
Abstract 

The rise of the Semantic Web opens new opportuni-
ties for qualitative reasoning research.  It provides 
massive amounts of factual data that complement 
the ability of qualitative representations to express 
general principles and causal laws.  This paper sum-
marizes how we are bringing together three kinds of 
resources that represent quantities.  The first is the 
traditional QR notion of quantities as fluents.  The 
second is the OpenCyc ontology’s notion of quanti-
ties as values.  The third is Wikidata’s massive col-
lection of ground facts.  We argue that the OpenCyc 
ontology provides a useful intermediate representa-
tion for bridging the other two representations. We 
show the potential utility for these bridges by exam-
ining data coverage for Science Olympics back of 
the envelope questions and language coverage with 
the QuaRel dataset. 

1 Introduction 
Quantities are central to the representation of continu-

ous world.  For example, we think about the physical world 
in terms of mass, size, temperature and pressure, among 
many others.  Similarly, we think about the social world in 
terms of how friendly people are, how big a favor we are 
asking, and how well we know someone, among many oth-
ers.  Continuous aspects of our mental life are also charac-
terized by many quantities, such as how enjoyable we be-
lieve an experience will be, how hard a problem is, and how 
much energy we currently have for different types of activi-
ties.  We think about these quantities using a range of repre-
sentations.  While our cultures have quantitative values for 
many physical properties, no one would claim that we have 
accurate quantitative scales for most quantities in the social 
and mental worlds, but we do have the ability to use them in 
ordering and comparative analysis.  Thus qualitative reason-
ing provides an essential component of reasoning about 
quantities across a broad range of human cognition.  This 
has been somewhat obscured by the early framing of the 

 
1 And also spatial properties, of course, but this paper only fo-

cuses on quantities.   

field as “qualitative physics”, but now we have qualitative 
modeling of human social and mental life as new frontiers 
for the field.  What resources can we bring to bear to help us 
explore these new frontiers?  Moreover, the Semantic Web 
has radically increased the available amount of formally 
represented knowledge.  Can these resources enable us to 
scale qualitative reasoning research in new ways?   
 This paper brings together three resources for the formal 
representation of quantities.  The first of course are notions 
of quantity developed in qualitative reasoning research.  QR 
has developed models that are excellent at capturing human 
causal reasoning about relationships between continuous 
quantities1.  These models have mostly been used to capture 
domain theories for aspects of the physical world.  While in 
some cases they have been combined with quantitative mod-
els (e.g. Forbus et al. 1992,1999; Struss et al. 2014), much 
effort has gone into exploring how much can be done with 
purely qualitative models (e.g. Bredeweg et al. 2009; de 
Kleer, 1984; Kuipers, 2003).  Meanwhile, the Cyc project de-
veloped a broad-scale knowledge base and ontology, the 
OpenCyc subset of which is the second resource we discuss.  
Cyc draws upon some ideas from the QR community, but also 
has many interesting representation conventions of its own 
that go far beyond what the QR community has done.  Cycorp 
has encoded a broader range of quantity types, including as-
pects of the social and mental worlds, as well as developed 
schemes for units and qualitative values that have proven use-
ful for qualitative reasoning (e.g. Paritosh 2004). The third 
resource we discuss is Wikidata which focuses on providing 
ground facts.  For studying everyday and professional reason-
ing involving qualitative knowledge for framing numerical 
problems, such as back of the envelope reasoning (Paritosh 
& Forbus, 2005; Bundy et al. 2013), these compendia look to 
be quite valuable.   
 This paper describes these three resources, focusing on 
their complementary strengths.  Since automatic encoding of 
problems from natural modalities and providing explanations 
to users is a crucial part of creating useful AI systems, we 
also describe how we have been integrating them into natural 
language resources for English.  Some analyses of coverage 
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with respect to existing datasets is also provided.  We close 
with some conclusions and future work.   
  

2 Quantities in Qualitative Reasoning 
We briefly summarize the key properties of quantities in QR 
that are needed to set the stage for discussing the other two 
resources.  Readers who want more details might consult 
(Forbus, 2019).   

The default representation of quantities in QR is that of a 
kind of fluent, i.e., a thing that can change over time.  Quan-
tities have values that can vary based on time (or in some 
cases, space as well as time).  These values are often consid-
ered to be numerical values, albeit unknown, with the nature 
of qualitative representations being to provide partial infor-
mation about them, such as ordinal information and/or signs 
of derivatives.  In other cases, values are drawn from a finite 
set of symbols, totally or partially ordered (e.g. large, me-
dium, small).  Systems of qualitative representation have 
been connected to quantitative representations, but typically 
the details of quantitative equations, units, and numerical 
properties have been outside the formalisms (but see Klenk 
et al. 2015). 

We note that here we are only concerned with quantities 
which can be considered continuous.  The discrete states of 
an automobile transmission are sometimes viewed as a type 
of quantity for modeling purposes, but since one can shift 
from one gear to any other, it is not continuous in the usual 
sense used in QR.  By contrast, describing age in terms of 
childhood versus adolescence versus adulthood does have 
that continuous character, since they always occur in se-
quence. 

Quantities are quantities of something. That something 
might be a simple entity (e.g., temperature of coffee in a 
mug), or a situation (e.g., difficulty of a problem to be 
solved).  Being explicit about such connections is important 
for fully capturing knowledge about quantities.  If there is no 
coffee in a mug, its temperature is moot, and a textbook prob-
lem that would be hard to solve with just pencil and paper can 
become much easier with a graphing calculator, for example.  
Quantities are often defined with respect to several dimen-
sions in complex situations.  For example, the pressure of the 
ocean depends on the depth at which it is measured, while the 
temperature when analyzing a smartphone might be meas-
ured at many points within it.  We handle such complexities 
by defining abstract entities which bundle together the multi-
ple properties needed to fully specify what each quantity is 
about.  Thus without loss of generality, domain theories can 
consider just a single entity for every type of quantity.  The 
definition of such complex entities can sometimes be ex-
pressed via model fragments (e.g. a depth parameter of an 
entity) but may require mechanisms outside QP theory (e.g. 
the relevant measurement points in a smartphone thermal 

 
2 Early QP theory implementations allowed arbitrary arity 

quantity types.  This has been streamlined in current implementa-
tions to simply a single entity as suggested here. 

analysis).  The key thing is the clean separation of what de-
fines an entity from quantities of that entity2.   

Multiple representations of time have been used in QR.  
Hayes’ (1985) histories notion combines spatially bounded 
and temporally extended entities that serve as the locus of de-
scription.  Other representations use time-points, including 
numerical time-stamps, to distinguish different times.  We 
note that there is a subtle type/instance distinction in QR, 
namely the idea of a qualitative state as a template for a class 
of behaviors, versus a specific instance of that class.  In QSIM 
(Kuipers, 2003), for example, qualitative states were in-
stances of behaviors, whereas in envisioners such as QUAL 
(de Kleer & Brown, 1984)  and QPE (Forbus 1989) qualita-
tive states represented categories of behaviors.   
 To summarize, the QR notion of quantities revolves 
around fluents, each of which is distinguished by 

 Quantity type: What kind of quantity it is, which 
helps determine what causal laws it participates in. 

 Entity: What it is a quantity of, be it concrete object, 
constellation of objects, or situation. 

 Value: What can be said about its value for some 
specific time or category of behavior. 

 Context: The spatial-temporal scope of statements 
concerning value. 

 
The QR community has mostly focused on constructing 

domain theories that are broadly applicable, so that they can 
cover a wide variety of examples and systems.  Even within 
the physical world, the range of quantity types and situations 
has been small compared to what people have experience 
with in everyday life.  Very few studies have involved social 
reasoning and we are currently unaware of any studies in-
volving qualitative reasoning about mental operations.  
OpenCyc, as demonstrated below, has a wide range of quan-
tity types, and Wikidata has a sea of ground facts which can 
potentially be used for quantitative reasoning, including dis-
tilling generalizations to construct more portable knowledge, 
including QP models (Forbus & Gentner, 1997; Gentner & 
Medina, 1998).  We turn to OpenCyc next. 

3 Quantities in OpenCyc 
The discussion of OpenCyc here is based on the distillation 
of material from several versions, now incorporated as the 
ontological framework for Northwestern’s open-license 
NextKB3.  We have made considerable extensions, including 
new resources for natural language understanding, represen-
tations and support for visual reasoning, spatial reasoning, 
and qualitative reasoning along with support for analogical 
reasoning and learning. 

Much of the knowledge about quantities in OpenCyc con-
cerns values.  The anchoring collection is ScalarQuantity, 
which currently has 4,852 instances.  These include a number 

3 https://www.qrg.northwestern.edu/nextkb/index.html contains 
downloadable files in various formats, browsers, and reasoning 
systems.  We use Creative Commons Attribution 4.0 licensing, 
compatible with OpenCyc, FrameNet, and other resources. 



of qualitative values, e.g. Rarely for low-frequency of oc-
currence, values that are implicit comparisons to everyday 
values (e.g. HouseSized), values that represent ranges (e.g. 
ColdToBitterlyCold), including natural scales (e.g. 
AFewMinutesDuration, AFewHoursDuration and other 
instances of OrderOfMagnitudeInterval).  It also in-
cludes a compositional system for constructing qualitative 
values of any type of quantity, out of sets of ordered symbolic 
ranges, e.g. (HighAmountFn MentalEffortLevel) is 
more than (MediumAmountFn MentalEffortLevel).   
 OpenCyc has a flexible representation for quantitative val-
ues.  Units are explicitly represented, e.g. (DegreeCelsius 
20) denotes 20 degrees Celsius.  Two numerical arguments 
indicate a range, e.g. (DegreeCelsius 15 25) denotes the 
range of temperatures from [15, 25] degrees Celsius.  Higher-
order functions permit composing units, e.g. (PerFn Meter 
SecondsDuration) is a logical function, such that 
((PerFn Meter SecondsDuration) 30) denotes 30 m/s.  
Similarly, multipliers commonly used in unit systems are also 
implemented by higher-order functions, e.g. (Mega Watt) 
for power in the millions of watts range.  Such unit-denoting 
functions are instances of UnitOfMeasurementConcept, 
and in NextKB there are 632 such instances currently.  Nu-
merical computations involving units automatically do any 
necessary conversions in the FIRE reasoning engine (Forbus 
et al. 2010).  FIRE also traps errors in unit computations, e.g. 
units combined by addition or subtraction have to be of the 
same dimension, one cannot add a length and a temperature, 
for example. 
 Entities of quantities are specified via relationships be-
tween the entity and values, with the specific relationship 
providing the type of quantity involved.  For example, (ac-
countBalance FredMattress (Dollar-United-
States 22)) says that Fred has $22 hidden in his mattress.  
These predicates are instances of ScalarIntervalSlot, of 
which there are currently 1,267 more specific predicates. 

For performing qualitative reasoning or textbook problem 
solving (e.g. Klenk & Forbus, 2009; Crouse et al. 2018), 
fluents are needed as constituents of equations and as con-
ceptual entities representing a quantity which takes values 
over time.  Given the extensive set of concepts (aka collec-
tions) in Cyc for values of quantities, we found it useful to 
define a logical function, QPQuantityFn, that denotes a 2nd 
order function whose domain is entities and whose range are 
fluents corresponding to the type of quantity.  For example, 
(QPQuantityFn Temperature) denotes a logical func-
tion which denotes the fluent representing the temperature 
of its argument.  Thus ((QPQuantityFn Temperature) 
Stove) denotes the temperature of the stove.  Another re-
lationship, valueOf, relates fluents to values.  For example, 
if the stove’s temperature is 200 C, we would say 
 (valueOf ((QpQuantityFn Temperature) Stove) 
         (DegreesCelsius 200)).   

Of course, the values of fluents change over time.  There 
are multiple ways to express such differences.  The first is 
holdsIn, a modal operator which takes a time interval and 

 
4 At least to avoid licensing issues 😊. 

a statement, indicating that the statement is true within that 
time interval.  For example,  
(holdsIn CookingDinner  
  (valueOf ((QpQuantityFn Temperature) 
              Stove) 
    (DegreeCelsius 200)))  
indicates that the temperature of the stove is 200 C while 
dinner is being cooked, whenever that is/was/will be.  The 
first argument can be anything that is a TemporalThing, 
e.g. a time interval, but also a complex event (such as cook-
ing dinner).   

The second way to scope the values of fluents is by using 
microtheories.  Microtheories are local contexts.  For exam-
ple, another way to describe the temperature of the stove dur-
ing dinner would be to use a microtheory to describe the spe-
cific dinner, e.g. 
(ist-Information 

   (MealCookingMtFn Dinner 
  (DayFn 20 (MonthFn May (YearFn 2022)))) 
     (valueOf ((QPQuantityFn Temperature) 
                 Stove) 
          (DegreeCelsius 200))) 
indicates that for May 20th, 2022, the temperature of the stove 
was 200 Celsius.  The first argument to ist-Information 
is always a microtheory, the second is a statement that holds 
in that microtheory. 

There are multiple relationships that can hold between mi-
crotheories.  The most fundamental is genlMt, which indi-
cates that one microtheory inherits from a more general mi-
crotheory.  Inheritance is monotonic, e.g., if a microtheory 
inherits from the NaivePhysicsMt microtheory, then, for 
example, the primary object moving in any earthquake is the 
ground.  Every reasoning operation occurs with respect to 
some microtheory, which, along with the set of microtheories 
visible from it via genlMt relations, recursively, define the 
logical environment for that operation.  Logical environments 
should typically be logically consistent, but the knowledge 
base as a whole need not be.  For example, Cyc includes 
knowledge of Marvel comics characters and DC comics char-
acters, but they are distinct microtheories and should not be 
combined4, and they are also kept out of logical environments 
used in applications outside the entertainment industry.  In 
qualitative reasoning systems built using NextKB, microthe-
ories are used to implement incompatible aspects of domain 
theories as required for compositional modeling (Falken-
hainer & Forbus, 1991).  Microtheories are also used to rep-
resent qualitative states.  The common assumptions underly-
ing an analysis that are constant are represented in a mi-
crotheory for that analysis, with specific qualitative states 
represented by microtheories containing statements particu-
lar to that state.  State transitions are represented via relation-
ships between microtheories. 

Aficionados of Hayes’ (1985) notion of histories will be 
pleased to know that representations for his notion of slices 
is available in NextKB as well. AtFn has as its domain Tem-



poralThing and Situation, with its range being Tem-
poralThing.  Situation, in turn, is a generalization of 
Event and StaticSituation, hence it is extremely gen-
eral.  More often used for quantities is MeasurementAtFn, 
which specifies a temporal slice of the fluent, e.g. 
  
(MeasurementAtFn  
   ((QPQuantityFn Temperature) Chicago) 
   Summer)  
 
denotes the temperature of Chicago in the summer. 

Temporal information can also be specified as arguments 
to functions or predicates when needed to handle common 
cases.  For example, the value of money changes over time, 
so USDollarFn takes an argument corresponding to a year. 
For example,  Walter P. Murphy donated ((Mega (USDol-
larFn 1939)) 6) to Northwestern to create its engineering 
school, which is roughly ((Mega (USDollarFn 2022)) 
125), i.e. $6M in 1939 dollars is equivalent to $125M today. 

The OpenCyc ontology provides a rich set of quantity 
types.  Many of them are physical quantities, ranging from 
frequently used types in qualitative reasoning research (e.g. 
Mass, Temperature, Charge) but also geographical quan-
tities (e.g. Biodiversity, DensityOfPopulation, Cri-
meRate). It also includes social quantities (e.g. Glamor, Ar-
rogance, Popularity), mental quantities (e.g. Curios-
ity, Hope, Doubt) and physiological quantities (e.g. En-
durance, Strength, LevelOfSweat).  This breadth pro-
vides conceptual representations that can be used in natural 
language semantics (see below).  The cost of using OpenCyc 
is that many of the axioms which provide the inferential 
power found in the commercial version of Cyc are not avail-
able in OpenCyc.  That is understandable, given that Cycorp 
wants to encourage people to use Cyc instead.  We have de-
cided that, for replicability, it will be better to start with 
OpenCyc and use learning by reading, conversation, and 
other methods of learning to build out the inferential 
knowledge that is needed5. 

To that end, we have constructed broad lexical resources 
for English that tie to the NextKB ontology.  These are di-
vided into two components.  The Nulex lexicon provides 
grammatical features for words, based on Allen’s (1994) 
grammatical features for English.  For example,  
(definitionInDictionary Nulex temperature 
    Temperature-TheWord Noun 
  (TheSet (root temperature) 
   (agr (TheSet 3s)) (mass +)  
   (countable +))) 
is the singular form of the word temperature.  The second ar-
gument is the token form of the word, with the formal repre-
sentation of the word (Temperature-TheWord) being the 
3rd argument.  Part of speech (here, Noun) is next, followed 
by a set of grammatical features.  This statement indicates 
that it is a mass noun as well as a count noun, and that it can 

 
5 Our extensions are all CC-Attribution, so that they can be re-

used by anyone, including commercial organizations.   

be used in 3rd person singular (agr), with another statement, 
not shown, indicating it can also be used for 3rd person plural.   

The second component are semantic translations, mapping 
a word and a given part of speech to expressions in the 
NextKB ontology.  We use FrameNet information as an in-
termediary, e.g. FN_Temperature refers to the FrameNet 
frame Temperature.  For instance, 
(fnSemtrans (TheList) Temperature-TheWord 
            Noun 
  (and (isa :NOUN Temperature)) 
  (frame FN_Temperature) 
(bindingTemplate 
 […] temperatureOfObject […]) 

This defines the word temperature as a noun, within the Tem-
perature FrameNet frame.  The and statement is the direct 
entailment, where the keyword :NOUN is replaced during 
parsing with the discourse variable representing the token in 
the sentence.  The bindingTemplate, details not shown for 
space reasons, indicates that, depending on what other gram-
matical relationships are found in the sentence, the quantity 
slot temperatureOfObject can be used to relate the value 
to the entity, among other things. 

4 Quantities in Wikidata 
Wikidata is a collaboratively edited knowledge graph 

hosted by the WikiMedia foundation. Like its sibling Wik-
ipedia, Wikidata utilizes the distributed-community model of 
editors—as of this writing, thousands of editors and bots have 
made over 1.6 billion edits to over 97 million items. This 
model allows Wikidata to serve as the downstream aggregate 
of otherwise siloed structured data sources. We describe how 
information about quantities is represented in Wikidata. 
 Wikidata is organized around items, with each having a 
unique identifier (QID) and a set of statements about it. Each 
statement is an RDF triple of <subject, property, value>. For 
example, “milk is white” can be expressed as 
<milk (Q8495), color (P462), white (Q23444)> 
Where the terms in italics are the English rendition of the ob-
jects whose ids are in parentheses.  In QR terminology, items 
are entities and values are quantity values.  Properties are 
analogous to OpenCyc’s ScalarIntervalSlots, in that 
they link an entity to a value, with the type of quantity im-
plicit in the relationship.  In some cases the quantity type is 
obvious (e.g. Area, Color), while in others it is more opaque 
(Statistical Population).  Any property can specify con-
straints on its value. Certain properties specify that their val-
ues must be a string, number, date, URL, media file, or an-
other Wikidata entity. Other properties, like capital (P36) en-
force no more than one value since most states have only one 
capital. Since Wikidata consists of RDF triples, it can be que-
ried via a SPARQL endpoint (query.wikidata.org). 
 Wikidata uses the expressiveness of RDF to encode 
higher-order information about triples.  For example, units 
and precision (expressed as a margin of error) can be attached 
to some properties that convey continuous properties, like 



Area (P2046) or Mass (P2067). Other properties convey con-
tinuous values with the unit implicitly left to the understand-
ing of the property itself, like vehicles per thousand people 
(P5167). For example, the United States (Q30) has area 
9,826,675±1 square kilometer and vehicles per thousand peo-
ple 778. While less common, other properties do reference 
qualitative representations of continuous dimensions. Cold 
sweet soup (Q14914664)—the superclass of gazpacho 
(Q202677)—has statement serving temperature (P7767) 
cold (Q270952), where cold is described as “relative or sub-
jective state of low temperature.” 
 Qualifiers6 are another tool used in Wikidata for more de-
scriptive statements. They provide a method for preventing 
local inconsistency, akin to the role of microtheories in Open-
Cyc. In Wikidata, predicates like point in time (P585)  can be 
used to qualify statements like population (P1082), for which 
there may be several different assertions that hold in different 
years. In the case where a country’s capital (P36) may have 
changed, values can be associated with a start time (P580) 
and end time (P582). Since Wikidata is crowd-sourced, some 
items may have disputed values depending on their source for 
a fact. For example, the statement that Earth (Q2) has Crea-
tor (P170) God in Christianity (Q825) is disputed by (P1310) 
Athiesm (7066) and supported by (P3680) Creationism 
(Q130352) and Christianity (Q5043). 
 The correspondence between Wikidata items, properties, 
and values to entities, quantity slots, and values provides a 
strategy for mapping between Wikidata and NextKB, thereby 
potentially making Wikidata a large-scale resource of ground 
facts. The differences between the Wikidata and OpenCyc 
ontologies make importing knowledge a challenge, however. 
One conflict is the lack of distinction between instances and 
collections in Wikidata—an item is considered an instance 
only by virtue of having an instance of property, and a col-
lection if another item has a fact with an instance of or sub-
class of property. In contrast, NextKB strictly distinguishes 
between entities and collections, relying on this structure for 
monotonic inheritance and reasoning. Consider for example 
the OpenCyc predicate  ColorOfType, whose first argument 
is a collection, and whose second argument is an instance of 
Color, e.g. (ColorOfType Milk White). Since Col-
orOfType describes a Collection, it is referred to as a type-
level predicate. Other predicates describe instances them-
selves, like cityInState which takes City and a State-
Geopolitical entities as its arguments, e.g. (cit-
yInState CityOfChicagoIL Illinois-State). Dif-
ferent levels of predicates as well as strict constraints on ar-
gument types makes the assimilation of Wikidata facts a dif-
ficult task. Another source of difficulty comes from the dif-
fering specificity of relationships themselves. While Wiki-
data has one causes property, Cyc has 16 different causal 
relation predicates of varying levels of specificity.  We are 
currently exploring strategies for automatic assimilation from 
Wikidata. 

 
6 For more on Wikidata Qualifiers, see www.wiki-

data.org/wiki/Wikidata:List_of_properties/Wikidata_qualifier 

5 Coverage 
The open-ended nature of quantity types and entities makes 
characterizing the coverage of a knowledge base challeng-
ing.  In our research we use two measures: (a) Does it pro-
vide the facts needed for a task and (b) Can its contents be 
accessed via natural language?  We present two examples of 
such analyses here. 

5.1 Science Olympics Questions 
Back of the envelope (BotE) reasoning (Paritosh & Forbus, 
2005; Bundy et al. 2013) involves estimating values of pa-
rameters from everyday experience and data.  A classic ex-
ample, due to Enrico Fermi, is “How many piano tuners are 
there in Chicago?”  An exact number isn’t the point—the 
goal is to come up with a reasonable estimate.  Assuming 
pianos are kept in tune, one might start by asking how many 
pianos there are in Chicago and how often they need to be 
tuned, to estimate demand for such services.  How many pi-
anos might in turn be estimated by what fraction of house-
holds have pianos, and how many households there are in 
Chicago.  In other words, it is a recursive process: If one 
knows a number, done.  If not, then figure out a reasonable 
model in terms of other parameters, and then try to estimate 
those. 
 Among the examples used in Paritosh (2007) is a small cor-
pus of 35 back of the envelope questions from the Science 
Olympics, a particularly challenging set of such questions. 
Paritosh provided the data by hand, in order to show that the 
families of strategies he had identified sufficed to solve a 
broad range of BotE questions.  Here, we ask how much of 
the numerical data needed by these questions can instead be 
supplied by Wikidata, as one estimate of its coverage.   

Here is an example from the Science Olympics: 
“To what height could loose-leaf paper be stacked if 
you possessed Avogadro’s number of sheets?” 
 If a sheet of paper is 0.1 millimeters and Avogadro’s 

number is 6.02×1023 – both pieces of information from Wik-
idata – and we assume the paper is incompressible, then the 
model of a linear stack of paper yields  

0.1mm × 6.02×1023 = 6.02×1019m 
 

 DATA FOUND ESTIMABLE 
# QUESTIONS 22 29 
% COVERAGE 63% 83% 

Table 1: Analysis of Science Olympics BotE coverage 

Of the 35 questions in the Science Olympics dataset, 22 
(63%) can be answered by using BotE strategies with data 
readily available in Wikidata (Table 1).  There are two other 
strategies based on analogy that can extend the set of prob-
lems solved.  The first is the KNACK algorithm (Paritosh & 
Klenk, 2006) which uses analogy to combine information 
across several instances to build an estimator for new in-



stances of that category.  For example, when asked to esti-
mate the weight of the human population of Earth, it is hard 
to do without an estimate of how much a person might 
weigh.  While this information is not available for generic 
humans in Wikidata, weights for various celebrities are 
known, and KNACK could be used to estimate how much a 
generic person weighs by using the weights of celebrities as 
examples. A second strategy is to use a sibling example, e.g. 
in a question about hydrogen atoms, where Wikidata doesn’t 
have size information, the system could still succeed in 
providing an estimate (while cruder) by using the size for 
oxygen atoms, which Wikidata knows the size of. With 
these two strategies, seven more problems can be solved 
(83%) (Table 1).  The remaining six questions require data 
that is both unavailable directly and for which no reasonable 
model that uses Wikidata-available data currently available 
exists.  In all cases, a small number of additional ground 
facts would suffice to solve them.  Given that Wikidata is 
being built totally independently of this task, we find it en-
couraging that it already covers so much, and of course its 
crowd-sourced nature makes it easier for humans (or bots) 
to extend it.   

5.2 The QuaRel Dataset 
QuaRel (Tafjord et al. 2019) is a dataset intended to test the 
ability of ML systems to learn to process comparative analy-
sis problems (Weld, 1990) stated in natural language.  For 
example, 

“Rod was rolling a ball to his dog. He was able to 
roll the ball much farther on the cement than on the 
grass. This is because the cement is (A) rougher (B) 
smoother?” 

Here the two events being compared are rolling events, var-
ying in the surfaces (antecedent quantity: smoothness) lead-
ing to a variation in outcomes (consequent quantity: dis-
tance).  The underlying causal laws, here a qualitative pro-
portionality over rolling episodes that distance depends on 
smoothness, were provided to the systems. 
 The best system performed at 77% accuracy (Mitra et al. 
2019).  An earlier version of our lexical resources and NL 
system were used with analogical learning to achieve 60% 
accuracy (Crouse & Forbus, 2020), which is equivalent to 
what AI2 was originally able to achieve on this dataset.  We 
believe the difference between the best system and ours is 
that we used AI2’s provided semantic representation as a 
target for our system, instead of the more expressive con-
structs found in NextKB.  None of the higher-performing 
systems used AI2’s semantic representations. Humans are at 
96% accuracy, so there is plenty of headroom in this task. 
Consequently, we are looking again at QuaRel, to see if us-
ing our more expressive representations with analogical 
learning can provide more data-efficient learning and in-
spectability.  Thus the QuaRel dataset provides one data 
point about NL coverage.  In QP terms, every QuaRel ques-
tion implies at least one ordinal relation, perhaps conveyed 

by a superlative (e.g. “which is hotter, …” versus “Which is 
hottest, …”).   

To examine coverage, we looked at the meanings of the 
words used in questions to see if any of them mapped to a 
quantity (either a value or a quantity type), an ordinal rela-
tion, or a superlative.  This bears most directly on NextKB 
coverage, factoring out grammar and semantic interpretation 
rules and strategies.  We used the QuaRel training set, which 
consists of 1,940 questions.  On average, there were 3.2 quan-
tities per question and 1.8 ordinals per question.  This is what 
one would expect, since comparative analysis questions are 
often formulated as a comparison between two antecedent 
quantities, with the question concerning a comparison be-
tween a consequent quantity with respect to the comparison 
between the two situations already introduced.   

Let us look at the extremes to gain some insights.  First, 
where is there missing quantity information?  There are only 
14 questions where no quantity, ordinal, or superlative infor-
mation is detected, i.e. less than 0.7% of questions.  There are 
two missing lexical items responsible for most of them.  (1) 
“further” did not have an appropriate semantic translation as 
an ordinal comparison over distance, and (2) “first” did not 
have a translation corresponding to earliest in time, a missing 
superlative.  The rest are due to words found only in a partic-
ular question (e.g. “bright” as in degree of luminesce) or more 
complex constructions that imply quantity-specific ordinals 
or superlatives.  Examples of the latter include “is passed by” 
which implies a speed difference, and “gets the jump on the 
other”, e.g. when accelerating from a stop light, which vehi-
cle has higher acceleration. Sometimes implicit limit points 
are used, e.g. two objects thrown at a wall, if one breaks and 
the other doesn’t, then the fragility of one is higher than the 
other.  Second, this analysis does not take into account poly-
semy, e.g. there are words with senses that are quantities but 
also that aren’t (e.g. “work” in the physics sense versus the 
job sense).  How often might this analysis over-estimate the 

amount of available information?  Suppose we take four 
quantity types as the most that would normally appear in a 
comparative analysis question (one each of the antecedent 
and consequent quantities, for each of the two situations be-
ing compared).  Under that assumption, any question with 
more than four quantities is exhibiting polysemy.  (We note 
that four or less does not guarantee no polysemy, but for au-
tomated analysis, we live with the approximation.)  Figure 1 
shows a histogram of quantities per question.  1,478 questions 

 
Figure 1: Estimating Polysemy 



have four or fewer words with quantity interpretations, sug-
gesting that 462 questions, or 24%, are exhibiting polysemy 
in quantity terms. Since the NLU system we are using strives 
for a high-precision understanding of text, the gaps in cover-
age are more of a concern than polysemy, since the syntactic 
knowledge in the parser and sematic constraints typically 
prunes excess alternatives. However, QuaRel is crowd-
sourced, and thus is more noisy than curated sources.  There 
are questions with missing words (e.g. “The is very bright and 
the stars aren’t as bright” where from the alternatives one can 
infer “sun” is missing), incorrect words (e.g. “Who will get 
their first?” in reference to comparing arriving events, “there” 
should have been used), and poor grammar.  People typically 
use context to puzzle out such texts, and we believe that strat-
egy will be productive for AI systems as well.  That is, com-
parative analysis questions involve two situations to be com-
pared with antecedent and consequent properties connected 
by a qualitative causal relationship, so even if implicit (e.g. 
increase in strength across a period of weight training), con-
structing meanings that fit this template might provide a way 
for systems, like people, to puzzle out the meaning of noisy 
texts. 

7 Discussion and Future Work 
Quantities are at the core of qualitative reasoning about con-
tinuous systems, be they physical, social, or mental.  This pa-
per argues that combining the ideas of quantities from quali-
tative reasoning research with knowledge of quantities repre-
sented in NextKB and Wikidata can provide valuable bene-
fits.  NextKB, which incorporates OpenCyc’s quantity repre-
sentations and extends them in various ways, provides a rich 
vocabulary of concepts pertaining to quantity types and their 
values, as well as integrating them into natural language re-
sources for English.  Wikidata provides a massive set of 
ground facts about quantity values.  Thus each provides com-
plementary materials that, together, provides a new set of ca-
pabilities that can be tapped to take qualitative reasoning re-
search into new frontiers.   
 We see four lines of future work.  First, we have only be-
gun laying out the mappings between NextKB and Wikidata, 
adding them by hand as we need them for tasks.  We would 
like to make this process more automatic, with systems pro-
posing new mappings and testing them both by reasoning and 
by asking human collaborators.  Second, we plan to use these 
resources to explore a variety of language-based reasoning 
tasks (e.g. back of the envelope reasoning, social reasoning, 
and metacognitive reasoning).  Third, we plan to develop 
strategies for NL-using systems to puzzle out meanings when 
they have trouble understanding texts, moving to a model of 
incremental learning during task performance, rather than the 
train/test/operate distinct cycles prevalent in ML practice to-
day.  Fourth, we hope that others will join us in extending 
these resources, including language resources beyond Eng-
lish.  Just as there are FrameNets for other languages7, ex-
tending NextKB to incorporate linguistic resources for other 

 
7 https://framenet.icsi.berkeley.edu/fndrupal/frame-

nets_in_other_languages 

languages would both make it more useful to others, but also 
help shed light on how languages vary in how they package 
up conceptual structure (e.g. Gentner & Boroditsky, 2001).   
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