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ABSTRACT 

Research in AI & Law has sought to model common-law case-

based reasoning by creating analogies from cases, extracting and 

applying rules from cases, or both. This paper presents a new 

approach to extracting legal information from cases and several 

methods to apply that information to new cases, including by 

analogy and by converting what the system has learned into logical 

rules. It evaluates these approaches on a recently introduced legal 

dataset and compares results to off-the-shelf machine-learning 

techniques. We conclude that abstract legal information can be 

extracted from similar cases through analogical generalization, and 

that the extracted legal schemas can be used to reason about and 

solve subsequent cases both by analogy and by rules. 
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1 Introduction and Background 

In Common Law legal systems, cases are resolved by reference to 

and consistent with prior decisions settling similar claims. While 

there is debate within the legal academy over whether precedents 

are applied by analogy to new cases [1], encode rules revealed 

through precedential analysis [2, 3], or declare rules outright (with 

analogies used for illustration) [4, 5], it is clear that if a prior case 

in a jurisdiction concerns the same legal issues as some case at bar, 

the prior reasoning and decision governs the latter. As one of the 

central pillars of the Western legal tradition, common law legal 

reasoning has been a focus of the AI & Law research community.  

 This paper introduces a new approach to computational 

precedential reasoning, inspired by and adapting tools from 

cognitive science. Our three algorithms perform legal reasoning 

using analogical generalization, analogical case-based reasoning, 

and rule-based reasoning. Taken together, these three algorithms 

define a process by which a body of case law can go from being a 

disconnected set of cases applied directly to a new case at bar, to 

an abstract representation of what those cases have in common, and 

finally to formal rules governing those cases, even as the cases 

continue to be used for reasoning. We evaluate these algorithms 

using the Illinois Intentional Tort Qualitative Dataset [6], a dataset 

of structured, relational cases in predicate logic, extracted from 

Illinois tort cases using a natural language understanding system. 

 This research builds upon AI & Law research on precedential 

reasoning, analogy, and rule-learning. GREBE used first-principles 

and analogical case-based reasoning to evaluate claims for worker-

compensation [7]. Given case facts in propositional logic, GREBE 

used first principles to derive facts known to be relevant to such 

claims, then used backchaining and an implementation of the 

Structure Mapping model of analogical reasoning [8] to create 

mappings to precedents. The result of the precedent mapping the 

greatest portion of the current and past cases was applied to the new 

case. Precedential reasoning was used to derive intermediate 

propositions in the larger rule-based reasoning system.  

 The HYPO family of legal reasoning, case-based reasoning, and 

argumentation resolves cases through an analogical dialogue [9-

11]. HYPO-style reasoners operate over factors, legally relevant 

concepts—essentially labeled fact-patterns—that may be present in 

a situation. Given a case (encoded as factors), a HYPO algorithm 

operates in three steps. The case in the library sharing the most 

factors with the new case is first retrieved as an analogue, and its 

outcome proposed for the new case. The system then argues against 

itself, by distinguishing the retrieved case, proposing a different 

analogue, or reinterpreting the mapping. Finally, the system 

responds to its counterargument. Factors have become a primary 

representational formalism in AI & Law. Research using factors 

has relied on humans to identify the set of possible factors, though 

once identified factors can be automatically associated with case 

descriptions using AI textual analysis techniques [12]. 
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 Other research represents cases as logical statements that, along 

with the outcomes of the case, encode rules and arguments. Horty 

[13] developed a logical formalism that weights rules extracted 

from precedents and preferentially applies them to new cases using 

formal logic. Verheij [14] uses sets of cases that are logically 

consistent, different, and mutually compatible, to learn case models 

that capture doctrinal rules that the cases collectively encode. Cases 

can be applied through the rules they encode, or by applying a 

case’s outcome based on statements it shares with the new case. 

These approaches allow the rules governing a system to be used 

without having access to the entire rule set. They demonstrate how 

to leverage legal case bases and to extract rules from formalized 

cases, but assume a representational formalism not easily extracted 

from natural language case descriptions.  

 Van Woerkom and colleagues [15] developed a system that 

reasons over a dataset of real-world recidivism cases represented as 

dimensions, which are like continuous factors. This system 

determines from the data which dimension values favor which 

outcome, then uses that information to identify landmark cases 

which should maximally constrain other cases in the dataset. This 

approach may be effective for domains where case information is 

highly formalized (the data in question included information about 

age, sex, number of prior offenses, etc.). That said, the system does 

not learn rules across the cases, and representing cases in other 

domains as dimensions may require human involvement.  

 Our research departs from these prior approaches by avoiding 

using human-encoded specialized legal knowledge while 

maintaining the expressivity of encoding cases in predicate logic. 

Instead, legally-relevant fact patterns are identified by comparing 

the raw events of precedent cases. This case comparison, using a 

computational model of analogy inspired by human analogical 

reasoning, reveals which facts are significant.  

2 Structure Mapping 

When lawyers search through precedents to find one on point for 

their case, they do not forget each precedent they examine before 

moving on to the next. Humans naturally recognize analogies and 

form schemas when examining similar cases, a comparison which 

invites abstraction and helps discover the principles governing 

those cases [16]. Thus, regardless of the role analogy may play in 

resolving a new case given its precedents, analogical learning 

across the precedents themselves might be a means to reveal the 

rules that govern them and therefore apply to the new case.  

 Regardless of whether this is how human lawyers extract rules 

from precedents, it also provides a method to determine what the 

content of rules actually are, as opposed to what a judge has said a 

rule is in any given case. That is, a judge may declare a rule that 

factors A, B, and C lead to outcome X in some case, only for some 

future judge in a case lacking factor C to say that the prior judge 

misunderstood their own rule, and that factors A and B are 

sufficient for outcome X. An approach that discerns rules by 

comparing multiple precedents could provide a more accurate 

understanding of what the rule governing some domain is, rather 

than treating a single declaration of the rule as dispositive. 

 The Structure Mapping Engine (SME) [17] is a computational 

model of analogy and similarity based on Structure Mapping 

Theory [8]. SME takes two structured, relational cases—base and 

target—and computes up to three mappings between them. A 

mapping contains the alignment between the cases (entity and 

expression correspondences), candidate inferences (CIs) suggested 

by the alignment, and a similarity score measuring match quality. 

If projecting a CI involves an entity not in the case, it will be 

postulated as a skolem (i.e., a new variable). Our systems reason 

using an ontology and knowledge base built atop OpenCyc [18].  

    Running SME across all cases in memory is prohibitively 

expensive and cognitively implausible. MAC/FAC [17] models 

analogical retrieval based on evidence regarding human memory 

retrieval. It uses a probe case to perform a reminding over a case 

library, outputting SME mappings between the probe and retrieved 

cases. MAC/FAC first efficiently computes dot products between 

content vectors of the probe and each case in the library (a coarse 

measure of similarity). Up to three cases are then passed to SME, 

which returns up to three mappings between them and the probe.  

 SAGE [19] is a model of analogical generalization built on SME 

and MAC/FAC. Given a new case, SAGE uses MAC/FAC to 

retrieve a similar case or generalization. If the SME score between 

the retrieved case and the probe is above an assimilation threshold, 

SAGE generalizes the cases together using that mapping; else the 

case is added to the library ungeneralized. SAGE generalizations 

are a joint distribution over the facts of all constituent cases, with 

each fact stored together with its probability (the proportion of 

cases in that generalization that contain it). Generalizations can be 

used as cases for SME comparisons, with facts whose probability 

falls below a preset threshold (the probability cutoff) excluded from 

the generalization’s reasoning case. SAGE reasoning occurs within 

a particular generalization pool (gpool), a case library containing 

generalizations and ungeneralized outliers.  

 This research uses a modified version of SAGE called 

Conclusion-verified Analogical Schema Induction (CASI) [20]. 

CASI involves knowing the form of a case’s conclusion—a target 

predicate—and excluding it during retrieval and mapping. Instead 

of using similarity scores to control generalization, CASI checks 

whether the case’s conclusion is amongst the candidate inferences 

in the mapping from the retrieved case to the probe. If so, the 

mapping would be sufficient to solve the probe case were the 

conclusion unknown. CASI uses that mapping to generalize the 

case (and its conclusion) with the retrieved case. 

3 Analogical Generalization and Reasoning for 

Common Law Reasoning in Tort 

Here we describe our three experimental algorithms. All three 

algorithms involve using CASI to build generalizations of legal 
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cases before reasoning about held-out cases in light of what the 

system has learned through generalization. These algorithms 

together illustrate a cycle by which rules can be extracted from a 

body of case law even as the cases are used for non-rule-based 

precedential reasoning. The first algorithm is Purely Analogical 

Precedential Reasoning (PAPR), which involves using SME to 

reason by direct analogy about held-out cases in light of the learned 

generalizations and ungeneralized cases. The second algorithm, 

Analogical Reasoning with Positive Generalizations (ARPG), also 

uses SME to reason about held-out cases, but only in light of 

positive generalizations, not negative ones or ungeneralized 

examples. ARPG resolves cases by reasoning about the constructed 

analogies, not directly with them. The third algorithm, Reasoning 

with Rules Learned from Generalizations (RRLG), transforms the 

positive generalizations used in ARPG into Horn clauses, and 

applies those rules to held-out cases with back-chaining.  

3.1 Purely Analogical Precedential Reasoning 

Our first algorithm, Purely Analogical Precedential Reasoning 

(PAPR), is presented in Figure 1. PAPR starts by gathering all cases 

in the dataset in the same doctrine as the case at bar and creating 

generalizations from them using CASI. (The doctrine is always 

known: one can know of what one is accused without knowing 

what the outcome of the case will be). One gpool is used for 

positive cases (cases where a party was found liable) and another 

for negative cases (where no party was liable). PAPR performs a 

reminding over the union of positive and negative gpools using the 

case at bar as a probe, retrieving cases from the library and 

outputting mappings from those cases to the one at bar. The CIs 

from the top mapping that represent conclusion statements (i.e., 

hypothesized solutions) are inspected, and inferences with skolem 

variables are rejected. The algorithm returns as its case outcome the 

skolem-free conclusion CI from its top-scored mapping. To 

separate the system’s capacity to get the correct answer from its 

ability to get it right the first time, we also ran a condition where 

the system was able to check its answer against the held-out truth 

and examine other mappings or perform more retrievals. In this 

latter condition the system examines up to six mappings that 

contain a grounded conclusion statement, for Precision@6. 

3.2 Analogical Reasoning with Positive 

Generalizations 

The second algorithm, Analogical Reasoning with Positive 

Generalizations (ARPG), is presented in Figure 2 and reflects the 

fact that negative cases are united largely by not being positive. 

Negative cases might help define the boundaries of a legal 

generalization [19], but it is positive cases that demonstrate what a 

legal claim is. ARPG reasons from positive generalizations, 

measuring whether learned schemas distill facts relevant to a legal 

claim. And consider what these generalizations contain: only the 

high-probability facts common to the cases that participate in the 

generalization. We hypothesize that legal cases are sufficiently 

varied that a broad variety of positive legal cases should only have 

in common the facts relevant to the legal claim, with facts 

idiosyncratic to particular cases but irrelevant to the claim stripped 

away through the learning process. The generalizations should be 

self-contained legal principles that associate a legal conclusion with 

an abstract set of facts that lead to it. (Note that we do not use “legal 

principles” to refer to norms or rules, but simply sets of abstract 

facts associated with outcomes.) Analogizing an unsolved legal 

case that contains all the elements of some claim to that 

generalization should generate only one CI: the case conclusion.  

 ARPG starts by creating generalizations of positive cases 

(excluding the case at bar), then discards ungeneralized examples. 

It uses the case at bar as a probe to retrieve over the generalizations, 

looking for skolem-free conclusion CIs. ARPG then takes the best 

mapping with a grounded case conclusion CI and examines how 

many other CIs it contains. If it has other CIs, ARPG concludes that 

the case is a negative case, with the other CIs corresponding to the 

missing elements of the claim. If the conclusion statement is the 

only CI, ARPG concludes it is a positive case. 

Note that in general the presence of additional CIs should not 

count against whether a generalization is a good analogical match 

for a new case. Schema-building does not generally remove all 

idiosyncratic case facts, since some irrelevant facts may be highly 
Figure 1: Purely Analogical Precedential Reasoning (PAPR) 

Pseudocode 

Given case c, case set cs, conclusion predicate cp: 

PAPR(c, cs): 

 1. pos = positiveCases(cs); neg = negativeCases (cs) 

 2. Gpools pg = CASIgeneralize(pos);  

ng = CASIgeneralize(neg) 

 3. Probe pc = nonConclusionFacts(c) 

 4. Gpool Case Library cl = union(pg, ng) 

 5. Reminding r = reminding(pc, cl) 

  6. If r: 

   7. For mapping m in r: 

    8. Inferences CIs = candidateInferences(m) 

    9. groundCIs = {i in CIs if not containsSkolem(i)} 

    10. If groundCIs: 

     11. For inf ∈ groundCIs: 

      12. If predicate(inf) = cp: 

       13. Return inf as conclusion to c 

    14. Else: [if here, m did not solve c, try others] 

  15. Else: [no mapping in r solved c; strike rejected cases] 

   16. Retrieved cases retr = retrievedCases(r) 

   17. Updated Case Library cl = cl – retr 

   18. [go to step 5]. 

 

Note: For Precision@N testing, replace step 13 with these: 

       13(a). depth += 1 [depth is initialized to 0] 

       13(b). If depth > N: Return fail. [N reached] 

       13(c). Conclusions SC = {conclusion(c)} 

       13(d). If inf ∈ SC: Return inf  
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correlated with case outcomes and therefore will be present in the 

schema. If so, they eventually will get hypothesized as a candidate 

inference for a case where the correlate happens not to be true. For 

example, if building a schema about the concept “dinner,” one 

high-probability fact may be that it is an evening meal; when using 

the schema to reason about a festive afternoon dinner, SME might 

hypothesize that the meal occurs in the evening. The presence of 

that CI does not mean that afternoon meal is not dinner. But by 

hypothesis the legal domain is an exception, because the legally-

relevant facts that unite legal cases are fairly abstract. Abstract facts 

are less situationally-specific and will thus share fewer correlative 

facts across cases. And even if this hypothesis about legal schemas 

is wrong, ARPG’s reasoning method can still be useful—it will just 

require some process after schema-building to identify and remove 

those extraneous facts from the generalization. 

 ARPG can use a partial truth check by tolerating extra CIs, i.e., 

whether extra CIs besides the case conclusion can be tolerated 

before concluding that the case is negative. Tolerating extra 

inferences allows the system to reason with generalizations that 

may not have stripped away all legally irrelevant facts. As with 

PAPR, in addition to evaluating the ARPG on its first returned 

answer, we evaluated it using Precision@6: in this condition, if 

ARPG was either mistaken about what kind of case (positive or 

negative) the case at bar is, or if it correctly concludes that it is a 

positive case but generates the wrong conclusion, it will move on 

to other mappings or perform a re-retrieval, examining up to six 

mappings with grounded case conclusions.  

 Where PAPR’s performance can be properly understood to 

measure the extent to which analogy can be used to solve legal 

cases (by analogy to other cases and generalizations), ARPG is 

more a measure of the extent to which analogical generalization can 

learn accurate and useful legal principles. ARPG simply will not 

work if it does not have sufficiently clean generalizations of legal 

principles (this point is further explored in [20]). Thus PAPR is a 

measure of the usability of SME as a legal reasoning technique, 

whereas ARPG measures the effectiveness of analogical 

generalization in learning legal concepts. 

 In this dataset, each solution takes the form of a ternary 

predicate, expressing who did what to whom. For example,  

(assaultsPartyByDoing Fred Rick punch123)  

means that Fred assaulted Rick when he performed the action 

punch123; similarly,  

(not (trespassOnPropertyByAction Carl 

lawn456 walk789))  

means Carl did not trespass on the property lawn456 by taking 

action walk789. Given this, we can evaluate PAPR and ARPG 

using a partial truth check to measure of the extent to which a 

mapping produces the right answer. The partial truth check requires 

the first argument in the ternary predicate to be correct (i.e., the 

accused must be correctly identified), but then is satisfied with only 

one of the two remaining arguments. That is, it would rate  

(assaultsPartyByDoing Fred Rick kick246) 

and 

(not (trespassOnPropertyByAction Carl 

house357 walk789))  

as partially true statements of the above conclusions. 

3.3 Reasoning with Rules Learned from 

Generalizations 

The final algorithm, Reasoning with Rules Learned from 

Generalizations (RRLG), closes the loop on how legal rules (not 

just principles) are extracted from precedents and applied to a case 

at bar, by converting ARPG’s positive generalizations into rules 

and using them to reason about a new case. RRLG is presented in 

Figure 3. RRLG begins with the same generalizations generated for 

ARPG. It discards all generalization facts below ARPG’s 

probability threshold, preserving the same facts that would be put 

Figure 2: Analogical Reasoning with Positive Generalizations 

(ARPG) Pseudocode 

Given case c, case set cs, conclusion predicate cp, number of extra 

candidate inferences tolerated error: 

ARPG(c, cs): 

 1. pos = positiveCases(cs) 

 2. gpool of all cases gAll = CASIgeneralize(pos) 

 3. reasoning gpool g = generalizationsInGpool(gAll) 

 4. Probe pc = nonConclusionFacts(c) 

 5. Reminding r = reminding(pc, g) 

  6. If r: 

   7. For mapping m in r: 

    8. Inferences CIs = candidateInferences(m) 

    9. groundCIs = {i in CIs if not containsSkolem(i)} 

    10. If groundCIs: 

     11. For inf ∈ groundCIs: 

      12. If predicate(inf) = cp: 

       13.  otherCIs = CIs - inf 

       14. If count(otherCIs) > error:  

       [If # non-conclusion CIs > error, negative] 

        15. Return (not inf) as conclusion to c 

       16. Else: Return inf as conclusion to c 

    17. Else: [if here, top mapping did not solve c, try others] 

  18. Else: [if here, no mapping in r solved c; strike reject cases] 

   19. Retrieved cases retr = retrievedCases(r) 

   20. Updated Case Library g = g - retr 

   21. [go to step 5]. 

 

Note: For Precision@N testing, replace steps 13–16 with these:  

       13. depth += 1 [depth is initialized to 0] 

       14. If depth > N: Return fail. [N reached] 

       15. otherCIs = CIs – inf 

       16. If count(otherCIs) > error: 

        17. If isNegativeCase(c): 

         18. Return (not inf) as conclusion to c 

        19. Else: [Wrong answer, keep trying] 

       20. Else: [The conclusion CI is the only CI] 

         21. Conclusions SC = {conclusion(c)} 

         22. If inf ∈ SC: Return inf 
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into a generalization’s case for reasoning by analogy; our 

experiments used a probability cutoff value of 0.6. Next, RRLG 

converts all generalized entities into logical variables. Although it 

was not relevant here, RRLG does not replace ungeneralized 

entities with variables, since any ungeneralized entity participating 

in a high-probability fact is involved in several cases, and is 

therefore presumably important to the principle governing them. 

Next RRLG produces a Horn clause, installing the variablized legal 

conclusion as the consequent of the rule and all other facts as 

antecedents. (The conclusion is again identifiable based on its 

predicate.) Finally, RRLG filters rules whose antecedents do not 

bind all consequent variables. To apply RRLG to a case at bar, the 

algorithm queries for the case at bar’s conclusion in a query context 

that shares the facts of the case and RRLG’s learned rules. For 

positive cases, it labels the case as being correct if it is able to derive 

the correct legal conclusion; for negative cases, it labels the case as 

being correct if it is unable to derive the legal conclusion. 

 These three algorithms define a spectrum regarding the role of 

analogy in legal reasoning. All three use analogical generalization 

to find principles common to legal cases, but how those principles 

are used varies by technique. In PAPR the system seeks to resolve 

cases purely by analogy: generalizations might improve analogical 

reasoning, but generalized and ungeneralized—and positive and 

negative—cases are equally informative. ARPG still reasons by 

analogy but restricts itself to the learned principles and reasons 

about the analogies, not just using the analogies. Finally, in RRLG 

the case at bar is not reasoned about by analogy at all, but using 

rules extracted from the learned legal principles. 

4 Experimental Validation 

We tested our methods against each other and several off-the-shelf 

machine learning baselines, on Assault, Trespass, and Battery cases 

from the Illinois Intentional Tort Qualitative Dataset [6]. This 

dataset includes historical Illinois common law cases in tort, 

including the original case facts and legal conclusions, a simplified 

English description of those case facts that is machine-readable by 

the CNLU natural language understanding system [21], the 

predicate logic representations CNLU extracts from the simplified 

descriptions of those case facts, and predicate logic statements of 

the case’s legal conclusions. The experimental dataset includes 17 

assault cases (12 positive, 5 negative), 40 battery cases (30 positive, 

10 negative), and 43 trespass cases (29 positive, 14 negative). The 

greater number of positive than negative cases reflects the fact that 

judges are more likely to publish case opinions in cases where a 

party is found liable than those where they were not. 

We ran RRLG, PAPR, ARPG and several baselines on these 

cases, varying PAPR and ARPG’s parameters. First, we ran both 

PAPR and ARPG using both the strict and the partial truth tests. 

We also ran ARPG with a tolerance for either 0, 1, or 2 extra CIs 

allowed when inferring a positive case, to determine whether the 

generalizations generated might be noisy. Finally, we tested PAPR 

and ARPG using both Precision@1 and Precision@6 testing. For 

Precision@1 the system would return the first answer it generated 

with a grounded conclusion inference, but for Precision@6, the 

system would check its answer against the held-out ground truth: if 

it was wrong and the system had not yet checked six mappings, it 

would move on to other mappings and retrievals. (RRLG can only 

generate one answer to its queries, so Precision@6 is impossible). 

SAGE, like humans, is sensitive to the order in which it receives 

cases. We tested both PAPR and ARPG on generalizations from a 

randomized case order (randomized for each new case at bar, i.e., 

not the same random order across cases), and on generalizations 

from a hand-selected case order that grouped like cases together for 

input into CASI. Because the non-random order was more 

effective, we only ran RRLG using the hand-selected case order. 

For baselines, we used two BERT models and two GPT models. 

All models were retrieved from HuggingFace’s library and were 

tested on the simplified English descriptions of the cases that had 

been used to generate the predicate logic representations operated 

over in our experimental conditions. Our BERT models were 

roBERTa and legalBERT, a version of roBERTa pretrained on 

legal text. To test our BERT models we turned our cases into 

multiple-choice tests and had the model select the best answer. 

Three false solutions to each case were generated by taking the 

original case solution and reversing the parties’ roles, negating the 

original conclusion, and negating and reversing the conclusion. 

Like RRLG, our BERT model always returned the same answer, so 

we did not test it using Precision@N. 

Figure 3: Reasoning with Rules Learned from 

Generalizations (RRLG) Pseudocode 

Given case c, case set cs, conclusion predicate cp, probcutoff p: 

RRLG(c, cs): 

 1. ruleset = {} 

 2. pos = positiveCases(cs) 

 2. gpool of all cases rawG = CASIgeneralize(pos) 

 4. reasoning gpool g = rawG - outliers(rawG) 

 5. For genl ∈ g: 

  6. highProbFacts = {f for f in genlFacts(genl) where P(f)>p} 

  7. genEntVars = generalizedEntities(genl) 

  8. logicVars = {(i, logicVar(i))} for i in genEntVars 

  9. rawConc = conclusion(genl) [of form cp(X)] 

  10. rawAntes = {highProbFacts – rawConc} 

  11. ruleConc = replaceVars(rawConc, logicVars) 

  12. antes = {replaceVars(a, logicVars)} for a in rawAntes 

  13. Horn = makeHornClause(ruleConc, antes). 

  14. If ꓯ variables(ruleConc) ∈ variables(antes): 

   15. ruleset += Horn 

 16. Case facts cf = nonConclusionFacts(c) 

 17. Conclusions Concs = {conclusion(c)} 

 18. For conc ∈ Concs:  

  [query the case conclusions given case facts and learned rules] 

  19. ans = query(conc, cf + ruleset)  

  20. If ans: Return ans 

 21. Else: Return “c is a negative case” [no conclusions derived] 
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The GPT models were GPT-2 and GPT-J, a model based on 

GPT-3 with 1.3 billion parameters. We fine-tuned and tested our 

GPT models using 5-fold cross-validation. We tested GPT models 

using the case problem as a prompt and having the model generate 

up to 100 tokens as a completion six different times. We examined 

case completions to determine whether they contained the correct 

solution to the case, both looking only at the first answer generated 

(Precision@1) and at all six (Precision@6). We defined an answer 

as partially true if it contained the correct solution regardless of 

whether it also contradicted that solution, and strictly true if it did 

not contradict itself. All told we had 17 variations of our 

experimental conditions and 5 baselines; with both Precision@1 

and Precision@6 testing, we examined a total of 32 conditions.  

Techniques were compared using proportion tests. As an initial 

matter, our analysis demonstrated that legalBERT and GPT-J (strict 

truth test) significantly outperformed roBERTa and GPT-2 (both 

p < 0.0001). Furthermore, when directly comparing our own 

experimental methods (PAPR and ARPG) on randomized vs. non-

randomized training sets, we found that using our hand-selected 

nonrandom order consistently trended better than using random 

order, but never significantly outperformed the random order 

(either overall or when looking at individual doctrines or case 

valences). To simplify reporting results (and to report only the 

higher-performing version of each method), we only report results 

on legalBERT and GPT-J baselines, and only on nonrandom 

training orders for our own techniques. The reported techniques are 

identified in Table 1. Table 2 shows results from each technique, 

presenting performance by raw score and percentage accuracy, 

overall and broken down by doctrine and case valence, and using 

Precision@1 and Precision@6. Head-to-head comparisons of 

techniques are presented in Tables 3 and 4, which present results 

using Precision@1 and Precision@6, respectively. 

4.1 Precision@1 vs. Precision@6 

Before comparing the methods’ performance, we offer two more 

general observations regarding our evaluation. As noted above, we 

tested methods capable of generating multiple answers using both 

Precision@1 (taking the first answer as the system’s output) and 

Precision@6 (having the system check its answer against the held-

out truth and try again if it was wrong, up to six times) to separate 

a method’s ability to generate the right answer from its ability to 

generate the right answer on the first try.  Separating these is 

critical: because the MAC/FAC case retrieval system is not a core 

claim of our reasoning approaches, it is important to know whether 

the failure of an analogical reasoning system is attributable to the 

reasoning system itself, or to the system that retrieves the case for 

reasoning. In the real world precision@6 testing is impossible 

because it requires knowing the ‘correct’ outcome of a case, but 

using a historical dataset allowed our systems to check their own 

work (on the assumption that every case in the dataset was decided 

correctly, which is not necessarily true). As Table 2 demonstrates, 

evaluating using Precision@6 leads to improvement over using 

Precision@1 across the board, on both our own methods and on the 

GPT-J baselines. The difference in overall performance was 

significantly improved by testing with Precision@6 for every 

technique except ARPG with 0 additional CIs allowed.  

But interestingly, it was not only these methods’ performance 

relative to themselves that changed, but also performance relative 

to each other. GPT-J significantly underperformed nearly all other 

methods using Precision@1, even as it outperformed many 

methods using Precision@6. But more subtle differences appear. 

For example, when both were evaluated using Precision@1, ARPG 

with a strict truth test and 0 extra CIs significantly outperformed 

PAPR with a strict truth test; when evaluated using Precision@6, 

PAPR outperformed ARPG. These results suggest that, for our 

analogical reasoning methods, performance can be improved not 

only by improving the reasoning itself, but by finding ways to 

retrieve the right case the first time around. 

4.2 Strict Truth vs. Partial Truth 

As with Precision@6, the partial truth test and the tolerance for 

additional candidate inferences when using ARPG were designed 

Technique Name Algorithm Training  

Order 

Truth Check 

(Strict/Partial) 

# Extra CIs 

Allowed? 

Precision@1 

Testing? 

Precision@6 

Testing? 

RRLG RRLG Nonrandom Strict Truth  - Yes No 

PAPR-NR-ST PAPR Nonrandom Strict Truth  - Yes Yes 

PAPR-NR-PT PAPR Nonrandom Partial Truth  - Yes Yes 

ARPG-NR-ST-0CIs ARPG Nonrandom Strict Truth 0 Yes Yes 

ARPG-NR-ST-1Cis ARPG Nonrandom Strict Truth 1 Yes Yes 

ARPG-NR-ST-2CIs ARPG Nonrandom Strict Truth 2 Yes Yes 

ARPG-NR-PT-0CIs ARPG Nonrandom Partial Truth 0 Yes Yes 

ARPG-NR-PT-1Cis ARPG Nonrandom Partial Truth 1 Yes Yes 

ARPG-NR-PT-2CIs ARPG Nonrandom Partial Truth 2 Yes Yes 

legalBERT l-BERT Random Strict Truth  - Yes No 

GPT-J-ST GPT-J Random Strict Truth No contradictions Yes Yes 

GPT-J-PT GPT-J Random Partial Truth Any Yes Yes 

Table 1. Reasoning Techniques Tested (sans roBERTa, GPT-2, and PAPR or ARPG with random training order) 
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to examine whether the legal reasoning methods partially captured 

the relevant information in the cases about which they were 

reasoning. We therefore expected these relaxed standards to lead to 

improved performance, and they did. PAPR performed 

significantly better with a partial truth test than a strict one 

regardless of Precision@1 or @6, both overall and when broken 

down by doctrine. When using Precision@1 ARPG’s performance 

improved when both the partial truth test was used and additional 

CIs were tolerated, but while each relaxed standard used alone 

trended better, those trends were mostly nonsignificant. However, 

when evaluating using Precision@6 it was more of a mixed bag: 

ARPG sometimes improved with a partial truth test alone, 

sometimes only by increasing the number of CIs tolerated, and 

sometimes both. Notably ARPG with 2 extra CIs and strict truth 

test outperformed ARPG with 0 CIs and a partial truth test. This 

suggests that the tolerance of additional CIs had more to do with 

the improved performance than the partial truth test, suggesting that 

focusing on stripping away extra facts that are still present in those 

generalizations is an important area of future work if ARPG is 

going to be a useful legal reasoning technique. 

We also assessed partial truth in GPT-J, but it made no 

difference when testing with Precision@1, and only a non-

significant trend of improvement when testing with Precision@6. 

4.3 Comparing Methods 

We first compare our reasoning techniques to each other, then to 

the baselines. (All measures reported as significant are at p < 0.05; 

detailed results available upon request). These comparisons are in 

Tables 3 and 4, which report results using Precision@1 and 

Precision@6 respectively, with cell values indicating which 

technique, if either, performed significantly better.  

Our strictest measure for learning and reasoning using analogy 

is Reasoning with Positive Generalizations, using a strict truth test 

and allowing no extra candidate inferences in a mapping to 

conclude that a case is a positive example (ARPG-ST-0CIs). 

Indeed, this was the lowest-scoring of our experimental 

approaches, both when testing using Precision@1 and 

Precision@6. When testing using Precision@1 there was little 

improvement from allowing additional candidate inferences or 

using a partial truth test, but when using Precision@6, allowing one 

or two additional candidate inferences created a significant 

improvement over allowing 0 extra CIs. The improvement in 

performance from allowing one extra CI to allowing 2 was not 

significant, at p=0.059, although nearly as many additional cases 

were solved with each additional CI permitted.  

 Overall Assault Battery Trespass Positive Negative 

Technique Name P@1 

# (%) 

P@6 

# (%) 

P@1 

# (%) 

P@6 

# (%) 

P@1 

# (%) 

P@6 

# (%) 

P@1 

# (%) 

P@6 

# (%) 

P@1 

# (%) 

P@6 

# (%) 

P@1 

# (%) 

P@6 

# (%) 

RRLG 47 

(47%) 

- 8  

(47%) 

- 21 

(53%) 

- 18 

(42%) 

- 23 

(33%) 

- 24 

(83%) 

- 

PAPR-NR-ST  17 

(17%) 

46 

(46%) 

3 

(18%) 

11 

(65%) 

9 

(23%) 

20 

(50%) 

5 

(12%) 

15 

(35%) 

14 

(20%) 

38 

(54%) 

3 

(10%) 

8 

(28%) 

PAPR-NR-PT  28 

(28%) 

72 

(72%) 

6 

(35%) 

16 

(94%) 

11 

(28%) 

27 

(68%) 

11 

(26%) 

29 

(67%) 

20 

(28%) 

53 

(75%) 

8 

(28%) 

19 

(66%) 

ARPG-NR-ST-

0CIs  

28 

(28%) 

35 

(35%) 

5 

(29%) 

6 

(35%) 

9 

(23%) 

10 

(25%) 

14 

(33%) 

19 

(44%) 

2 

(3%) 

7 (10%) 26 

(90%) 

28 

(97%) 

ARPG-NR-ST-

1Cis  

29 

(29%) 

47 

(47%) 

6 

(35%) 

9 

(53%) 

9 

(23%) 

16 

(40%) 

14 

(33%) 

22 

(51%) 

4 

(6%) 

19 

(27%) 

25 

(86%) 

28 

(97%) 

ARPG-NR-ST-

2CIs  

32 

(32%) 

58 

(58%) 

6 

(35%) 

9 

(53%) 

13 

(33%) 

22 

(55%) 

13 

(30%) 

27 

(63%) 

11 

(16%) 

30 

(42%) 

21 

(72%) 

28 

(97%) 

ARPG-NR-PT-

0CIs  

32 

(32%) 

43 

(43%) 

5 

(29%) 

7 

(41%) 

10 

(25%) 

12 

(30%) 

17 

(40%) 

24 

(56%) 

6 

(9%) 

15 

(21%) 

26 

(90%) 

28 

(97%) 

ARPG-NR-PT-

1Cis  

36 

(36%) 

58 

(58%) 

6 

(35%) 

10 

(59%) 

12 

(30%) 

20 

(50%) 

18 

(42%) 

28 

(65%) 

11 

(16%) 

30 

(42%) 

25 

(86%) 

28 

(97%) 

ARPG-NR-PT-

2CIs  

41 

(41%) 

71 

(71%) 

6 

(35%) 

10 

(59%) 

15 

(38%) 

26 

(65%) 

20 

 (47%) 

35 

(81%) 

20 

(28%) 

43 

(61%) 

21 

(72%) 

28 

(97%) 

legalBERT 33 

(33%) 

- 9 

(53%) 

- 14 

(36%) 

- 10 

(23%) 

- 23 

(33%) 

- 10 

(35%) 

- 

GPT-J-ST  12 

(12%) 

52 

(52%) 

1 

(6%) 

6 

(35%) 

3 

(8%) 

20 

(50%) 

8 

(19%) 

26 

(60%) 

11 

(16%) 

44 

(62%) 

1 

(3%) 

8 

(28%) 

GPT-J-PT  12 

(12%) 

61 

(61%) 

1 

(6%) 

6 

(35%) 

3 

(8%) 

23 

(58%) 

8 

(19%) 

32 

(74%) 

11 

(16%) 

52 

(73%) 

1 

(3%) 

9 

(31%) 

Table 2. Technique performance overall, by doctrine, and by valence; raw scores and percent accuracy. Compares PAPR, ARPG, 

& GPT-J with Precision@1 & Precision@6. RRLG and legalBERT only generate one answer so are only evaluated at Precision@1. 
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When using Precision@6 and a strict truth test, PAPR 

outperformed ARPG with 0 extra CIs allowed. However, ARPG 

with 1 extra CI allowed performed on par with PAPR, and ARPG 

with 2 extra CIs allowed significantly outperformed PAPR. When 

using Precision@1 and a strict truth test, ARPG consistently 

outperformed PAPR. As to using a partial truth test, when using 

Precision@1 PAPR and ARPG performed substantially the same. 

However, when using a partial truth test and evaluating using 

Precision@6, PAPR outperformed nearly every other condition, 

including most ARPG conditions. From this we conclude that, 

without any help or second chances, ARPG is more able to identify 

and leverage legally relevant information than PAPR, but only 

under circumstances where both methods’ performance leaves 

significant room for improvement. But the dramatic improvement 

of both approaches when using Precision@6 and partial truth tests 

demonstrates that these methods are capable of capturing legally 

relevant information, just not all of it and not on the first try.   

There are two differences between PAPR and ARPG that 

potentially confound the source of the difference in their 

performance: that PAPR reasons with both negative cases and with 

outliers, whereas ARPG reasons with neither. PAPR heavily relied 

on these outliers: Of the 17 cases that PAPR correctly solved using 

a strict truth test and evaluated using Precision@1, 11 were solved 

by analogy to an ungeneralized outlier (9/14 positives, 2/3 

negatives). Though not a majority, of the 72 cases that PAPR 

correctly solved using a partial truth test and evaluated using 

Precision@6, 30 were solved by analogy to an outlier (18/53 

positives, 12/19 negatives). Furthermore, ARPG’s superior 

performance was driven by its high performance on negative cases; 

PAPR outperformed it on positive cases. These results demonstrate 

that ungeneralized cases remain an important resource for 

reasoning directly by analogy. This may especially be true for 

negative cases, since ungeneralized examples were used in the 

majority of negative cases that PAPR solved. 

RRLG significantly outperformed nearly every other condition 

when we evaluated our analogical methods and GPT-J using 

Precision@1, but the improved performance largely disappeared 

when using Precision@6, and RRLG was outperformed by 

methods using partial truth tests. When using Precision@6, RRLG 

performed significantly better than ARPG-ST-0CIs, and on par 

with PAPR-ST. RRLG consistently outperformed the analogy 

techniques on negative cases and was outperformed on positive 

cases. However, ARPG-PT-2CIs and PAPR-PT—techniques with 

relaxed standards for concluding cases were correct—both 

significantly outperformed RRLG. 

We now turn to comparisons with baselines. When the system 

could only generate one answer (i.e., Precision@1 testing), RRLG 

beat all baselines, all ARPG conditions beat the GPT-J baselines, 

and PAPR beat the GPT-J baselines when using a partial truth test. 

When using a strict truth test, PAPR did not perform significantly 

differently from GPT-J, and was outperformed by BERT.  

Using Precision@6, however, was again a mixed bag: GPT-J 

with a partial truth test outperformed most other conditions, 

although GPT-J with a strict truth test only beat the strictest ARPG 

condition; it was beaten by PAPR using a partial truth test and 

ARPG using a partial truth test and tolerating 2 additional CIs, and 

did not otherwise perform significantly differently from our 

methods. Additionally, all our methods except ARPG with 0 extra 

CIs tolerated (strict or partial truth test) significantly outperformed 

legalBERT. ARPG with 0 extra CIs outperformed legalBERT on 
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RRLG RRLG RRLG RRLG  ---   --- RRLG RRLG RRLG RRLG RRLG RRLG 

PAPR-ST P@1   ---  --- BERT ARPG ARPG ARPG ARPG ARPG ARPG PT  

PAPR-PT P@1 PAPR PAPR   --- ARPG  ---   ---  ---   ---  ---   

ARPG-ST-0CIs P@1 ARPG ARPG  --- PT 2CIs  ---  ---  ---  ---    

ARPG-ST-1CIs P@1 ARPG ARPG  --- PT 2CIs  ---  ---  ---     

ARPG-ST-2CIs P@1 ARPG ARPG  ---  ---  ---  ---      

ARPG-PT-0CIs P@1 ARPG ARPG  ---  ---  ---       

ARPG-PT-1CIs P@1 ARPG ARPG  ---  ---        

ARPG-PT-2CIs P@1 ARPG ARPG   ---         

legalBERT BERT BERT          

GPT-J-ST P@1  ---           

Table 3. Performance of Reasoning Techniques Compared, Precision @1. Cell values indicate winning techniques. 
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Trespass cases and negative cases, while legalBERT did better on 

positive cases. However, loosening ARPG’s standard of 

correctness led to significant improvement over legalBERT. GPT-

J’s substantially improved performance using Precision@6 led it to 

close the gap with RRLG when using a strict truth test, and to 

outperform RRLG when using a partial truth test. 

The two baselines’ relative performance changed when 

evaluating GPT-J using Precision@1 vs. @6. When using 

Precision@1, legalBERT beat GPT-J using strict and partial truth 

test. Using Precision@6, both GPT-J methods beat legalBERT. 

Finally, comparing techniques’ performance to themselves, 

ARPG and RRLG do better on negative than positive cases; PAPR 

does better on positive cases (though not when using a partial truth 

check), GPT-J does better on positive cases, and legalBERT does 

not significantly outperform itself on one type of case over another. 

5  Discussion and Future Work 

There are several things to note from these results. Most obviously, 

the improvement in our analogical reasoning techniques and in 

GPT-J when testing using Precision@6 demonstrates that these 

algorithms are currently more capable of generating correct 

answers than they are of generating them the first time around. This 

performance cannot be accounted for as the system simply 

exhausting all its possible mappings: when we ran our techniques 

with no depth limit (results not reported here), PAPR would 

regularly examine over a dozen mappings, and at times derived the 

correct answer after doing so. These methods’ strong performance 

using Precision@6 testing therefore shows that good mappings are 

being retrieved and reasoned about in the first few cases, just not 

always as the first case. These results suggest to us that one of the 

most fruitful directions for future work in this area will come from 

focusing on the retrieval system, either by affecting what cases get 

returned first, or by investigating how retrieved cases can be 

validated before being used to reason about some case at bar. 

 The improvement in both PAPR and ARPG when using looser 

standards of correctness suggest these algorithms are capturing 

information about what governs and how to solve legal claims, but 

that the learned generalizations are noisy. Research into refining 

those generalizations will be useful. In particular, it may well be the 

case that the assumption described above—that the analogical 

generalization process alone will strip away irrelevant facts in the 

legal domain—is false. (We would not conclude that it was true or 

false based on these results alone.) If that hypothesis is false, that 

does not mean that ARPG’s reasoning method is useless, but that 

the CASI schema-building process is not by itself sufficient to 

generate clean schemas, and the schemas will have to be modified 

by some other process to strip those additional irrelevant facts 

away. If ARPG is improved by improving generalizations, RRLG 

(which uses the same ones) should also be improved.  

 At nearly 50% accuracy, RRLG is already quite high-

performing, and is our highest-performing method when testing 

using Precision@1. Using a system with Precision@1 is equivalent 

to using it when the true outcome of the case is unknown, so we 

expect RRLG to be the best-performing condition on truly new 

cases. One possible explanation for RRLG’s improved 

performance when compared to analogy techniques using 

Precision@1 but not using Precision@6 is that RRLG, unlike 

analogy, actually does exhaustively search through all learned 

knowledge, by firing all the rules derived from its schemas and 

seeing if any of them work. Our analogical reasoning techniques 
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RRLG GPT  --- RRLG ARPG  ---  ---  ---  --- RRLG PAPR  --- 

PAPR-ST P@6 GPT  ---  PAPR ARPG ARPG --- ARPG  --- PAPR PT  

PAPR-PT P@6 PAPR PAPR PAPR  --- PAPR PAPR PAPR PAPR PAPR   

ARPG-ST-0CIs P@6 GPT  GPT  --- PT 2CIs PT 1CIs  ---  2CIs  1 CIs    

ARPG-ST-1CIs P@6 GPT  --- ARPG PT 2CIs  ---   ---  ---      

ARPG-ST-2CIs P@6  ---  --- ARPG PT  --- ST 2CIs      

ARPG-PT-0CIs P@6 GPT  ---  --- 2CIs 1CIs       

ARPG-PT-1Cis P@6  ---  --- ARPG 2CIs        

ARPG-PT-2CIs P@6  --- ARPG  ARPG         

legalBERT GPT GPT          

GPT-J-ST P@6  ---           

Table 4. Performance of Reasoning Techniques Compared, Precision @6. Cell values indicate winning techniques. 
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must instead use the schemas one at a time, and so can be stymied 

if they pick the wrong one with which to reason first. 

 Our research techniques involve generating—not selecting—an 

answer. That means that, with the exception of legalBERT, there is 

no notion of “chance” performance for our systems, and the 

performance of each system must be evaluated relative to the others 

rather than in terms of its absolute performance. That our 

techniques outperformed legalBERT’s multiple-choice method is 

therefore promising. Though GPT-J performed commensurately 

with PAPR (strict truth) and ARPG with extra CIs permitted when 

using Precision@6, had we required GPT-J to generate only true 

statements or to label events as our methods did, then it only gets a 

single question correct using Precision@1 and only eleven correct 

using Precision@6. Also, since most training cases are positive, 

with the defendant as the accused, it is generally a good guess when 

using this dataset that the defendant behaved tortiously towards the 

plaintiff. This may explain why GPT-J performed better on positive 

cases. It also might explain why our techniques generally 

outperformed GPT-J on negative cases; another explanation is that 

ARPG’s and RRLG’s performance on negative cases may be 

inflated, because they correctly solve negative cases by failing to 

derive positive conclusions, and they might perform worse on 

negative cases as they do better on positive ones. 

 Unlike statistical methods, our techniques can be inspected to 

understand why an answer was generated. Though recent work on 

statistical methods promises greater explainability [22], there is still 

no substitute for examining a system’s internals. One can inspect 

the analogy to determine what entities and expressions were placed 

into alignment, to determine whether the system stumbled into a 

correct answer through blind luck or derived it by properly placing 

the case at bar into alignment with the prior case. Inspectability and 

explainability are not useful only for research debugging, but 

because a legal reasoning system that can explain itself should be 

more trustworthy and thus more useful than one that cannot. 

 Which of our three algorithms is most appropriate for a given 

task depends on the user’s needs. The analogical reasoning 

approaches are more flexible than the rule-reasoning system 

because they do not require strict unification, but this flexibility 

could be seen as a liability in domains where logical correctness is 

prized. ARPG has the advantage over PAPR of stripping away facts 

that are known to be incidental to cases in favor of the facts shared 

across cases, but cannot reason directly about negative precedents. 

 Several areas of future work have already been mentioned: one 

is to generate cleaner generalizations; another concerns improving 

retrieval to ensure that the best case is retrieved initially. New large-

language-models are constantly being released, and it would be 

instructive to evaluate the performance of, for example, ChatGPT 

on our dataset instead of just GPT-J.  

 Our methods also currently reason in a single step, but legal 

reasoning can involve many steps, for example when addressing 

affirmative defenses or responding to arguments. Our dataset 

includes self-defense cases, and we wish to extend our methods to 

handle such cases. We are also working to adapt our methods to 

generate arguments. And we wish to investigate performance when 

testing cases against true precedents, i.e., only temporally prior 

cases. Finally, we want to leverage the ontology and knowledge 

base to rerepresent cases and reason about novel situations, to allow 

us bring the full power of analogical reasoning to bear on the legal 

domain as discussed in [23]. 
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