10817-016-9362-8. URL http://dx.doi.org/10.1007/s10817-016-
9362-8.

Bridge, J. P.; Holden, S. B.; and Paulson, L. C. 2014. Machine
learning for first-order theorem proving. Journal of automated
reasoning 53(2): 141–172.

Chen, X.; and Tian, Y. 2018. Learning to Progressively Plan. CoRR
abs/1810.00337. URL http://arxiv.org/abs/1810.00337.

Chvalovský, K.; Jakubuv, J.; Suda, M.; and Urban, J. 2019.
ENIGMA-NG: Efficient Neural and Gradient-Boosted Inference
Guidance for E. CoRR abs/1903.03182. URL http://arxiv.org/abs/
1903.03182.

Crouse, M.; Abdelaziz, I.; Cornelio, C.; Thost, V.; Wu, L.; Forbus,
K.; and Fokoue, A. 2019. Improving graph neural network represen-
tations of logical formulae with subgraph pooling. arXiv preprint
arXiv:1911.06904 .

Curzon, P.; and Curzon, P. 1991. A Verified Compiler for a Struc-
tured Assembly Language. In TPHOLs, 253–262.

Enderton, H.; and Enderton, H. 2001. A Mathematical Introduction
to Logic. Elsevier Science. ISBN 9780080496467. URL https:
//books.google.com/books?id=dVncCl\_EtUkC.

Garland, S. J.; and Lynch, N. A. 1998. The IOA language and
toolset: Support for designing, analyzing, and building distributed
systems. Technical report, Technical Report MIT/LCS/TR-762,
Laboratory for Computer Science.

Grabowski, A.; Kornilowicz, A.; and Naumowicz, A. 2010. Mizar
in a nutshell. Journal of Formalized Reasoning 3(2): 153–245.

Hawblitzel, C.; Howell, J.; Kapritsos, M.; Lorch, J. R.; Parno, B.;
Roberts, M. L.; Setty, S.; and Zill, B. 2015. IronFleet: proving
practical distributed systems correct. In Proceedings of the 25th
Symposium on Operating Systems Principles, 1–17.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, 770–778.

Hoder, K.; and Voronkov, A. 2011. Sine qua non for large theory
reasoning. In International Conference on Automated Deduction,
299–314. Springer.

Jakubuv, J.; and Urban, J. 2017. ENIGMA: Efficient Learning-
Based Inference Guiding Machine. In Intelligent Computer Math-
ematics - 10th International Conference, CICM 2017, Proceed-
ings, 292–302. doi:10.1007/978-3-319-62075-6\_20. URL https:
//doi.org/10.1007/978-3-319-62075-6\_20.

Jakubuv, J.; and Urban, J. 2019. Hammering Mizar by Learning
Clause Guidance. CoRR abs/1904.01677. URL http://arxiv.org/abs/
1904.01677.

Kaliszyk, C.; and Urban, J. 2015. MizAR 40 for Mizar 40. J. Autom.
Reasoning 55(3): 245–256. doi:10.1007/s10817-015-9330-8. URL
https://doi.org/10.1007/s10817-015-9330-8.

Kaliszyk, C.; Urban, J.; Michalewski, H.; and Olsák, M. 2018. Re-
inforcement Learning of Theorem Proving. In Advances in Neural
Information Processing Systems 31: Annual Conference on Neural
Information Processing Systems 2018, NeurIPS 2018, 8836–8847.

Kaliszyk, C.; Urban, J.; and Vyskočil, J. 2015. Certified connection
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A Appendix
A.1 Hyperparameter Tuning and Experimental

Setup
We used gradient-boosted tree search from scikit-optimize2

to find effective hyper-parameters using 10% of the Mizar
dataset. This returned the hyperparameter values in Table 3.
The maximum time limit for solving a problem was 100 sec-
onds. Hyper-parameter tuning experiments were conducted
over a cluster of 19 CPU (56 x 2.0 GHz cores & 247 GB
RAM) and 10 GPU machines (2 x P100 GPU, 16 x 2.0 GHz
CPU cores, & 120 GB RAM) over 4 to 5 days.

2https://scikit-optimize.github.io/



Once the best hyperparameters were found, we ran TRAIL
and its competitors (see Section 4.1 and Appendix A.5) on a
CPU machine with 56 x 2.0 GHz cores & 247 GB RAM. At
the end of each iteration, collected training examples were
shipped to a dedicated GPU server (with 2 x P100 GPUs, 16
x 2.0 GHz CPU cores, & 120 GB RAM) which trains and
updates TRAIL’s policy network.

Parameter Value

Chains Patterns 500
Sub-walks 2000
k layers 2
units per layer 161
dropout 0.57
λ (reg.) 0.004
2d (sparse vector size) 645
τ (temp.) 1.13
τ0 (temp. threshold) 11
embedding layers 4
dense embedding size 800
reward normalization (i) normalized by difficulty

Table 3: Hyperparameter values

A.2 Underlying Reasoner
The current implementation of TRAIL uses Beagle (Baum-
gartner, Bax, and Waldmann 2015) as its underlying inference
execution system. This is purely an implementation choice,
made primarily due to Beagle’s easily modifiable open source
code and friendly license. The purpose of Beagle in TRAIL is
to execute the actions selected by the TRAIL learning agent;
i.e., Beagle’s proof guidance was completely disabled when
embedded as a component in TRAIL and whenever Beagle
reaches a decision point at the level of clause selection, it
delegates the decision to TRAIL’s policy to decide the next
action to pick. When TRAIL passes an inference action to
Beagle to execute, it does not specify any additional restric-
tions, thus ordering constraints and literal selection specified
for Beagle’s default settings are used by Beagle when it ex-
ecutes the action. Redundancy elimination is also allowed
(e.g., proper subsumption deletion), with the exception of all
backward simplification techniques.

Using an off-the-shelf reasoner (like Beagle) as a reason-
ing shell is to ensure that the set of inference rules avail-
able to TRAIL are both sound and complete, and that all
proofs generated can be trusted. Beagle only executes the
actions selected by TRAIL and can thus be replaced by any
saturation-based reasoner capable of applying FOL inference
rules.

A.3 TRAIL’s Learning
Table 4 shows the performance of TRAIL across iterations.
Compared to the first iteration, TRAIL managed to solved
547 more problems on MPTP2078 and 519 more problems
on M2k. This indicates that TRAIL is learning rather quickly,
beating rlCop and plCop on both datasets by the fifth iteration
of learning. Interestingly, TRAIL’s performance monotoni-
cally increases over the iterations, which indicates that it is

Figure 4: TRAIL’s average proof time improvement relative
to Beagle (i.e., Beagle’s average time to find a proof divided
by TRAIL’s average time to find a proof)

not overfitting to a particular subset of the problems within
either dataset.

We also show in Figure 4 the speed at which TRAIL finds
a proof as compared to Beagle. As can be seen in the figure,
TRAIL surpasses Beagle’s speed rather quickly (at the second
iteration for M2k and the fourth iteration for MPTP). One
possibility for this is that TRAIL is initially solving an easier
subset of problems, as evidenced by the fact that at both of
those iterations, TRAIL is actually solving fewer problems
than Beagle (see Table 4). However, by the time TRAIL
reaches iteration 8 on M2k, it solves more problems than
Beagle with a 1.6x improvement in terms of time. Similarly
on MPTP2078, TRAIL iteration 5 managed to solved more
than 160 problems than Beagle in 1.29x better time.

A.4 Statistical Significance Tests
Table 5 shows the performance of TRAIL compared to learn-
ing and traditional theorem provers. This table repeats the
results reported in Table 1 in Section 4.1 with statistical sig-
nificance tests (p < 0.05) relative to TRAIL. For example,
state-of-the-art traditional theorem prover E outperforms all
other approaches including TRAIL. E outperforms TRAIL
in a statistically significant way with z = −16.9 on M2k
and z = −2.7 on MPTPT2078 dataset. On the other hand,
TRAIL outperforms Beagle in a non-significant way on M2k
(z = 0.6) and in a significant way on MPTP2078 (z = 5.3).
Furthermore, all TRAIL’s improvements over mlCop, rlCop
and plCop are statistically significant.

A.5 rlCop and plCop Experiments
As mentioned in Section 4.1, the numbers reported in Table
1 for plCop and rlCop are taken from their papers (Kaliszyk
et al. 2018; Zombori, Urban, and Brown 2020). We also repli-
cated their performance under our exact hardware and time



1 2 3 4 5 6 7 8 9 10

M2k 1042 1266 1428 1490 1507 1527 1533 1549 1552 1561
MPTP2078 363 552 680 730 806 844 858 878 877 910

Table 4: TRAIL’s performance across iterations

M2k Stat. Sig. MPTP2078 Stat. Sig.

Traditional
E 1922 (z=-16.9) 998 (z=-2.7))
Beagle 1543 742 (z=5.3)
mlCop 1034 (z=17.4) 502 (z=13.4)

RL-Based
rlCop 1235 (z=11.2) 733 (z=5.6)
plCop 1359 (z=7.2) 782 (z=4.0)
TRAIL 1561 910

Table 5: Number of problems solved in M2k and MPTP2078,
best two approaches in bold. Statistically significant differ-
ences (p < .05) relative to TRAIL are marked with .

M2k MPTP2078

TRAIL 1,561 910
rlCop (w/o paramodulation) 1,148 543
rlCop (w/ paramodulation) 1,238 563
plCop (w/o paramodulation) 1,222 707
plCop (w/ paramodulation) 1,301 773

Table 6: plCop and rlCop performance using same hardware
and time limit (100 seconds) as TRAIL

constraints. In particular, we used the authors’ source code
available at https://github.com/zsoltzombori/plcop which con-
tains the implementation of both rlCop and plCop. We used
the same default parameters from plCop’s configuration files.
We noticed, however, that they have two prominent configura-
tions for each dataset (with and without paramodulation) and
as a result we decided to report both configurations on each
dataset. Table 6 shows the performance of TRAIL, plCop
and rlCop on the same hardware with 100 seconds time limit.
plCop performance is very close to what we have in Table 1
in Section 4.1 while rlCop numbers are lower. To avoid any
confusion, we decided to use the best performance for both
rlCop and plCop in Table 1 in Section 4.1 which is what the
authors reported in their paper. This experiment is to show
that the hardware used and the time limits are comparable
and hence fair comparison can be made.


