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Abstract 

Performing complex reasoning has been a long-standing challenge in artificial intelligence (AI). 

This thesis describes a class of AI systems designed to reason, extract knowledge, and answer 

questions on various domains such as process understanding, elementary science, and math word 

problems. Our approach differs from traditional logical reasoning systems since we work directly 

over the natural language description of problems, thus bypassing the need to manually create 

formal representations. The proposed systems rely on two architectures: the Companion Cognitive 

Architecture and Transformer Language Models. At their core, these architectures use analogical 

and neural learning to reason and extract patterns from the input text. Experiments on multiple 

language tasks show that our methods outperform strong baselines and can make predictions from 

just a few training examples. 

In addition, we study how such AI systems can generate chains of reasoning that explain 

how known facts can be used to reach conclusions and answer questions. Called structured 

explanations, these chains of reasoning contain multi-premise textual entailments, where 

intermediate conclusions are used by subsequent entailment steps. This reasoning and explanation 

approach differs from existing work on natural language inference (Camburu, Rocktäschel, 

Lukasiewicz, & Blunsom, 2018) or multi-hop question answering (Yang, et al., 2018), where 

reasoning is either single-step or single-premise. In particular, these structured explanations are 

shown to alleviate opaqueness issues of neural language models and have the potential to help 

humans validate and gain more trust in the output of these systems. 
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1 Introduction 

A long-term pursuit in Artificial Intelligence (AI) is to endow machines with the ability to reason 

and manipulate knowledge to solve tasks. Initially, some AI systems performed reasoning over 

symbolic knowledge, applying logical and probabilistic rules to reach conclusions (Newell & 

Simon, 1956; McCarthy, 1960; Siler & Buckley, 2005). These methods enabled the creation of 

systems that were successfully applied to solve various tasks (Buchanan & Smith, 1988; Susskind, 

1987). Such symbolic manipulation systems are capable of executing multiple reasoning steps, 

generating a formal proof that can explain their conclusions (Forbus & De Kleer, Building problem 

solvers, 1993). Even with their initial success, reasoning with pure rule-based symbolic systems 

can be challenging when it comes to handling ambiguous concepts or learning from human 

modalities. Some symbolic systems are carefully tailored to solve a certain task (Musen & Van 

der Lei, 1988), and generalization to other tasks can be hard to achieve. 

To mitigate these issues, some AI approaches can work directly over natural language 

descriptions of the problems. These approaches must deal with many challenges when 

manipulating human language including ambiguity, lack of structure, and tacit knowledge or rules 

(Khurana, Koli, Khatter, & Singh, 2023). In this thesis, we explore two AI architectures that can 

reason while directly handling natural language input, namely: the Companion Cognitive 

Architecture and Transformer Language Models. Each of those approaches has its advantages 

and limitations when it comes to data-efficiency, generalization, and explainability of their outputs 

(Jain & Wallace, 2019; Strubell, Ganesh, & McCallum, 2020). For instance, neural networks 

applied to language understanding have been shown to learn from large amounts of data (Devlin, 

Chang, Lee, & Toutanova, 2019), but the explainability of their internal computations remains 
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elusive (Hanif, Zhang, & Wood, 2021). We not only run experiments with these two AI 

architectures separately, but we attempt to have the best of both worlds by combining these two 

architectures into a single language system. Thus, we propose algorithms, techniques, and 

modeling strategies that can be used to solve complex (often multi-step) reasoning tasks over 

natural language, while also systematically studying the ability of such systems to explain their 

answers. More specifically, we work on tasks involving process understanding, data-efficient 

knowledge extraction, and analytical reasoning for question-answering. 

To mitigate the explainability issues of neural models, we train these models to output 

human-interpretable explanations. We show how our proposed structured explanations are 

desirable over other approaches as they contain multi-premise entailment steps that indicate how 

an answer follows from a given set of premises. We evaluate our proposed methods not only on 

standard question-answering metrics but also on the accuracy of their generated structured 

explanations. In our work, we focus mostly on generating an explanation (or line of reasoning) 

rather than the pragmatics of how to present the explanation to the end user. For the most part, we 

use annotated golden data to compare both the individual reasoning steps and the overall structure 

of the predicted output. 

1.1 Claims and Contributions 

The claims of the thesis are as follows: 

1. [Claim A] Discrete actions and processes in natural language can be accurately 

modeled using qualitative reasoning and structured action representations. Our 

proposed framework can be used to represent various discrete processes (e.g., science 

phenomena such as photosynthesis or daily chores such as cooking). The representation is 
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independent of a particular task or domain and can facilitate reasoning in downstream 

tasks. Such a framework can be applied to solve real-world natural language problems 

containing procedural texts. 

2. [Claim B] Analogical learning can be successfully applied to solve complex reasoning 

tasks in natural language, while being explainable and data efficient. Analogical 

Learning can solve question-answering tasks involving procedural text understanding, 

where the system has to track entity states over discrete time intervals. Analogical Learning 

is also shown to perform knowledge extraction of general-purpose facts from natural 

language text. In this case, analogical learning also benefits from integration with neural 

network language models for semantic disambiguation. One can easily inspect the query-

cases and analogical matches used to solve such problems. 

3. [Claim C] Explainability issues of neural models can be mitigated by training such 

models to output a step-by-step structured explanation of their predictions. While not 

exposing the true underlying computation done by the neural network, the step-by-step 

explanation can help humans validate the answer and gain more trust on models that are 

otherwise viewed as black box systems. 

 

The contributions of the thesis are as follows: 

1. Created a framework (namely Step Semantics) for modeling discrete actions and 

events that occur in both physical and abstract processes. It combines the existing Cyc 

and FrameNet ontologies to describe events, identifying relevant role-relations that can be 

used to represent properties of events such as participating concepts, locations, and 

duration of events. 
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2. Designed and implemented systems and algorithms that use Qualitative 

Representations and Analogical Learning to solve natural language problems. In the 

first task of procedural text understanding, we use Analogical QA training to predict 

changes in the state of participating concepts mentioned in text describing some process. 

The system applies common sense constraints to obtain a consistent sequence of events 

using dynamic programming to globally optimize scores. In the second task of Knowledge 

Extraction, we use distant supervision to automatically generate sentence and fact pairs as 

training examples. The system predicts new facts by using a mix of Analogical QA training 

and a set of heuristics for semantic selection. In addition, we use an encoder-only pre-

trained language model trained on FrameNet and VerbNet frames to generate word sense 

disambiguation scores as well as scoring new extracted facts. 

3. Performed experiments showing the data-efficiency of Analogical Learning when 

compared to existing state of the art models in natural language understanding tasks. 

In the procedural text understanding experiments, we show that analogical learning can 

perform inference and identify state changes in procedural text from a few training 

examples. In the knowledge extraction experiments we leverage the power of analogical 

learning and use the existing structure in a knowledge graph to show how new relations 

can be learned with distant supervision from just a handful of examples. 

4. Developed explanation methods using neural language models while improving 

existing datasets with structured natural language explanations. Our proposed iterative 

retrieval and generation architecture (IRGR) can help language models fetch premises that 

are required to build structured explanations from a textual knowledge corpus. 

Furthermore, we create a new explanation and reasoning benchmark (STREET) that 
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contains challenging tasks and requires systems to not only answer questions, but also 

explain their answers systematically. 

1.2 Organization 

The primary contributions of this thesis are contained in Chapters 4, 5, 6 and 7. The overall 

structure of this document is as follows. Chapter 2 provides a literature review. Chapter 3 discusses 

the background needed to understand the techniques and methods used. This includes a detailed 

description of the Companion cognitive architecture, analogical learning, the Transformer 

architecture, pre-trained language models, and dense retrieval. Chapter 4 introduces our analogical 

approach on procedural text understanding. We show how Step Semantics can be used to model 

discreate actions in processes. Then, individual state changes in the procedural text are predicted 

using analogical learning and combined using a dynamic programming algorithm that enforces 

commonsense constraints. Chapter 5 describes how analogical and neural learning can be 

combined to extract structured knowledge from unstructured texts. We show that our method can 

extract high precision facts from a few distantly supervised examples. Chapter 6 and Chapter 7 

explore how to improve explainability of neural language models by generating explanation 

structures containing multiple reasoning steps that show how premises can entail conclusions. We 

also describe our proposed dataset called STREET, which contains multi-step reasoning 

explanation on a varied set of question-answering tasks. Chapter 8 summarizes the contributions 

and propose avenues for future work. 

1.3 Summary of Experiments 

The following table contains a summarization of the experiments performed, including data and 

metrics used, and how they are connected to our claims. 
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Experiment #1 [Claim A & B] 

Approach Predicting State Changes in Procedural Text (Chapter 4) 

Data ProPara dataset (Dalvi, Huang, Tandon, Yih, & Clark, 2018) 

Description For each paragraph containing entities and how the entity state evolves 

over time, there are a set of questions of different granularities designed to 

test if the system can track the changes in state. 

Metrics  Sentence-level questions accuracy: 

• Cat-1: Is p created (destroyed, moved) in the process?  

• Cat-2: When is p created (destroyed, moved)?  

• Cat-3: Where is p created (destroyed, moved from/to)? 

Paragraph level questions, with combined Precision, Recall and F1 score: 

• Q1: What are the inputs to the process?  

• Q2: What are the outputs of the process? 

• Q3: What conversions occur, when and where? 

• Q4: What movements occur, when and where? 

Experiment #2 [Claim B] 

Approach Data-Efficient Learning via Analogical Knowledge Extraction (Chapter 5) 

Data Simple English Wikipedia as text corpus and NextKB and knowledge 

source 
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Description We extract knowledge from a subset of the Simple English Wikipedia 

articles containing 2,679 articles. We perform manual evaluation of the 

extracted facts. 

Metrics  We compare the results with baselines using the following metrics: 

• Estimated precision of extracted knowledge. 

• Number of extracted facts. 

Experiment #3 [Claim C] 

Approach Iterative Retrieval and Generation (Chapter 6) 

Data EntailmentBank (Dalvi, et al., 2021) 

Description The evaluation consists of comparing the generated entailment tree and 

the golden entailment trees. The evaluation metrics will measure the 

correctness of the generated proof along four dimensions. 

Metrics  The metrics used for the four dimensions are as follows: 

• Leaf (F1, All-Correct): tests if the predicted and golden tree 

match, ignoring ordering. 

• Steps (F1, All-Correct): tests if the predicted entailment tree 

follows the correct structure. Uses an alignment algorithm based 

on Jaccard Similarity to assign a one-to-one mapping among 

nodes. 

• Intermediates (F1, All-Correct): tests if the generated sentences 

(intermediate node labels) are correct. Given that two sentences 
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were matched by the alignment algorithm, the F1 score is 

computed by using a BERT-based textual similarity score. 

• Overall (All-Correct): Tests all previous metrics together. 

Experiment #4 [Claim C] 

Approach Natural Language Reasoning Graphs (Chapter 7) 

Data Uses our proposed STREET dataset, which builds upon the following 

datasets: 

• ARC (Clark, et al., 2018) 

• SCONE (Long, Pasupat, & Liang, 2016) 

• GSM8K (Cobbe, et al., 2021) 

• AQUA-RAT (Ling, Yogatama, Dyer, & Blunsom, 2017) 

• AR-LSAT (Zhong, et al., 2022) 

Description The experiments not only test the model’s ability to answer questions, but 

also explicitly evaluate their step-by-step reasoning explanation. 

Metrics  We propose the following metrics: 

• Answer Accuracy: measures the ability of models to predict the 

correct answer to a question. 

• Reasoning Graph Accuracy: compares the predicted and golden 

reasoning graphs in terms of graph structure and intermediate 

conclusion nodes. We use a textual similarity function to test if 

two reasoning step nodes are equivalent. 
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• Reasoning Graph Similarity: is a “softer” metric than the previous 

one, as it compares the predicted and golden reasoning graph 

using a graph edit distance function. The graph edit distance is 

normalized to obtain a similarity score. 
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2 Related Work 

We summarize the existing literature on how cognitive architectures and neural models have been 

applied to perform complex reasoning over natural language, while summarizing what has been 

done to make such systems more explainable and trustworthy. In addition, we elaborate on the 

methods used to solve the natural language tasks discussed in this work. 

2.1 Reasoning over Natural Language 

The development of AI systems capable of performing reasoning and knowledge manipulation to 

solve tasks expressed in natural language has been widely studied. When testing natural language 

capabilities, several QA datasets were proposed including SQuAD (Rajpurkar, Zhang, Lopyrev, 

& Liang, 2016), ARC (Clark, et al., 2018) and OBQA (Mihaylov, Clark, Khot, & Sabharwal, 

2018). Unlike natural language tasks such as dialogue, translation, or summarization; question 

answering (or QA) tasks are often easier to evaluate. Many QA datasets became popular within 

the NLP community and were accepted as relevant reasoning benchmarks. Hence, we largely use 

QA datasets to evaluate our systems. 

The techniques used to solve these QA datasets served as important milestones towards 

enabling complex natural language reasoning. Despite this initial success, these models had many 

shortcomings. For instance, stochastic models were able to exploit inherent biases in QA datasets 

(Gururangan, et al., 2018; Ko, Lee, Kim, Kim, & Kang, 2020), raising questions regarding the true 

quality of their results. Explainability of the answers are also elusive, and often systems would be 

able to answer the posed questions, but it was not clear why an answer was chosen over the others. 
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2.1.1 Multi-step Reasoning over Natural Language 

As one of the simpler forms of reasoning, Natural Language Inference (NLI) is the task of 

predicting the relationship between sentences (or short texts) as either “entailment”, 

“contradiction” or “neutral” (Bowman, Angeli, Potts, & Manning, 2015; Zellers, Bisk, Schwartz, 

& Choi, 2018). NLI was an important step towards testing reasoning in natural language, but this 

task often checks for the plausibility of a sequence with no explicit multi-step entailments required. 

To address the multi-step aspect of reasoning, some initial research has been done on 

datasets that contain mostly synthetic texts describing some templated domain (Weston, et al., 

2015; Sinha, Sodhani, Dong, Pineau, & Hamilton, 2019; Clark, Tafjord, & Richardson, 2021).  

These tasks had the advantage of being self-contained and were annotated with an explicit solution 

that goes from premises to conclusion. ProofWriter (Tafjord, Dalvi, & Clark, 2021) is a generative 

language model that takes as input a set of textual premises and outputs the step-by-step proof that 

answers a given question. The ProofWriter model shares some similarities to our proposed IRGR 

model (Chapter 6), however it does not perform retrieval of premises and has a fixed input context. 

On the other hand, Multi-Hop QA (Yang, et al., 2018; Khashabi, Chaturvedi, Roth, 

Upadhyay, & Roth, 2018) rely on more fluid texts, often using real-world examples. The notion 

of “multiple hops” can be somewhat abstract and a variety of tasks can be categorized as multi-

hop reasoning. Here we assume that multi-hop implies that one or more intermediate conclusions 

are used to reach the final answer. One common limitation among MHQA tasks is that they contain 

a small number of hops (around 2 or 3), and the reasoning chain is mostly linear (Mavi, Jangra, & 

Jatowt, 2022), which differs from our work where reasoning has multiple steps and contains more 

complex structures with multiple antecedents per step. 
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Performing multi-step reasoning over natural language has been accomplished with 

cognitive systems, with instances both in instruction learning (Veloso & Carbonell, 1993) and in 

the multimodal domain (Hinrichs & Forbus, 2014; Kirk & Laird, 2016). Notably, Analogical 

Chaining (Blass & Forbus, 2017) was able to answer common sense reasoning questions by 

learning common sense units from natural language instructions via analogy. It repeatedly uses 

analogical retrieval to make inferences, exploring alternative outcomes and explanations. The 

analogical cases are learned through natural language interaction with a person and some learned 

rules require hand-edits, which differs from our proposed approaches that learn exclusively from 

training examples with no human interaction. 

2.1.2 Process Understanding 

Although considerable advances have been made in complex natural language reasoning, 

understanding texts describing processes is still a major challenge. These include both processes 

describing continuous changes, such as flows and movement of objects, as well as discrete 

changes, such as creation or destruction events. Textual description of processes often depicts a 

world that is constantly evolving. Answering questions about such texts requires tracking how the 

world state changes over time, and such QA tasks often require multi-step reasoning. 

From a modeling perspective, the Qualitative Reasoning community has developed 

frameworks and proposed formalisms to represent processes. Allen & Hayes (1989) explores a 

first-order theory of time and intervals, Hogge (1987) described an approach to planning in the 

physics domain using qualitative descriptions of processes and Drabble (1993) built a hierarchical 

partial order planner that used qualitative process theory to both create and execute plans involving 

actions and processes. These approaches differ from our proposed Step Semantics work (Chapter 

4), that integrates representations of continuous and discrete representations combining qualitative 
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process theory (Forbus K. D., 1984) with concepts from FrameNet (Baker, Fillmore, & Lowe, 

1998) and OpenCyc (Lenat & Guha, 1989) in an attempt to understand texts in natural language. 

There are only a few relevant QA datasets containing questions related to textual 

description of processes. The SCONE dataset (Long, Pasupat, & Liang, 2016) describes synthetic 

worlds and how the state changes over time. Conversely, the ProPara dataset (Dalvi, Huang, 

Tandon, Yih, & Clark, 2018) contains a more natural description of various processes (e.g., science 

and procedural texts), while also providing annotation for the change in state of the entities (mostly 

location and existence) mentioned in the context paragraphs. The majority of the approaches used 

to solve ProPara employed a neural model to predict the state changes on a local level, or tie their 

global predictions using common sense constraints (Tandon, et al., 2018; Gupta & Durrett, 2019). 

The work of Clark et al. (2018) used a hybrid approach, integrating semantic role labeling with 

VerbNet derived rules to map each sentence to its effects on the world state. None of these prior 

approaches used cognitive modes and analogical learning to solve this QA task, which is the main 

focus of our proposed system described in Chapter 4. 

2.2 Knowledge Extraction and Retrieval 

Acquiring, retrieving, and applying general knowledge is essential to perform complex reasoning. 

For the most part, the methods proposed in this work use either unstructured knowledge (e.g., free-

form text), structured knowledge (e.g., entities and their relations), or parametric knowledge (e.g., 

neural model’s own parameters). In this section we briefly summarize the literature on how these 

different types of knowledge have been obtained and combined to solve natural language tasks. 
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2.2.1 Knowledge Extraction 

As one of the more explicit forms of knowledge representation, structured knowledge has proven 

to be a useful resource in a variety of artificial intelligence applications (Lukovnikov, Fischer, 

Lehmann, & Auer, 2017; Tuan, et al., 2022). This knowledge is often stored in knowledge bases 

(KBs) with a pre-defined formalism used to encode facts. Some of the more well-known projects 

on KB construction include NELL (Carlson, et al., 2010), FreeBase (Bollacker, Evans, Paritosh, 

Sturge, & Taylor, 2008), and ConceptNet (Speer, Chin, & Havasi, 2017). However, many of these 

KBs are limited by either: (1) lack of general world knowledge and common nouns, (2) a small set 

of semantic role relations, (3) representation of entities and relations that use text, which can be 

ambiguous due to polysemy.  One prominent KB that is not limited by these factors is Cyc (Lenat 

& Guha, 1989; Lenat & Guha, 1990). Cyc is a long-term project that includes concepts and rules 

representing general world knowledge. Our work described in Chapter 5 uses the open-source 

version of Cyc, called OpenCyc, which is also an expressive and well-structured KB. 

Missing entities and relations can be an issue and limit the usefulness of available KBs. 

With that in mind, a considerable amount of effort has been made to automatically extract 

structured knowledge from the more ubiquitous sources of unstructured knowledge. This process 

is often called Relation Extraction (RE) or Automatic Knowledge Base Completion (AKBC). In 

our work (Chapter 5) we use the concept of learning new facts with distant supervision, which is 

a learning approach that does not rely on labeled data and was initially introduced by Mintz et al. 

(2009). Other methods have focused on using neural networks to perform RE from a few training 

examples (Han, et al., 2018; Gao, et al., 2019; Qu, Gao, Xhonneux, & Tang, 2020), even though 

they still required many hundreds of training examples and mostly extract facts about named 

entities, instead of general knowledge.  
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Similarly, other systems attempted to extend the contents of a knowledge base by reading 

texts and building formally represented cases (Forbus, et al., 2007) The learn by reading systems 

often create cases that contain multiple statements instead of simple triples (Barbella & Forbus, 

2010) and may also learn from multiple modalities (Lockwood & Forbus, 2009; Forbus, 

Lockwood, Sharma, & Tomai, 2009) such as pictures, sketches and diagrams. 

2.2.2 Knowledge Retrieval 

In order to answer questions, many approaches have used external sources of knowledge, both in 

structured (Crouse, McFate, & Forbus, 2018; Zhang, Dai, Kozareva, Smola, & Song, 2018; 

Yasunaga, Ren, Bosselut, Liang, & Leskovec, 2021) or unstructured (Pan, et al., 2019; Guu, Lee, 

Tung, Pasupat, & Chang, 2020) formats. The work of Lewis et al. (2020) combines a pre-trained 

retriever with an encoder-decoder language model. Their model performs intertwined steps of 

retrieval and generation. Other works used previously retrieved passages to improve the retrieval 

of new passages (Cartuyvels, Spinks, & Moens, 2020; Zhao, Xiong, Boyd-Graber, & Daumé III, 

2021; Xiong, et al., 2021). These iterative retrieval-generation methods share some similarities to 

our proposed system described in Chapter 6, but none of them perform explicit multi-step 

reasoning and generate explanations to answers. 

2.3 Explainability of AI Systems 

As AI systems become more pervasive and are used in high-stake applications, it is crucial that 

humans can understand how they generate predictions. In the context of natural language 

understanding, many initial AI methods were inherently inspectable such as rule-based systems 

(Allen J. , 1995), decision trees (Schmid, 2013; Boros, Dumitrescu, & Pipa, 2017) and others. In 

fact, the cognitive system used in many of our proposed approaches produces outputs where one 
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can, with some effort, trace the provenance of each decision. On the other hand, many of the 

current machine learning approaches are considered black box systems (most notably, neural 

networks) and producing an explanation for their outputs remains a formidable challenge (Hanif, 

Zhang, & Wood, 2021). 

 To address this issue, the NLP community came up with multiple notions of explanation 

and justification in natural language. These include outputting free-form natural language 

explanations for a given answer (Camburu, Rocktäschel, Lukasiewicz, & Blunsom, 2018; Rajani, 

McCann, Xiong, & Socher, 2019), using explanation graphs (Jansen, Wainwright, Marmorstein, 

& Morrison, 2018) or creating reasoning chains in multi-hop that explains an answer (Jhamtani & 

Clark, 2020). With the advent of very large language models, other explanation approaches such 

as chain-of-thought prompting (Wei, et al., 2022; Kojima, Gu, Reid, Matsuo, & Iwasawa, 2022; 

Madaan, et al., 2023) have shown that these models can generate step-by-step explanations (as 

plain text) that can also help them answer questions more accurately. Unlike these approaches, our 

work (Chapter 6 and Chapter 7) generates explanations in the form of entailment trees (Dalvi, et 

al., 2021) or reasoning graphs (Ribeiro D. N., et al., 2023), which are structured explanations that 

show explicitly how premises and intermediate conclusions can be combined to explain the 

predicted answer. 
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3 Background 

3.1 Companion Cognitive Architecture 

Our cognitive approaches in Chapter 4 and Chapter 5 were built on the Companion Cognitive 

Architecture (Forbus & Hinrichs, 2006), referred here as "Companion”. The Companion 

architecture is designed to integrate multiple cognitive processes including analogical learning, 

visual processing capabilities, and language understanding. Similar to other cognitive systems, 

Companion has the distinguishing characteristic that it is designed to handle multiple human skills 

and capabilities, instead of focusing on a narrow set of tasks. For instance, Companion has been 

used for a variety of purposes including learning from analogies (Barbella & Forbus, 2010), 

understanding multi-modal instructional analogies (Chang, 2016), data-efficient learning for 

question-answering (Crouse, McFate, & Forbus, 2018), and a deployed information kiosk system 

(Wilson, et al., 2019). 

The architecture contains many components and tools that are designed to bootstrap the 

development of software as social organisms. There are among these components (1) a powerful 

reasoning engine called FIRE (Forbus K. D., Hinrichs, De Kleer, & Usher, 2010), which provides 

analogical learning and reasoning in addition to back-chaining (2) a large-scale knowledge base 

called NextKB, which integrates various materials from sources including OpenCyc and FrameNet 

(Baker, Fillmore, & Lowe, 1998) (3) and a general-purpose natural language parser called CNLU, 

that can convert unstructured input text to structured semantic representations. We briefly describe 

some of Companion’s components in the following sections. 
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3.1.1 Ontology and Knowledge Base 

The structured representations used in Companion can be interpreted as logical expressions in 

predicate calculus. They follow the formalizations defined by the CycL ontology language (Lenat 

& Guha, 1989). Throughout this thesis we will use lisp-style syntax (nested lists also known as s-

expressions) to represent logical assertions. For example, the expression 

(properPhysicalPartTypes Fish Gill) represents the general assertion “Fish have 

physical parts called gills”, where concepts Fish and Gills are arguments of the relation 

properPhysicalPartTypes. In this representation we assume that symbols are case-

sensitive. 

In CycL a collection refers to a kind or type of thing (roughly approximated to a set of 

concepts) whose instances share a certain property, attribute, or feature. For instance, the term 

Fish refers to all the fishes that ever existed, and will ever exist, and could possibly exist. We 

can specify that an entity is an instance of that collection with isa statements such as (isa 

fish3154 Fish), where fish3154 refers to a single entity in that collection. One can express 

inheritance among collections using the genls relation such as (genls Fish 

NonHumanAnimal), meaning that Fish is a subcollection of NonHumanAnimal. The 

knowledge resources in Companion contain a rich hierarchical structure organizing the existing 

collections. 

Predicates can be used to make statements and are another important concept in CycL. 

Both relations and functions are kinds of predicates. The terms properPhysicalPartTypes 

and isa are relations. Functions are used to denote entities such as (SeedFn PeanutPlant), 

which refers to the “seed of peanut plants” and their symbols are commonly suffixed with Fn. All 

predicates can have a specific number of arguments (called arity) as well as specific argument 
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types which are represented by argIsa structural relations such as (arg1Isa likes-

Generic Agent-Generic), meaning that the relation likes-Generic expects an 

instance of Agent-Generic as its first argument. 

We call the repository of knowledge in Companion a knowledge base (or KB), which is a 

term used to distinguish between both databases and knowledge graphs. The term KB 

differentiates from databases since it contains general reusable knowledge instead of just specific 

facts like in “Mark’s year of birth is 1992”. It also differentiates from a knowledge graph since it 

is not limited to expressing knowledge using triples or binary relations (analogous to an edge in 

the graph). As mentioned previously, the KB in Companion is called NextKB and is an open-

license1 knowledge base built to support research and development of knowledge-rich systems. 

3.1.2 Companion Natural Language Understanding 

One key component within Companion is the CNLU language understanding parser (Tomai & 

Forbus, 2009), which based on Allen’s bottom-up parser (Allen J. , 1995) and uses grammatical 

features and rules to map from the textual input into structured semantic representations in CycL 

notation. The output of CNLU is task-agnostic, meaning that a semantic interpretation for a certain 

task can be learned for downstream tasks. The CNLU pipeline consists of many sub-routines that 

are responsible for breaking the input text into tokens, generating plausible parse trees, and 

producing a consistent structured semantic representation for each entity introduced in the text. To 

illustrate this parsing process, we will use the sentence “Cats drink water.” as a running input 

example. 

 
1 Available at https://www.qrg.northwestern.edu/nextkb/index.html 

https://www.qrg.northwestern.edu/nextkb/index.html
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 First, the tokenizer identifies the list of tokens from the sentence, e.g., (cats drink 

water punc-period). It is possible that the same token will appear in different parts of the 

sentence. For this reason, CNLU will assign a discourse variable to uniquely identify each token. 

For instance, the word “drink” will be assigned the discourse variable drink8304, while the 

word “water” will be assigned the variable water8324. The bottom-up parser will use the entries 

from its lexicon (McFate & Forbus, 2011), grammar rules, and semantic frames to produce a set 

of syntactic parse trees representations. The lexicon contains information about parts of speech 

and other syntactic features associated with words. The semantic frames, many of which were 

derived from FrameNet, are called semtrans statements. These semantic frames specify word 

senses (i.e., the different meanings of a given word) as well as the possible role relations 

connecting constituents in the input utterance. Each constituent in the parse tree (i.e., span of 

tokens used in the hierarchical structure) may be assigned a predicate calculus expression 

representing its semantics. 

(and (isa drink8304 DrinkingEvent)  

     (consumedObject drink8304 water8324)  

     (performedBy drink8304 cat8297)) 
 

Figure 1: Neo-Davidsonian representation for the drinking event. 

In CNLU, most of the lexical rules for verbs will represent the semantics using Neo-

Davidsonian representations. In these representations, the events are reified (i.e., made concrete) 

and role relations are used to identify the entities that are involved in them. For instance, in the 

utterance “cats drink water” the verb “drink” can be represented by the logical form shown in 

Figure 1. The discourse variable drink8304 is an instance of DrinkingEvent, and the 
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relations consumedObject and performedBy describe roles of the entities water8324 and 

cat8297 in this event. 

 

Figure 2: Choice sets generated by CNLU for the sentence “Cats drink water.”. 

Multiple intermediate parse trees can be generated due to different interpretations of the 

sentence. For instance, the word “water” could either be a noun or a verb depending on the context. 

Furthermore, a given word is likely to have multiple possible interpretation frames due to 

polysemy and homonymy. To properly represent these ambiguities, CNLU uses distinct choice 

sets of logical statements to represent the different valid semantic frames and parse trees. The 

choice sets generated for the example sentence as well as the FrameNet frame (e.g., 

FN_Ingestion) associated with them are shown in Figure 2. Each element in the choice set will 
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be referred as a choice, and pairs of choices will be marked as conflicting according to the rules 

used by the parser. For instance, the pairs of choices that include (isa cat8297 Cat) and 

(isa cat8297 DomesticCat) cannot be asserted as true simultaneously. Therefore, making 

an interpretation of a given input (e.g., word senses) consists of choosing a set of logical statements 

as correct and ruling out the other remaining conflicting choices. 

3.1.3 Analogical Learning 

In our cognitive systems we work under the hypothesis that analogical reasoning is central to 

cognition, and similarity processes play an important role in human learning and how humans 

compare representations (Gentner & Forbus, 2011). In Companion, the computational 

implementation of analogy refers to the comparison of two structured representations often stored 

in cases containing logical statements. Therefore, analogy differs from other similarity metrics 

purely based on feature vectors. 

The analogical capabilities in Companion are provided by the Structure Mapping Engine 

(Forbus, Ferguson, Lovett, & Gentner, 2017), or SME for short. SME takes as input two relational 

representations (e.g., the semantic representation of a sentence) and outputs one or more mappings 

between concepts in these representations. These mappings are composed of (1) the 

correspondences between the concepts and predicates between two structures (2) a score indicating 

the degree of similarity between the two structures (3) candidate inferences that propose new 

information that can be derived from the mapping. 

To illustrate this process, consider that we are trying to compare the semantic representation 

of the sentence 𝐴 “Cats drink water” with the sentence 𝐵 “Leaves in plants are eaten by 

herbivores”. We can see that the word overlaps among 𝐴 and 𝐵 is non-existent, however they are 

both referring to the same core idea: consumption of matter by living beings. The semantic 
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representation for both sentences are shown in Figure 3, where the disambiguation choices are 

manually made according to the context. 

“Cats drink water” “Leaves in plants are eaten by herbivores” 

(isa drink8304 DrinkingEvent)  

(consumedObject drink8304  

     water8324)  

(performedBy drink8304 cat8297) 

(isa water8324 

     Water-Ingestible) 

(isa cat8297 DomesticCat) 

(isa be8826 Situation) 

(performedBy be8826 plant8768) 

(isa eat8886 EatingEvent) 

(performedBy eat8886  

     herbivore9251) 

(consumedObject eat8886   

     leaf8740) 

(doneBy eat8886 herbivore9251) 

(objectFoundInLocation leaf8740  

     plant8768) 

(isa plant8768 Plant) 
 

Figure 3: Side by side comparison of the manually disambiguated semantic representations for 

the sentences “Cats drink water” and “Leaves in plants are eaten by herbivores”. 

When creating a mapping between the representations for 𝐴 and 𝐵 (where 𝐴 is the base and 

𝐵 is the target) SME will use the constraints defined by Structure Mapping Theory (Gentner, 

1983). These constraints will guide how pairs of logical statements (e.g., (isa plant8768 

Plant)) and entities in these expressions (e.g., plant8768) should be mapped from base 

representation to the target representation. These constraints also indicate which mappings should 

take preference. The theory asserts that matches must follow the following properties: 

• Tiered identicality: only allows matches between logical statements with identical 

predicates. For example, the logical forms (performedBy drink8304 cat8297) 

and (performedBy eat8886 herbivore9251) could be included as a pair in the 
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mapping since they share the predicate performedBy. If the predicates are semantically 

similar (meaning that they share a superordinate in the predicate hierarchy) they may also 

be allowed to be matched. 

• Parallel connectivity: ensures that two logical statements can only match if their 

arguments also match. In that instance, (performedBy drink8304 cat8297) and 

(performedBy eat8886 herbivore9251) can only be matched if drink8304 

is matched to eat8886 and if cat8297 is matched to herbivore9251. 

• One-to-one connectivity: Each element of the base and target can be a part of at most one 

correspondence. This means that if cat8297 is matched to herbivore9251, then it 

cannot be matched to some other element such as plant8768. 

• Systematicity: mappings with more deeply nested expressions are given preference over 

other mappings. 

Analogical similarity is widely applicable and it has been used to generate analogical 

generalizations (McLure, Friedman, & Forbus, 2015) as well as perform retrieval from stored cases 

in the KB (Forbus, Gentner, & Law, 1995). In general, the problem of finding a mapping that 

satisfies all the  Structure Mapping Theory’s properties is known to be NP-Hard (Veale & Keane, 

1997). However, SME uses a procedure that produces close to optimal results and runs in 𝑂(𝑛2 ∗

𝑙𝑜𝑔(𝑛)) time, where 𝑛 is the size of the larger set between target and base representations. 

3.1.4 Analogical Question-Answering Training 

Given that analogy provides a cognitively plausible and efficient way to compare two structured 

semantic representations, the goal is to use analogy as a way to facilitate learning from training 

examples and then making future predictions. The analogical learning in this thesis is inspired by 
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the approach called analogical question-answering training (AQAT) first introduced by Crouse, 

McFate, & Forbus (2018) and further described by Crouse (2021). This AQAT approach amounts 

to finding patterns in the input semantic representation that are related to the desired output for a 

given training example. 

More concretely, consider the procedural text understanding problem introduced in 

Chapter 4 where the objective is to classify if a given input text implies that a certain object of 

interest has moved. The target prediction can be modeled as an uninstantiated logical expression 

using Neo-Davidsonian representation: (and (isa ?object Thing) (isa ?event 

MovementEvent) (objectMoving ?event ?object)). If we want the target 

prediction to include additional information such as where the object of interest moved from, we 

could also add the logical form (fromLocation ?event ?object) to that representation. 

Therefore, given a training example specifying that the sentence “roots absorb water from the 

soil.” implies that the object of interest “water” moved from the “roots”, we are interested in 

finding which parts of the semantic representation around AbsorptionEvent map to the target 

representation around MovementEvent. 

To this end, AQAT creates mappings between source and target representations called 

query cases, which are rule-like constructs that treat the input semantics as antecedents and target 

logical forms as consequents. During testing, AQAT retrieves the generated query cases using 

analogical retrieval and combines the best query cases to make a prediction (e.g., answer a 

question) given a new input semantic representation. One example of a generated query case for 

this training example is shown in Figure 8. Note that in our case the automatically generated input 

semantics are task-agnostic (i.e., the outputs of CNLU) while the target logical forms are task-
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specific. By including a semantic parser that can be used in various domains, the system can avoid 

learning from scratch for every new task. This leads to improved performance and data efficiency. 

When constructing query cases AQAT needs to select which part of the input semantics 

justifies which parts of the target logical form. In its core, the query case construction procedure 

uses SME to create an initial mapping between all the logical forms in the semantic representation 

and target logical forms. One key problem is that the output of CNLU contains conflicting choices 

which will render some SME mappings invalid (i.e., the mapping may contain two logical 

statements that are from conflicting choices in a choice set). To circumvent this issue, AQAT uses 

a procedure called structure-aware alignment, which is a hill-climbing local search algorithm that 

iteratively improves the initial SME mappings by exploring conflict-free alterations that differ by 

at most two edges from the current mapping. This algorithm explores the space of distinct 

mappings by giving priority to alternate mappings according to a given set of scoring functions. 

The algorithm will keep running until it can no longer find a mapping with a higher score than the 

previous search step. We further describe the structure-aware alignment algorithm as well as the 

scoring functions used throughout our experiments in Appendix A.1. 

Once query cases are constructed, they are stored in the KB and later retrieved to make 

predictions.  We use MAC/FAC (Forbus, Gentner, & Law, 1995) in order to efficiently retrieve 

the query cases relevant to an input question. It performs analogical retrieval in two steps, first by 

performing a cheaper feature-vector match to generate candidates, then uses SME on the most 

promising candidates to select the best retrieval cases. 
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3.2 Transformer Language Models 

Neural networks have recently become a popular approach in natural language processing. They 

are capable of leveraging large amounts of data and computation to solve a wide range of language 

tasks. More specifically, the Transformer architecture (Vaswani, et al., 2017) was shown to learn 

deep representations from unlabeled texts by predicting tokens and sentences given its context 

(Devlin, Chang, Lee, & Toutanova, 2019). The Transformer architecture has gradually replaced 

previously popular recurrent models since they are more suitable for parallelization and can train 

on larger amounts of training data. The approaches proposed in Chapter 5, Chapter 6 and Chapter 

7, use language models either in classification tasks (e.g., word sense disambiguation) or for 

generative tasks (e.g., generating multi-step explanations). 

3.2.1 Neural Network Preliminaries 

Here we show the general machine learning recipe for training neural networks. We assume a 

given training set {(𝒙𝑖, 𝒚𝑖)}
𝑖=1
𝐷𝑡𝑟𝑎𝑖𝑛  with 𝐷𝑡𝑟𝑎𝑖𝑛 data points where 𝒙𝑖 is the input vector and 𝒚𝑖 is the 

output or expected vector. These vectors can be used to encode a variety of data formats, but we 

mostly use these vectors to encode input and output text (i.e., a sequence of symbols or tokens) or 

classification labels. We also assume the existence of a held-out development set (also referred 

here as evaluation data) of size 𝐷𝑑𝑒𝑣 such that 𝐷𝑑𝑒𝑣 < 𝐷𝑡𝑟𝑎𝑖𝑛 and consists of the examples 

{(𝒙𝑖, 𝒚𝑖)}𝑖=1
𝐷𝑑𝑒𝑣. The neural network can be interpreted as a differentiable function 𝑓𝜽 where 𝜽 ∈ ℝ𝐾 

is the set of model parameters (or neural network weights) that can be applied to make a prediction  

�̂�𝒊 = 𝑓𝜃(𝒙𝑖) given some input 𝒙𝑖. 

The training of neural networks (Rumelhart, Hinton, & Williams, 1986) is done using 

gradient descent by minimizing a loss function ℒ(𝒚, �̂�𝒊) ∈ ℝ that intuitively represents the cost (or 
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penalty) associated with the prediction. These model parameters change over multiple iteration 

steps 𝑡 during gradient descent, and the initial model weights 𝜽(𝟎) are either a vector of zeros or 

initialized at random. While the loss on the development set has not converged, the stochastic 

version of gradient descent will select a random sample of the training data (𝒙𝑑, 𝒚𝑑) and take a 

step in the direction of the gradient of the loss such that: 𝜽(𝒕+𝟏) = 𝜽(𝒕) − 𝜂𝑡∇ℒ(𝒚𝑑, 𝑓𝜃(𝒙𝑑)), where 

𝜂𝑡 is the learning rate parameter for that gradient step. 

When training these networks, we will normally use a mini batch of training examples (a 

subset with size often between 2 and 1,000) to perform the gradient steps where the gradient is 

averaged across examples. Other details such as (1) how the gradient steps are computed (i.e., what 

 

Figure 4: The Transformer architecture. Image taken from Vaswani et al.  (2017). 
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optimizer is used), (2) how the learning rate schedule modifies 𝜂𝑡 across different 𝑡, and (3) the 

maximum number of total passes over the training data (often called epochs) will vary depending 

on the task. 

3.2.2 The Transformer Architecture 

Initially designed for textual sequence modeling such as machine translation, the Transformer 

architecture (Vaswani, et al., 2017) is an encoder-decoder model heavily based on attention 

mechanisms. Given an input of 𝑛 symbols, it follows the encoder-decoder formulation (Cho, et al., 

2014) and maps the input 𝒙 = (𝑥1, . . . , 𝑥𝑛) to an intermediate representation 𝒛 = (𝑧1, . . . , 𝑧𝑛). 

Afterwards the decoder auto-regressively generates an output sequence 𝒚 = (𝑦1, . . . , 𝑦𝑚) of 

symbols one element at a time, where generated symbols are used in subsequent generation steps. 

An overview of the Transformer architecture is shown in Figure 4. 

The Transformer’s attention mechanism is believed to detect semantic relations between 

words rather than treating each word simply as tokens in a sequence. For instance, in the sentence 

“willows lined the bank by the river” the semantics of the word “bank” is heavily dependent (or 

weighted) on the context word “river”. The abstract idea behind the attention revolves around 

mapping a query 𝒒 and a set of key-value pairs (𝒌 and 𝒗) to an output. In this case, the query, key, 

and values are vectors, and the output is a weighted sum of the value vectors. In this section we 

describe the Transformer’s attention mechanism and direct the reader to Vaswani et al. (2017) for 

further details on the encoder, decoder, and positional encodings. 

  In the Transformer architecture, the attention mechanism is called Scaled Dot-Product 

Attention. More formally, assuming that the query and key are of dimension 𝑑𝑘 and the values are 

of dimension 𝑑𝑞, and assuming that the vectors are packed together into matrices 𝑄, 𝐾 and 𝑉 (for 

query, key and vector), then the attention output is given by: 
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𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(Q, 𝐾, 𝑉) =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘

) 𝑉 (1) 

Where 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 converts a vector of real numbers into a probability distribution such that 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝒂)𝑖 = 𝑒𝒂𝑖 (∑ 𝑒𝒂𝑖
|𝒂|
𝑗=1 )⁄  for 𝑖 ∈ {1, … , |𝒂| } and will serve to compute the weighted sum 

of 𝑉. The scaling factor √𝑑𝑘 is used to help assign a more equally distributed probability among 

the values of 𝑉 and prevent small gradients. This attention function is used by the Transformer’s 

multi-head attention mechanism that linearly projects the query, key and value ℎ times using 

separately learned linear projects into dimensions 𝑑𝑘, 𝑑𝑘 and 𝑑𝑣, respectively. Assuming that all 

sub-layers and embedding layers in the model produce outputs of size 𝑑𝑚𝑜𝑑𝑒𝑙 the multi-head 

attention is given by: 

 

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(Q, 𝐾, 𝑉) =  ⊕𝑖=1
ℎ (𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑖

𝑄 , 𝐾𝑊𝑖
𝐾 , 𝑉𝑊𝑖

𝑉))𝑊𝑂 (2) 

Where ⊕ is the concatenation operator, and 𝑊𝑖
𝑄 ∈ ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘 , 𝑊𝑖

𝐾 ∈ ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘, 𝑊𝑖
𝑉 ∈

ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑣, and 𝑊𝑖
𝑂 ∈ ℝℎ𝑑𝑣×𝑑𝑚𝑜𝑑𝑒𝑙 are parameter matrices. The sizes 𝑑𝑘 and 𝑑𝑣 are set to 

𝑑𝑚𝑜𝑑𝑒𝑙 ℎ⁄  such that the total amount of computation for the multi-head attention is similar to the 

computation for the single-head attention. 

3.2.3 Pre-trained Language Models 

The initial natural language processing (NLP) methods using neural networks were tailored to 

solve a single problem and required large amounts of labeled data, where models needed to learn 

from scratch for every new task (Qiu, et al., 2020). In recent years, the NLP community has shifted 

the training paradigm towards an approach called pre-training, where neural models learn 

universal language representations from a large corpus of text using self-supervision. The early 
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generations of pre-trained language models aimed to learn word embeddings (Mikolov, Sutskever, 

Chen, Corrado, & Dean, 2013), which learned vector representation for words from a vocabulary. 

Although word embeddings were shown to be useful in many downstream NLP applications, they 

were designed to be context-free and often failed to capture the full meaning of a word in a 

sentence. 

To address issues with polysemy and contextual dependencies, the newer generation of 

pre-trained language models (Peters, et al., 2018; Devlin, Chang, Lee, & Toutanova, 2019; Raffel, 

et al., 2020) were designed to learn contextual representations of words and became more widely 

applicable. In particular, Transformer-based pre-trained language models (which we simply refer 

to as language models) were shown to be powerful at learning universal language representations 

and can better capture long-range dependencies since their self-attention mechanisms can directly 

represent the relationship between any two words in the input sequence. Different language models 

may use different pre-training tasks when learning universal language representations. Two 

popular self-supervised pre-training tasks are called language modeling (sometimes called auto-

regressive language modeling) and masked language modeling which are probabilistic density 

estimation problems. We discuss these two pre-training approaches below. 

Auto-Regressive Language Modeling Pre-Training 

Given a sequence of input tokens 𝒙 = (𝑥0, 𝑥1, … , 𝑥|𝒙|) where 𝒙𝑖:𝑗 = (𝑥𝑖, 𝑥𝑖+1, … , 𝑥𝑗−1, 𝑥𝑗) and 𝑥0 

is a special token indicating the beginning of the sequence, then the joint probability of the whole 

sequence 𝑃(𝒙1:|𝒙|) can be decomposed as: 

 

𝑃(𝒙1:|𝒙|) = ∏ 𝑃(𝑥𝑖|𝒙0:𝑖−1)

|𝒙|

𝑖=1

 (3) 
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 Since predicting the conditional probability 𝑃(𝑥𝑖|𝒙0:𝑖−1) amounts to computing a 

probability distribution over the vocabulary of tokens, a language model 𝑓𝜽 with parameters 𝜽 can 

be used to estimate the probability distribution such that 𝑓𝜽(𝒙0:|𝒙|) = 𝑃(𝑥𝑖|𝒙0:𝑖−1; 𝜽). Therefore, 

assuming that 𝒙 is a large input corpus of tokens, the auto-regressive language modeling task 

dictates that we can pre-train 𝑓𝜽 with maximum likelihood estimation where the loss ℒ𝐴𝑅𝐿𝑀 is 

given by: 

 

ℒ𝐴𝑅𝐿𝑀(𝒙, 𝜽) = − ∑ log (𝑓𝜽(𝒙𝑖−𝑘:𝑖))

|𝒙|

𝑖=1

 (4) 

 In practice, the transformer-based language model 𝑓𝜽 will have an input size limit (which 

is usually between 512 and 2048 tokens) and pre-training is done using a context window of size 

𝑘 such that 𝑓𝜽(𝒙𝑘:|𝒙|) = 𝑃(𝑥𝑖|𝒙𝑘:𝑖−1; 𝜽). This pre-training approach is particularly useful for 

models tasked with language generation since the models are trained to predict the most likely 

tokens given the previous tokens (i.e., auto-regressive language generation). The GPT-3 model 

(Brown, et al., 2020) used in Chapter 7  is a decoder-only transformer and is pre-trained using this 

auto-regressive language modeling approach. 

Masked Language Modeling Pre-Training  

One clear drawback of the unidirectional auto-regressive language modeling is that the neural 

model can only see the tokens to the left of the predicted token, therefore model’s latent 

representation of a token can’t account for the full context.  To overcome this issue, Devlin et al. 

(2019) adapted the Cloze prediction task as a pre-training task. In the Cloze task, some of the input 

tokens in the sequence are masked out as in the sentence “My little ___ likes to bark”. In this 

example, this blank token “___” is likely to be associated with words such as “dog” due to the 
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context word “bark” that appears after it. Therefore, in the masked language modeling approach, 

models are trained to predict every masked-out token in the input sequence.  

In practice, Devlin et al. (2019) simply masked 15% of the input tokens from the corpus at 

random. Out of these masked tokens, they replaced the blanks with either placeholder token 

“[MASK]” (80% of the time), a random token (10% of the time) or the true unchanged token (10% 

of the time). In that formulation, given a large corpus with token 𝒙, the set of masked tokens 𝑚(𝒙) 

, the modified corpus with the masked-out tokens 𝒙/𝑚(𝒙) and a model 𝑓𝜽  that outputs probability 

distributions for the masked tokens 𝑥′ ∈ 𝑚(𝒙). Then the masked language modeling loss ℒ𝑀𝐿𝑀 is 

given by: 

 

ℒ𝑀𝐿𝑀(𝒙, 𝜽) = − ∑ log (𝑓𝜽(𝒙/𝑚(𝒙), 𝑥′))

𝑥′∈𝑚(𝒙)

 
(5) 

 For encoder-only transformer models such as BERT (Devlin, Chang, Lee, & Toutanova, 

2019), the final hidden vectors corresponding to the mask tokens are fed into an output 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 

classifier that predicts the probability distribution over the vocabulary. Alternatively, encoder-

decoder models such as T5 (Raffel, et al., 2020) can feed the sentences with masked tokens to the 

encoder module, while the decoder is expected to output the original tokens from 𝑚(𝒙) in an auto-

regressive fashion. For example, one of the language modeling tasks used to train T5 consisted of 

taking sentences such as “Thank you for inviting me to your party last week”, then masking some 

randomly chosen tokens to create “Thank <x1> inviting me to your party <x2> week” 

(consecutive token spans are replaced with sentinel tokens “<x1>” and “<x2>”) and expecting 

the model to output the tokens dropped-out spans as in “<x1> you for <x2> last <x3>” where 

“<x3>” is used as a delimiter. Many other language modeling objectives have been used including 
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next sentence prediction and de-shuffling the words in a sentence, each with their advantages and 

drawbacks. 

Fine-Tuning and Few-Shot Prompting 

A pre-trained language model 𝑓𝜽 that has hopefully learned general language representations 

during pre-training, can be fine-tuned (or adapted) to perform a new specific task. The way that 

the model is fine-tuned may depend on the model’s architecture and on the specific task at hand, 

but it will always involve performing gradient updates on 𝑓𝜽. 

In the case of encoder-only transformer models such as BERT, each input token 𝑥𝑖 will be 

associated with a final hidden state 𝐻𝑖 ∈ ℝ𝑑𝑚𝑜𝑑𝑒𝑙  containing a distributed representation of that 

token. Given a new task, one can add a classification head 𝑊 ∈ ℝ𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑜𝑢𝑡   on top of these 

hidden states to make predictions about the tokens themselves, where 𝑑𝑜𝑢𝑡 is the vector size to be 

used for the output prediction. BERT also defined the first token 𝑥0  as the classification token 

(which the authors call the “[CLS]”) that should contain a latent representation for the whole 

sentence. In the case of encoder-decoder models such as T5, the model is fine-tuned using the 

maximum likelihood estimation as in Equation (4), however, the task-specific data 𝒙′ is used 

instead of the pre-training corpus 𝒙. 

 When the language models are scaled up to significantly larger parameter sizes (usually 

when |𝜽| > 108) and are pre-trained on massive amounts of data (e.g., corpus of books and web 

crawled data), they improve task-agnostic performance and are able to solve various NLP tasks 

just from a few input examples, without any specific fine-tuning. This learning approach called 

few-shot prompting (sometimes called few-shot learning) was first introduced by Brown et al. 

(2020). 
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In the case of large language models such as GPT-3, one uses few-shot prompting and 

includes a few question-answers pairs as examples in the input context while expecting the desired 

output to be generated by the model. For instance, if using a 2-shot prompting the input to the 

model would follow the template: “<example-question-1>; <example-answer-1>; 

<example-question-2>; <example-answer-2>; <prompt-question>”, and the 

expected output should be the answer to “<prompt-question>”. In the case of machine 

translation from English to Portuguese, then the example question could be “translate to 

Portuguese: I have a dog;” and the example answer could be “Eu tenho um cachorro;”. The few-

shot prompting approach has the clear advantage that it does not require any labeled data or costly 

fine-tuning of these large models, however the number of examples that can be fed to the model 

is still limited by the model’s maximum number of input tokens. 

3.2.4 Dense Retrieval  

One useful application of pre-trained language models is performing textual retrieval (Zhao, Liu, 

Ren, & Wen, 2022). When compared to classical retrieval methods such the bag-of-words or TF-

IDF, the language models have the advantage of computing representations that consider how 

tokens are semantically related to their context (Karpukhin, et al., 2020). A language model 𝑓𝜽 can 

be fine-tuned to construct a dense vector representation of the input text. These representations are 

often used to quickly compute the similarity between two pieces of text 𝑠𝑖𝑚(𝑎, 𝑏) by computing 

their vector dot product such that 𝑠𝑖𝑚(𝑎, 𝑏) = 𝑓𝜽(𝑎)𝑇𝑓𝜽(𝑏) or cosine similarity 𝑠𝑖𝑚(𝑎, 𝑏) =

𝑓𝜽(𝑎) ⋅ 𝑓𝜽(𝑏) ‖𝑓𝜽(𝑎)‖2‖𝑓𝜽(𝑏)‖2⁄ . 

The dense encoder models can be trained from general-purpose language models using 

contrastive learning. Given pairs (𝑎, 𝑏+) of semantically similar texts and pairs (𝑎, 𝑏−) of 

semantically dissimilar texts, then the contrastive learning loss ℒ𝐶𝐿(𝒙, 𝜽) is given by: 
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ℒ𝐶𝐿(𝒙, 𝜽) = 𝔼𝑎,𝑏+,𝑏− [− log (
exp(𝑠𝑖𝑚(𝑎, 𝑏+))

exp(𝑠𝑖𝑚(𝑎, 𝑏+)) + exp(𝑠𝑖𝑚(𝑎, 𝑏−))
)] (6) 

 Usually, the set of semantically similar pairs (𝑎, 𝑏+) are part of a dataset (e.g., answers 

marked as duplicate in internet forums) while the set of semantically dissimilar pairs (𝑎, 𝑏−) are 

automatically created by randomly sampling 𝑏− from the set of available sentences. 
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4 Predicting State Changes in Procedural Text 

The world around us is constantly changing due to the effects of processes. These processes are 

often communicated in natural language through various genres of text including recipes, scientific 

articles, and manuals. These genres are referred to as procedural texts. AI systems need to 

understand how the world’s state evolves over time in order to perform complex reasoning over 

natural language.  

One important task in understanding processes from procedural texts is to predict how the 

state of entities changes over time. In Ribeiro, et al. (2019), we present a novel approach to reading 

comprehension of procedural texts (e.g., answering questions about a paragraph describing the 

stages of photosynthesis). We use analogical learning capabilities of the Companion Cognitive 

Architecture to predict discrete state changes testing our method on the ProPara (Dalvi, Huang, 

Tandon, Yih, & Clark, 2018) dataset. The ProPara dataset contains 488 crowdsourced paragraphs 

describing processes and how the state of the world evolves after each step. One example 

paragraph and its accompanying question is shown in Table 1. 

“Chloroplasts in the leaf of the plant traps light from the sun. The roots absorb water and 

minerals from the soil. This combination of water and minerals flows from the stem into 

the leaf. Carbon dioxide enters the leaf. Light, water and minerals, and carbon dioxide all 

mix together. This mixture forms sugar (glucose) which is what the plant eats. Oxygen 

goes out of the leaf through the stomata.” 

Question: Where is sugar produced?  

Answer: In the leaf. 
 

Table 1: Example of question and context paragraph from the ProPara dataset describing how 

the world state changes over time during the process of photosynthesis. 



53 
 

4.1 Modeling Discrete Actions and Processes with Step Semantics 

Even though processes often involve changes in continuous values such as space and time, they 

are colloquially described as discrete events such as “moving a ball” or “baking bread”. Here we 

introduce Step Semantics (Forbus, et al., 2019), a framework we designed to describe such discrete 

actions and events as found in procedural texts. Step Semantics provides a set of representation 

conventions for processes and discrete state changes described in natural language. Initially 

designed to model processes from ProPara questions, we believe Step Semantics could also be 

applied in other similar tasks such as modeling recipes (Kiddon, Ponnuraj, Zettlemoyer, & Choi, 

2015). For instance, consider the event of cooking a meal, which includes many continuous 

processes such as mixing, heating, chopping, etc. Ultimately, the cooking action can be viewed as 

a discrete event with changes of states and well-defined inputs and outputs. In our framework, 

continuous changes can be represented as multi-step changes (Rickel & Porter, 1994) of states, 

using a coarser granularity of descriptions. 

4.1.1 Step Semantics Ontology 

The goal is to build a formal representation of the states, steps and entities involved in a natural 

language description of a process. The states can be represented by a set of propositional statements 

that describe entities of interest. The steps represent a set of events that describe the transition 

between their initial and final states. The temporal ordering of states is represented using 

before/after relations. Therefore, the ordering of events can be represented by a graph that may 

contain cycles (e.g., oscillating, or recurring events). 

We assume that the textual description of a process is a list of sentences which reference the 

entities of interest. The mapping between sentences and steps is assumed to be many-to-many, 



54 
 

meaning that a single step can be described by multiple sentences while a single sentence can 

describe multiple steps. Taking inspiration from previous work (McFate & Forbus, 2016), we use 

both FrameNet and Cyc to bridge the gap between natural language and a formal description. We 

first examine how verbs in a sentence can be linked to simple steps and summarize the 

representations as follows: 

• Creation Steps: are represented by the FrameNet frame FN_Creating and the respective 

Cyc event type CreationEvent. The lexemes associated with this frame include 

“create”, “form”, “make”, “produce”, and others. 

• Destruction Steps: are represented by the FrameNet frame FN_Destoying and the 

respective Cyc event type DestructionEvent. The lexemes associated with this frame 

include “destroy”, “demolish”, “terminate”, and others. Note that certain verbs such as 

“transform” are often represented by both a Destruction Step (of inputs) and a Creation 

Step (of outputs). 

• Property Change Steps: Many frames and lexemes can represent such steps. For instance, 

FN_Change_of_phase_scenario covers phase changes such as “freezing”, 

“boiling”, and others. 

• Quantity Change Steps: These include frames that represent quantitative change of a 

property. For instance, FN_Change_of_temperature covers verbs such as “heat”, 

“warm”, “cold”, and others. 

• Subprocess / Event Steps: Examples include FN_Motion and FN_Fluidic_motion, 

and the respective Cyc event MovementEvent. They represent phrases often describing 

the source and destination of a certain entity. 
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Note that the natural language description of processes can be ambiguous. For the most part, 

we assume that the existence and properties of objects don’t change over time (inertia) unless 

directly stated. However, this might not be true depending on the context. For instance, a textual 

description of a block of dry ice might not reference the sublimation process, and the reader has to 

understand that the solid becomes gas over time by using common sense. 

4.1.2 Recipe Example 

The following procedural text contains a recipe for cooking “French Toast”2. We use this recipe 

to illustrate how Step Semantics can be used to represent the states, steps and entities involved in 

this cooking process: 

1. Whisk milk, eggs, vanilla, cinnamon, and salt together in a shallow bowl. 

2. Melt butter on skillet over medium to high heat. 

3. Dunk bread in the egg mixture, soaking both sides. Transfer to the hot skillet and cook until 

golden, 3 to 4 minutes per side.  

 

LEXEME FRAMENET FRAMES ENTITIES 

WHISK FN_Self_motion, FN_Amalgamation, 
FN_Creation 

milk, eggs, vanilla, cinnamon, 

salt, shallow bowl, egg mixture 

MELT FN_Change_of_temperature, 
FN_Change_of_phase_scenario 

butter, skillet 

DUNK & 

SOAK 
FN_Soaking, FN_Fluidic_motion, 
FN_Dunking, FN_Cause_to_be_wet 

bread, egg mixture 

TRANSFER FN_Motion bread, egg mixture, skillet 

COOK FN_Apply_Heat, 
FN_Change_of_temperature, 
FN_Amalgamation 

bread, egg mixture, skillet, 

French toast 

Table 2: Lexemes, frames, and entities for French toast recipe. 

 
2 https://www.allrecipes.com/recipe/7016/french-toast-i/ 



56 
 

The entities can be identified as follows: milk, eggs, vanilla, cinnamon, salt, shallow bowl, butter, 

bread, egg mixture, skillet, French toast. The sequence of discrete steps from the recipe are found 

in Table 2. Note that some of the entities are implicitly referenced by the text containing the 

lexeme, but they are still represented in the semantics of the step. We use Step Semantic 

representations and formalisms to predict state changes in procedural text from ProPara, as 

described below. 

4.2 ProPara Problem Definition 

 

Figure 5: State change annotations for the entities of interest (participants) in the paragraph. 

More formally, the ProPara paragraphs consists of a list of sentences 𝑆 = 𝑠1, … , 𝑠𝑁 (e.g., 

“Chloroplasts in the leaf of the plant traps light from the sun”) containing a number of participants 

𝑃 =  𝑝1, … , 𝑝𝑀 (e.g., “leaf” or “plant”) that are mentioned in such sentences. The dataset provides 

annotations containing the state of each participant before and after each sentence. The 

participant’s information tracked includes both location (e.g., in the leaf) and existence (e.g., if it 

was created or destroyed). The evolving state of the world can be described by a matrix 𝑆 with 
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𝑁 + 1 rows and 𝑀 columns. Each matrix entry describes the state of the 𝑀 participants through 

the 𝑁 + 1 steps. The data assumes three possible states for participants: does not exist (labeled as 

“—”), location is unknown (labeled “?”), or location is known (label is a string expressing a 

location). An example of annotation for a single paragraph is shown in Figure 5. 

We use Step Semantics to represent the possible changes in the state (namely: Creation, 

Destruction, and Movement), identifying the participants, locations, and relations associated 

with the event. Step Semantics is used to map from textual lexemes to FrameNet descriptions. 

Such descriptions are in turn mapped to the OpenCyc ontology. The state change descriptions are 

referred to as target logical forms (or Target LFs) and are shown in Table 3. 

Creation Destruction Movement 

(isa participant1 Participant) 

(isa event1CreationEvent)  

(isa tolocation1 Location) 

(outputsCreated event1 

participant1) 

(outputsCreatedLocation 

event1 tolocation1) 

(isa participant2 Participant)  

(isa fromlocation2 Location)  

(isa event2 DestructionEvent)  

(inputsDestroyed event2 

participant2) 

(inputsDestroyedLocation 

event2 fromlocation2) 

(isa participant3 Participant)  

(isa event3 MovementEvent)  

(isa fromlocation3 Location)  

(isa tolocation3 Location) 

(objectMoving event3 

participant3)  

(fromLocation event3 

fromlocation3)  

(toLocation event3 tolocation3) 
 

Table 3: Target logical forms (or Target LF). Each token in the logical forms contains relations 

and collections from OpenCyc, or open variables (ending in numbers). 

4.3 Approach 

Taking inspiration from Analogical QA training (Crouse, McFate, & Forbus, Learning from 

unannotated qa pairs to analogically disambiguate and answer questions, 2018), the logical forms 

from the semantic representation of the text (produced by CNLU) are matched to one of the Target 

LFs to generate query cases. An overview of the system is shown in Figure 6. During the prediction 
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phase these query cases are analogically retrieved and used to predict the state changes given in a 

sentence (sentence level prediction) from an input paragraph. A dynamic programming algorithm 

is applied to enforce some commonsense constraints, generating a more coherent set of state 

changes for the whole paragraph (global level prediction). The training (query case construction), 

inference (state change prediction), and commonsense constraints are described below. 

 

Figure 6: Overview and sub-components of the state change prediction system. 

4.3.1 Query Case Construction 

During the training phrase, the system pairs the most relevant input logical forms (from the 

semantic choices of the parsed input sentences 𝑠𝑖 ∈ 𝑆) to their respective Target LFs, while 

preventing any possible choice conflicts. For example, consider the case when the input sentence 

is “The roots absorb water from the soil.”. First, the system identifies the tokens of all the 

participants 𝑝𝑖 (i.e., “water”) and their annotated state changes (i.e., movement from “soil” to the 

“roots”). Afterwards it adds logical forms to the semantic interpretation such as (isa 
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water4336 Participant) and (isa soil4486 Location) to signal that these 

discourse variables should be considered when matching the semantic to a Target LF. 

The objective of the graph matching phase is to select a subset of logical forms from the 

parsed semantics that justify the annotated state change. This is done by executing a bipartite 

matching algorithm that finds the best one-to-one assignment of logical forms with respect to three 

signals: ontological similarity, structural overlap, and conflict avoidance. While computing the 

matching, the system verifies that no two chosen semantic forms are conflicting. Here, conflicts 

are represented by the semantic choices and correspond to distinct word senses or syntax parse 

trees associated with the input sentence. 

 

Figure 7: Example of ontological connection between semantics and target logical forms for the 

sentence “Roots absorb water from the soil”. Gray squares contain logical variables. The full, 

dashed, and dotted arrows represent isa statements, role relations, and ontological structural 

relations, respectively. 

The ontological similarity between two expressions represents how well connected they 

are in the knowledge base, as depicted in Figure 7. The score is computed by extracting concepts 

(e.g., predicates, role relations, and entities) and finding connection subgraphs (Faloutsos, 

McCurley, & Tomkins, 2004) defined by structural relations in NextKB. In OpenCyc ontology, 
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structural relations include argIsa argument type constraints, isa instance relations, and 

genls or specs type hierarchies. More concretely, one possible path between “absorption” and 

“movement” concepts from both the Semantics and Target LFs could consist of the following 

nodes: AbsorptionEvent ↔ TransferIn ↔ EventOrRoleConcept ↔ 

MovementEvent. 

In general, given two a in the knowledge base, the set of paths 𝑃 that connect such concepts 

through the connection subgraph formed by structural relations, and 𝑣𝑢,𝑤 the vertices in these 

paths. Let 𝑑𝑒𝑔(𝑣𝑢,𝑤) be the number of incoming edges to the vertex 𝑣𝑢,𝑤. The ontological 

similarity 𝑂𝑛𝑡𝐶𝑜𝑛 is defined as: 

 

𝑂𝑛𝑡𝐶𝑜𝑛(𝜙1, 𝜙2) =  ∑
∏ 𝑑𝑒𝑔(𝑣𝑢,𝑤)

−1
𝑣𝑢,𝑤 ∈ 𝑝𝑤

|𝑃|𝑝𝑤 ∈ 𝑃
 

 

(7) 

Note that this 𝑂𝑛𝑡𝐶𝑜𝑛 similarity gives higher weights to paths that go through more sparse 

regions of the knowledge graph, penalizing nodes that are more generic (i.e., high vertex degree). 

The similarity is computed for all the possible connection subgraphs between the entities 𝜙1 in the 

semantic logical forms and 𝜙2 in the target logical forms. When 𝜙1 and 𝜙2 have no paths between 

them, their ontological similarity score is set to zero. 

Considering the semantics and target logical forms as graphs, their structural overlap is the 

number of times two expressions in a matching are neighbors in their respective graphs. For 

instance, mapping MovementEvent to AbsorptionEvent is desirable over other mappings 

since their discourse variables are both connected to the Participant concepts in their 

respective logical forms. Last but not least, the conflict avoidance signal disregards matchings with 

a higher number of expressions in the semantic parse that have conflicting meanings (e.g., due to 

alternative word senses or parse choices). 
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These three signals are then combined using a weighted sum of their values (weights are 

hyperparameters). Finally, the matching procedure executes a hill-climbing algorithm that 

searches through the space of possible matchings, selecting the one with the best combination of 

signals and stopping when no better matching can be found. The query case construction algorithm 

is explained in more details in Appendix A.1. The optimized matching is used to create query 

cases, which are then stored in the KB for future inference. A query case example is shown in 

Figure 8. 

 

Figure 8: Example of constructed query case for the sentence “Roots absorb water from the soil”. 

The corresponding discourse variables are highlighted with the same colors. 

4.3.2 State Change Prediction 

Given an input paragraph, the participants (e.g., “plant” or “leaf”, which are a priori known) are 

identified by finding their tokens in the input sentences. Similar to the training phase, the semantic 

representation of the input sentences is obtained from the CNLU and augmented with the logical 

forms of the participants that are found in the sentence. For instance, if the participant “water” is 

found in the input sentence with associated discourse variable water4336, then (isa 

water4336 Participant) is added to the semantic representation.  Afterwards, the 

MAC/FAC module retrieves a set of potential query cases in which antecedents are analogically 
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similar to the semantic logical forms. More concretely, considering that the query case example 

from Figure 8 was retrieved for the input sentence “Neurons absorb nutrients from the blood”. 

Given that discourse variables from an input sentence will be analogically bound to elements in 

the antecedents and consequent of the query case (e.g., the discourse variables nutrient4453, 

blood4485, and neuron4440 from the input sentence will bind to ?water, ?soil, and 

?root from the query case, respectively), then the system predicts the movement of 

nutrient4453 from blood4485 to neuron4440. This query case instantiation procedure 

is applied to infer the state changes of each sentence 𝑠𝑖 ∈ 𝑆  in the input paragraph. 

One obvious problem is that multiple query cases can be retrieved by the MAC/FAC 

module. The question then becomes: which query case would best predict the state change 

described in the input sentence? To this end, the system ranks each retrieved query case by 

computing some statistics over all stored query cases created during training. Let 𝐸𝑐 and 𝐸𝑎 be the 

sets of collections (e.g., “AbsorptionEvent” or “Location”) from both consequent and 

antecedents in a stored query case, respectively. Let Ψ = {𝑅1, … , 𝑅|Ψ|} be the relations in the 

antecedents, and 𝜆 be a hyper-parameter. The ranking score 𝑅𝑆 is for a given sentence-level 

prediction is: 

 
𝑅𝑆(Ψ, 𝐸𝑐, 𝐸𝑣) =  |Ψ| + 𝜆 (∑ 𝑃(𝐸𝑐

𝑅𝑖∈ Ψ
| 𝐸𝑎, 𝑅𝑖)) (8) 

This ranking score can be viewed as a sentence-level prediction, only considering the 

current and past sentences at a certain step in the input paragraph. However, it is possible that the 

sentence level prediction is not optimal according to a global level interpretation of the paragraph. 

For instance, if the scoring function predicts a participant was destroyed at a step 𝑡, but in the step 

𝑡 + 1 such participant is moving from one location to another, it is possible that the destruction 
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event was mis-classified. To mitigate this issue, the system stores all the top-ranked retrieved cases 

in a table 𝑃 with 𝑁 rows and 𝑀 columns (where each entry 𝑃[𝑛][𝑚] is a list of predicted state 

changes and their scores for sentence 𝑠𝑛 and participant 𝑝𝑚) and feeds 𝑃 the next prediction step 

as described below. 

4.3.3 Common Sense Constraints 

To obtain a globally consistent output, the system applies common sense constraints using 

dynamic programming. Given the set of retrieved query cases (from the sentence level predictions) 

and their respective ranking scores, the algorithm (shown in Figure 9) uses the following 

constraints to predict the output with optimum global prediction: 

• Inertia: A participant will not move until some Movement event occurs involving that 

participant. 

• Collocation: When a Creation and Destruction event occurs during the same 

discrete time step, then we assume the participant destroyed was transformed into the 

created participant. Therefore, the created participant will be assigned the same location (if 

known) as the destroyed participant. 

• Existence: if a participant already exists, it cannot be created. 

• Absence: if a participant does not exist, then it cannot be moved or destroyed. 

• Presence: the algorithm penalizes predictions that assume a participant does not exist even 

if it is mentioned in a sentence. The presence penalty cost is represented by the hyper-

parameter P-penalty. 
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• Re-existence: the algorithm penalizes predictions where participants are destroyed and 

created in the following sentence (to avoid spurious predictions). The re-existence penalty 

cost is represented by the hyper-parameter R-penalty. 

The input to COMMONSENSE-OPTIMIZATION is the input table 𝑃 containing a list of the 

sentence-level state changes together with their ranking scores. The table 𝐷[𝑛][𝑚][𝑠] will store 

the dynamic programming values where the 𝑛 index corresponds to the state change position, the 

Function: COMMONSENSE-OPTIMIZATION 
Input: Table 𝑃 with size (𝑁, 𝑀). Each entry 𝑃[𝑛][𝑚] is a list of predicted state changes for 
sentence 𝑠𝑛 and participant 𝑝𝑚 
Parameters: P-penalty, R-penalty 
Output: State change grid 
01: Create dynamic programming table 𝐷 with size (𝑁 + 1, 𝑀, 2) 
02: for 𝑛 from 0 to 𝑁 do 
03:  for 𝑚 from 0 to 𝑀 − 1 do 
04:   𝐷[𝑛][𝑚][0] ← (𝒏𝒖𝒍𝒍, 𝒏𝒖𝒍𝒍, 0) 
05:   𝐷[𝑛][𝑚][1] ← (𝒏𝒖𝒍𝒍, 𝒏𝒖𝒍𝒍, 1) 
06: for 𝑛 from 1 to 𝑁 do 
07:  for 𝑚 from 0 to 𝑀 − 1 do 
08:   let 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 ← 𝑃[𝑛][𝑚 + 1] and let 𝑤 ← 0 
09:   for 𝑝 in 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 do 
10:    if event(𝑝) = CreationEvent then 
11:     𝑤 ← 1 if R-penalty criteria is met else 0 
12:     UPDATE-TABLE(𝐷, 𝑛, 𝑚, 0, 1, event(𝑝),  score(𝑝) - (𝑤 * R-penalty))  
13:    if event(𝑝) = DestructionEvent then 
14:     UPDATE-TABLE(𝐷, 𝑛, 𝑚, 1, 0, event(𝑝),  score(𝑝)) 
15:    if event(𝑝) = MovementEvent then 
16:     UPDATE-TABLE(𝐷, 𝑛, 𝑚, 0, 0, event(𝑝),  score(𝑝)) 
17:    if event(𝑝) = ParticipantFound then 
18:     𝑤 ← 1 if P-penalty criteria is met else 0 
19:     UPDATE-TABLE(𝐷, 𝑛, 𝑚, 1, 1, event(𝑝),  −1 * (𝑤 * P-penalty)) 
20:    end if 
21:   end for 
22:    UPDATE-TABLE(𝐷, 𝑛, 𝑚, 0, 0, 𝒏𝒖𝒍𝒍,  𝒏𝒖𝒍𝒍) /* propagate prev. row */ 
23:    UPDATE-TABLE(𝐷, 𝑛, 𝑚, 1, 1, 𝒏𝒖𝒍𝒍,  𝒏𝒖𝒍𝒍) /* propagate prev. row */ 
24:  end for 
25: end for 
26: return RECONSTRUCT-OUTPUT-GRID(D) 

 

Figure 9: Global level state change prediction algorithm. Commonsense constraints are applied 

using a dynamic programming approach. 
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𝑚 index corresponds to the participant position, and the 𝑠 index represents if participant exists 

(𝑠 = 0) or doesn’t exist (𝑠 = 1). Each entry in the dynamic programming table 𝐷[𝑛][𝑚][𝑠] stores 

three values: (1) the best possible score that can be reached up to that step (2) the prediction event 

(e.g., CreationEvent) that that was chosen for that state, and (3) the previous state for that 

participant given the prediction event chosen. The Existence and Absence constraints are 

mandatory, but the Presence and Re-existence are just treated as an extra state change “cost” (i.e., 

P-penalty and R-penalty, respectively). The UPDATE-TABLE and RECONSTRUCT-OUTPUT-GRID sub 

routines are shown in Appendix A.3. In particular, the RECONSTRUCT-OUTPUT-GRID takes the final 

dynamic programming table and reconstructs the predicted state change grid, which is then used 

to answer the questions about the state changes involving the participants in the input paragraph 

as described in the following section. 

4.4 Experiments 

In this experiment, the system reads a paragraph containing a textual description of a process (e.g., 

photosynthesis) and answers templated questions regarding the state changes involving a 

participant 𝑝𝑖 mentioned in the paragraph. The first set of metrics, called Sentence-Level metrics, 

which were proposed by Dalvi et al. (2018).  This first set of metrics answers the following three 

categories of questions: 

• Cat-1: Is 𝑝𝑖 created (destroyed, moved) in the process? 

• Cat-2: When (step #) is 𝑝𝑖 created, destroyed, or moved? 

• Cat-3: Where is 𝑝𝑖 created, destroyed, moved? 

The accuracy for these questions is derived simply from the predicted state change grid which 

is the output of RECONSTRUCT-OUTPUT-GRID (prediction for each sentence in the paragraph). Cat-
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1 questions are asked for every participant. On the other hand, Cat-2 and Cat-3 questions are only 

asked for participants that have been moved, been destroyed or been created. For Cat-3, the 

predicted location is regarded as correct if it is either identical or a substring of the golden 

annotated location. The second set of metrics are called Document-Level and were proposed by 

Tandon et al. (2018). The task is to answer the following four templated questions: 

• Q1: What are the inputs to the process? 

• Q2: What are the outputs of the process? 

• Q3: What conversions occur, when and where?  

• Q4: What movements occur, when and where? 

In these questions the inputs correspond to the participants that existed during the start of the 

process, but not at the end, while the outputs did not exist during the start but did at the end. 

Conversions are when some participants are created while others are destroyed. Movements 

correspond to events when participants that had their location changed. Since each question can 

have multiple answers, the metrics use precision, recall and F1 score to compare the gold and 

predicted answers. 

4.4.1 Results 

In Table 4 we report our system results, which we call Analogical Procedural Text Understanding 

(or APTU), together with previously published results on the ProPara dataset. The majority of the 

baselines are based on neural networks: QRN (Seo, Min, Farhadi, & Hajishirzi, 2017), EntNet 

(Henaff, Weston, Szlam, Bordes, & LeCun, 2017), PROLOCAL and PROGLOBAL (Dalvi, 

Huang, Tandon, Yih, & Clark, 2018), PROSTRUCT (Tandon, et al., 2018), KG-MRC (Das, 

Munkhdalai, Yuan, Trischler, & McCallum, 2019), LACE (Du, et al., 2019), and NCET (Gupta & 
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Durrett, 2019). ProComp (Clark, Dalvi, & Tandon, 2018) used a hybrid approach relying on 

separate sources of knowledge. 

The results show strong performance for APTU against many of the baselines. Notably, for 

Cat-3 (predicting when the state changes occur) we outperform all the previously reported results 

except for the NCET model. On the other hand, our Cat-3 results (predicting the location changes 

of participants) are not as strong as other baselines. After manually inspecting the state change 

predictions, we notice that many errors are due to incomplete semantic parses or due to the fact 

that we make a simplifying assumption that the location should be contained within the tokens of 

the sentence describing the state changes, which is not always the case. The results in the 

document-level evaluation seem to be suffering from a similar problem: our approach cannot 

always find the location of the participants in the paragraph. Nonetheless, we believe that these are 

strong results considering that analogical learning has other desirable properties including data 

 

Table 4: Results for ProPara dataset on both sentence-level and paragraph level evaluations. 

Technique Model 
Sentence-Level Document-Level 

Cat-1 Cat-2 Cat-3 Micro-avg Macro-avg Prec. Recall F1 

Hybrid PROCOMP  57.14 20.33 02.40 26.24 26.62 - - - 

Artificial NN QRN 52.37 15.51 10.92 26.49 26.26 55.5 31.3 40.0 

EntNet 51.62 18.83 07.77 25.96 26.07 50.2 33.5 40.2 

PROLOCAL 62.65 30.50 10.35 33.96 34.50 77.4 22.9 35.3 

PROGLOBAL 62.95 36.39 35.90 45.37 45.08 46.7 52.4 49.4 

PROSTRUCT - - - - - 74.2 42.1 53.7 

LACE - - - - - 75.3 45.4 56.6 

KG-MRC 62.86 40.00 38.23 46.62 47.03 64.5 50.7 56.8 

NCET 73.68 47.09 41.03 53.93 53.97 67.1 58.5 62.5 

Analogy APTU 61.58  40.14  18.59 39.38  40.10 62.0 45.1 52.3 
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efficiency and explainability (Crouse, McFate, & Forbus, Learning from unannotated qa pairs to 

analogically disambiguate and answer questions, 2018; Chen & Forbus, 2021). 

 

Figure 10: Graphs showing the learning curve of the APTU system for different number of 

training examples and evaluation metrics. 

To illustrate the data-efficiency properties of analogical learning, we evaluate the system on 

a subset of the ProPara training data. We plot the sentence-level macro-average of Cat-1, Cat-2 

and Cat-3 as well as the document-level  F1 scores when the system is trained on a subset from 0 

to 100 training sentences, as shown in Figure 10. The subset of training input sentences 𝑠𝑖 ∈ 𝑆 are 

taken from the pool of 2,639 total training sentences. We automatically select the sentences that 

are likely to be relevant to a large number of test examples. This is done by looking at the generated 

query cases from the full training data and counting occurrences of concept and role-relations in 

the antecedents which appear most often, then selecting the sentences associated with such query 
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cases. The results show that with only 100 training examples, the system already performs close 

to the results with the full training data (84.3% for macro-avg and 79.5% of the F1 score), even 

outperforming other baseline such as QRN, EntNet, and PROLOCAL that were trained on the full 

data. 

4.4.2 Error Analysis 

To further understand the strengths and weaknesses of our approach, we randomly selected five 

paragraphs from the development set in ProPara, categorizing common errors made by the system. 

We found that the most common errors (33%) were due to implicit state changes. For instance, if 

a paragraph is describing some garbage collection process where a bag is added to a trash truck, 

then a sentence “The trash truck travels to the landfill” will imply that the trash bag inside the 

truck also moved to the landfill, even if that is not explicitly stated in the sentence. Such cases are 

very challenging to predict and would require embedding more commonsense reasoning and rules 

into the system. The second most common type of errors (28%) are due to CNLU incomplete or 

inaccurate parses. These errors can stem from missing syntactic and grammatical rules, incorrect 

coreference-resolution involving nouns, or finding the relationship between participants and their 

locations when they are far apart in the paragraph. The third most common error (21%) was due 

to incorrectly retrieved cases. This happens either when the training data does not contain certain 

events (e.g., bag up as in the sentence “trash is bagged up”, which implies that the trash moved to 

the bag) or when a sentence implies a different state change due to its context. The remaining 

errors were due to incorrect ranking of scores (14%) and noisy data (4%), which we believe were 

mislabeled by the human annotators. 
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4.5 Conclusion 

Understanding how the world evolves over time is a key aspect of human-level reasoning. In this 

chapter we discuss how analogical learning can be applied to answer questions about procedural 

texts describing various processes (e.g., photosynthesis). We build upon the Step Semantic 

formalisms and develop a system that can extract patterns from the training data which are then 

analogically retrieved to answer questions. Predictions that only consider a subset of the input 

sentences in the paragraph may be globally inconsistent. To mitigate this issue, we apply a set of 

commonsense constraints using dynamic programming to arrive at a more plausible sequence of 

state changes. The resulting system is shown to have strong results against other baselines on the 

ProPara dataset, while having other desirable properties such as data-efficiency (achieving around 

80% performance from only 100 examples) and producing inspectable outputs. 
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5 Analogical Knowledge Extraction 

To perform complex reasoning and draw new conclusions, intelligent agents need to use and 

manipulate knowledge. Within the context of natural language processing, structured knowledge 

has also proven to be useful in many downstream tasks including dialogue systems, question-

answering and language generation (Lukovnikov, Fischer, Lehmann, & Auer, 2017; Wilson, et al., 

2019; Lin, Tseng, & Byrne, 2021; Forbus, et al., A Prototype System that Learns by Reading 

Simplified Texts., 2007).  With that in mind, in Ribeiro & Forbus (2021) we tackle the long-

standing problem of automatically extracting structured knowledge from natural language text 

(Lao, Subramanya, Pereira, & Cohen, 2012; Distiawan, Weikum, Qi, & Zhang, 2019). The goal is 

to not only extract information about named entities (e.g., countries or companies), but also general 

world knowledge (e.g., everyday objects or elementary science facts) by leveraging the knowledge 

already contained in the knowledge base (KB). 

In our approach, which we call Analogical Knowledge Extraction (or AKE for short), we 

use the relations and concepts defined in Companion’s NextKB as the starting point, expanding 

the KB by extracting information from Simple English Wikipedia3 articles. One important aspect 

of NextKB is that it uses OpenCyc as its main source of knowledge, which has three desirable 

properties: 

1. It contains general world knowledge covering various topics including elementary 

sciences, human activities, and everyday objects, contrasting with other sources such 

as NELL (Carlson, et al., 2010) and FreeBase (Bollacker, Evans, Paritosh, Sturge, & 

Taylor, 2008) that mostly focus on named entities. 

 
3 https://simple.wikipedia.org/ 
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2. It contains a large set of semantic relations, as opposed to other sources such as 

WordNet (Miller, 1998) which has less than a dozen relations. 

3. The concepts and relations are represented by unique symbols, as opposed to plain 

textual representations. For instance, the term “mouse” in OpenCyc could be 

represented by either Mouse-Rodent or ComputerMouse, which have distinct 

meanings. Knowledge resources that represent their concepts or relations with plain 

text include ConceptNet (Speer, Chin, & Havasi, 2017), Aristo Tuple KB (Dalvi 

Mishra, Tandon, & Clark, 2017), ATOMIC (Sap, et al., 2019), and Ascent (Nguyen, 

Razniewski, & Weikum, 2021). 

In order to train our system, we apply distant supervision (Mintz, Bills, Snow, & Jurafsky, 

2009) to automatically create training examples for analogical training and extract knowledge from 

a text corpus. This learning paradigm is non-supervised, meaning that we do not use any human-

annotated data directly labeling text to their structured representation. To the best of our 

knowledge, AKE is the first to combine Companion’s analogical learning capabilities with 

Transformer neural models. The system uses the Bidirectional Encoder Representations from 

Transformer (or BERT) (Devlin, Chang, Lee, & Toutanova, 2019) to help disambiguate between 

distinct word sentences (e.g., differentiate between Mouse-Rodent or ComputerMouse) from 

the textual semantic representations. Furthermore, BERT is used in a post-processing step to rank 

predicted facts according to their plausibility. 

In our experiments around 94.8% of relations in the selected KB are associated with less 

than 100 facts. Therefore, this distant supervision will generate relatively fewer training examples 

per relation compared to other knowledge sources. Even in low resource settings, our results show 
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that AKE can extract high precision facts compared to other baselines, demonstrating the data-

efficiency of analogical learning. 

5.1 Problem Definition 

The knowledge extraction task consists of predicting facts from natural language while following 

the schemas, concepts and relations defined by an existing KB. Previous works (Weston, Bordes, 

Yakhnenko, & Usunier, 2013; Dalvi Mishra, Tandon, & Clark, 2017) on knowledge or relations 

extraction often represent facts as (h,r,t) triples such as (Brazil, borders, 

Argentina). On the other hand, we use the CycL ontology language (Lenat & Guha, 1989) 

which allows for a more expressive representation of facts. 

In CycL all concepts are represented using disambiguated constants (as in Mouse-Rodent 

or ComputerMouse). Concepts are represented by collections, where Mouse-Rodent is a 

collection, while mouse123 denotes an instance or member in that collection. All the relations 

are of arbitrary arity (not just binary), where relations such as between can naturally have three 

arguments, as in the example (between ContinentOfEurope ContinentOfAsia 

UralMountains).  Furthermore, relations can be of higher order and take collections and 

predicates as arguments such as (relationAllExists eatsWillingly Omnivore 

Meat). Logical functions can produce new terms from existing ones, where (FruitFn 

AppleTree) represents the “fruit of an apple tree”. 

More formally, the knowledge extraction task can be defined as follows. Two inputs are 

expected, a text corpus 𝑇𝐶 = (𝑠1, … , 𝑠|𝑇𝐶|) composed of sentences 𝑠𝑖 and a knowledge base 𝐾𝐵 =

(𝐶, 𝑅, 𝐹). In 𝐾𝐵, the term 𝐶 represents the set of all available concepts (in CycL, they can be either 

collections, entities, or logical functions), 𝑅 represents the set of all relations and predicates while 
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𝐹 is the set of facts (which is a nested tuple containing elements from 𝐶 and 𝑅). The objective is 

to learn new facts 𝑓′ ∉ 𝐹 which are not already present in the KB that are expressed in the 

sentences 𝑠𝑖 ∈  𝑇𝐶. 

5.2 Neural Word Sense Disambiguation 

Because of homonymy and polysemy, lexemes might have multiple meanings and interpretations. 

Therefore, a key challenge in knowledge extraction is disambiguating the meaning from the words 

in the corpus. For this reason, we augment the CNLU parser by including a word sense 

disambiguation module that scores different parse choices according to the context. This module 

uses BERT trained on the FrameNet4 data, which resembles the approach by Tan & Na (2019). 

FrameNet contains annotations mapping from parts of sentences to their corresponding frames. 

For instance, the word “know” may be associated with either the [Awareness] frame or the 

[Familiarity] frame. 

Given an input sentence 𝑠 with tokens 𝑡1, … , 𝑡|𝑠|, we want to assign a probability that a 

FrameNet frame 𝐹𝑁𝑘 is associated with a given subsequence 𝑡𝑖 , … , 𝑡𝑗  of such tokens such that 1 ≤

𝑖, 𝑗 ≤ |𝑠|. We fine-tune BERT by adding a classification head with weights 𝑊 ∈  ℝ𝐾×4|𝐻|. Here, 

the value 𝐻 represents the model’s output hidden state vector for each token with size |𝐻|, while 

the value 𝐾 is the number of distinct FrameNet frames. This module maps all sequences of four 

(i.e., 𝑗 − 𝑖 = 3) consecutive tokens to a probability distribution over the possible frames. The 

probability that a subsequence of tokens in 𝑠 is associated with a frame 𝐹𝑘 is represented by 

𝐹𝑟𝑎_𝑃𝑟𝑜(𝑠, 𝑖, 𝑗, 𝐹𝑁𝑘) and is given by the following formula: 

 
4 https://framenet.icsi.berkeley.edu/ 
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𝐹𝑟𝑎_𝑃𝑟𝑜(𝑠, 𝑖, 𝑗, 𝐹𝑁𝑘) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥([𝐻𝑖, : 𝐻𝑗]𝑊𝑇)
𝑘
 (9) 

 This module is used to assign probability score for each choice from choice sets within 

CNLU’s semantic parse. Given a logical form Υ𝑎 ∈ Υ from CNLU’s semantic parse which is part 

of a choice with frame 𝐹𝑁𝑘, we will use the notation 𝐹𝑟𝑎_𝑃𝑟𝑜(Υ𝑎) to represent the frame 

probability score given to the logical form Υ𝑎. All choices in a choice set which are associated with 

no FrameNet frame will receive probabilities from a uniform distribution. This disambiguation 

module is used when parsing sentences in both the training and testing phases. 

5.3 Analogical Knowledge Extraction 

The AKE pipeline consists of four main phases. First, the system parses the sentences from the 

text corpus 𝑇𝐶 and finds facts in the knowledge base 𝐾𝐵 in which entities are referenced by the 

sentences. These sentences are selected as distant supervision training examples. Second, the 

        

Figure 11: Overview of system components of the Analogical Knowledge Extraction (AKE) 

system. The input data consists of a corpus describing general knowledge (e.g., “purr is a sound 

made by cats”) and a knowledge base with facts which are used to extract training examples 

using distant supervision. 
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system uses analogical learning to identify patterns in the training examples. These patterns are 

stored as query cases and will help extract new facts from the corpus afterwards. Third, the system 

performs a second pass over the text corpus 𝑇𝐶, this time trying to learn new facts by using the 

stored query cases. Finally, AKE performs a post-processing step where all the learned facts are 

assigned a score, discarding ones which are considered less plausible. We detail each of these steps 

in the following sections. An overview of the system components and data flow among them is 

shown in Figure 11. 

5.3.1 Learning with Distant Supervision 

The distant supervision assumption is that if concepts from a fact 𝑓 ∈ 𝐹 are referenced by a 

sentence 𝑠𝑖, then that sentence might express that fact. We use that assumption to generate training 

examples without any explicitly labeled data. First, the sentences 𝑠𝑖 from the input corpus are 

parsed by CNLU to produce a predicate calculus semantic representation. Afterwards all facts 

containing two or more concepts in the semantic representation are retrieved from the KB. For 

instance, consider the sentence “Cats use many different sounds for communication, including 

meowing and purring.”. The semantic representation will contain logical forms such as (isa 

cat158446 Cat) and (relationInstanceExists waveEmitted purr158909 

PurringSound). Since both Cat and PurringSound concepts are present in the semantic 

representation, then AKE will assume that this particular sentence expresses the existing KB fact 

(animalTypeMakesSoundType Cat PurringSound). 

 In general, all the facts that are retrieved from the KB this way will be referred to as 

candidate facts. The collection of all candidate facts is represented by the set Ψ where Ψ𝑖 ∈ 𝐹. 
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Likewise, all the concepts in the candidate facts (e.g., Cat or PurringSound) will be referred 

to as anchor concepts. Ω represents the set of all anchor concepts where Ωi ∈ 𝐶. 

5.3.2 Construction of Query Cases 

Given the sentences in the corpus that are associated with and candidate facts, the AKE system 

uses a modified version of Analogical Question-Answering Training (Crouse, McFate, & Forbus, 

Learning from unannotated qa pairs to analogically disambiguate and answer questions, 2018) to 

generate query cases. Such query cases can be thought of as functions that can map the semantic 

representation (antecedents) to the given generalization of a fact in the KB (consequent). When 

Function: SEMANTIC-SELECTION 
Input:  Sentence semantics Υ, retrieved candidate fact Ψ𝑖, anchor concepts Ω for that fact. 
Parameters: linear combination weights 𝜆1, 𝜆1, 𝜆1, 𝜆1, and score threshold 𝜀1 
Output: Subset of semantics  Υ∗ ⊆ Υ  
01:  Select a set of logical forms  Φ𝑎,𝑏 ⊆ Υ from paths connecting two anchor concepts Ω𝑎 
and Ω𝑏 through the semantic representation graph with depth of up to 3 nodes. 
02:  foreach  Υ𝑎 ∈ Υ  do 
03:  if Ω𝑐 ∈ Υ𝑎 for some Ω𝑐 ∈ Ω then 
04:   𝑐𝑜𝑛 ← |Φ𝑎,𝑏| 
05:   𝑓𝑎𝑐 ← ∑ 𝑂𝑛𝑡_𝐶𝑜𝑛(Ω𝑐 , Ψ𝑖)𝑐  
06:   𝑔𝑒𝑛 ← 𝐺𝑒𝑛(Ω𝑐) 
07:   𝑠𝑟𝑐[Υ𝑎] ← 𝜆1 ∗ 𝑐𝑜𝑛 + 𝜆2 ∗ log10(1 + 𝑓𝑎𝑐) + 𝜆3 ∗ log10(1 + 𝑔𝑒𝑛)  
08:  else 
09:   Ω′ ← set of all collections from Υ𝑎 
10:   𝑠𝑟𝑐[Υ𝑎] ←  𝜆2 ∗ ∑ 𝑂𝑛𝑡_𝐶𝑜𝑛(Ω′𝑐 , Ψ𝑖)𝑐  
11:   end if 
12:  𝑠𝑟𝑐[Υ𝑎] ← 𝑠𝑟𝑐[Υ𝑎] + 𝜆4 ∗ 𝐹𝑟𝑎_𝑃𝑟𝑜(Υ𝑎) 
13:  end for 
14:  Υ𝑎 ← sort Υ by  𝑠𝑟𝑐[Υ𝑎] 
15:  Υ∗ ←  ∅ 
16:  foreach  Υ′𝑎 ∈ Υ′  do 
17:  if  ∀  Υ𝑐

∗ ∈ Υ∗¬ 𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠(Υ′
𝑎, Υ𝑐

∗) and 𝑠𝑟𝑐[Υ𝑎] > 𝜀1 then 
18:   Υ∗ ← Υ∗ ∪  Υ′

𝑎 
19:  end if 
20:  end for 
21:  return Υ∗ 

 

Figure 12: Analogical KE semantic selection algorithm. 
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producing query cases, the system needs to consider how to best select a subset of the parsed 

semantic forms such that these can be later used to infer new facts. 

The algorithm that performs such selection is shown in Figure 12. It takes as input sentence 

semantics Υ produced when parsing sentence si, a retrieved candidate fact Ψ𝑖 and all their anchor 

concepts Ω. To illustrate this process, we take as example the sentence “Bees also have a stinger 

at the back of the abdomen”. The semantic representation of the sentence contains the anchor 

concepts Bee and Stinger that relate to the candidate fact (properPhysicalPartTypes 

Bee Stinger). First, the system selects set of logical forms Φ𝑎,𝑏 ⊆ Υ connecting any two 

anchor concepts Ω𝑎 and Ω𝑏 through a path in Υ containing three or fewer nodes. In this case, the 

logical forms (isa have2924551 StaticSituation), (fe_possession 

have2924551 stinger2924603) and (possesses bee2924540 have2924551) 

would be part of the set since it connects the discourse variables stinger2924603 and 

bee2924540. Furthermore, the algorithm relies on three signals to rank the logical forms from 

Υ called semantic connectivity, ontological connection and type generality. 

The semantic connectivity signal represents the logical forms that connect the anchor 

concepts of a fact together and is simply defined as the size of the set Φ𝑎,𝑏. The second signal, 

ontological connection, helps disambiguate the semantic choices by prioritizing concepts that are 

more closely related to the candidate fact. The ontological connection 𝑂𝑛𝑡_𝐶𝑜𝑛 (Ribeiro, et al., 

2019) defined in Equation (7) in Chapter 4 computes a correlation between two concepts, 𝜙1 and 

𝜙2, by finding paths connecting them in the graph defined by the KB. 

The third and last signal, type generality, gives lower priority to more specific concepts. 

Given a concept 𝑥, the score computes the number of facts 𝐹𝑥 in the KB that contain such concept. 

The formula is as follows: 
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𝐺𝑒𝑛(𝑋)  =  |{𝐹𝑥 |𝐹𝑥  ∈  𝐹 ∧  𝑋 ∈  𝐹𝑥}| (10) 

For instance, the concept Water will have a higher generality score than Water-Saline 

since it appears in more facts in the KB. Finally, all three signals are combined to select a subset 

of the parsed semantics and create a query case. A query case example is shown in Figure 13. The 

isa statements from the parsed semantics associated with the arguments of the candidate fact are 

used as non-abducible antecedents (necessary condition) while the remaining are set as abducible 

antecedents (additional evidence). 

 

Figure 13: Query case example for the sentence “Bees also have a stinger at the back of the 

abdomen”. The corresponding discourse variables are highlighted with the same colors. 

5.3.3 Predicting New Facts  

The third phase consists of going through the corpus 𝑇𝐶 and extracting structured knowledge 

(facts) that could be expressed using the relations and concepts already defined in the KB. The 

Analogical KE system parses each sentence using CNLU. Afterwards, the system uses the 

sentence’s semantic representation as probes to analogically retrieve the stored query cases using 
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MAC/FAC. In our implementation, we further process the query cases retrieved by MAC/FAC 

and select up to 20 cases per probe5. 

 The goal is to decide if the semantic representation of the input sentence contains sufficient 

evidence so that new facts can be predicted. To this end, the system uses a fact scoring formula to 

compute scores for each instantiated query case. This scoring formula is designed to ensure that 

(1) the predicted facts are relatively similar to the query case consequent (i.e., similar to the 

corresponding candidate facts from training) (2) the word senses in the semantic representation 

have high probability and (3) the concepts inside the predicted fact are not too generic (i.e., avoid 

concepts with a large number of descendants in the genls hierarchy such as Event or Thing). 

Suppose that the instantiated query case has antecedents 𝐴 and consequent 𝐶. Given the anchor 

concepts Ω𝑐 from the input sentence and the anchor concepts of the original fact Ω𝑜 from the 

consequent 𝐶, then, the fact scoring formula is given by: 

 
𝜆5 ∗ ∑ 𝐹𝑅𝐴_𝑃𝑅𝑂(𝐴𝑢)

𝐴𝑢∈𝐴

+ 𝜆6 ∗ |𝐴| − 𝜆7 ∗ 𝑙𝑜𝑔10(𝐺𝐸𝑁(Ω𝑐)) + 

𝜆8 ∗ log10( ∑ 𝑂𝑁𝑇_𝐶𝑂𝑁(Ω𝑢
𝑐 , Ω𝑣

𝑐 )

𝑢,𝑣

)  
(11) 

 In this formula 𝜆5 through 𝜆8 are system hyper-parameters. Any predicted facts that are 

already in the KB or have fact scores lower than a given threshold 𝜀2 are filtered out. Finally, the 

learned new facts, the provenance (sentence that entailed the new fact) and the fact scores are 

stored in the KB. 

 
5 Experiments showed that 20 cases per probe was a number that was small enough that didn’t slow down the 
system but large enough to not compromise the prediction quality. 
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5.3.4 Fact Scoring 

In the last phase of the pipeline all the output facts (extracted knowledge) are stored using a 

separate BERT model. Since BERT is pre-trained on a large text corpus, we assume that the 

model’s weights will implicitly store some general world knowledge that will help rank the 

predicted facts. We take inspiration from Yao, Mao, & Luo (2019) and predict the plausibility of 

new facts by fine-tuning BERT on a “linearized” textual encoding of the predicted facts. For 

instance, the fact (pathogenCausesConditionType Borrelia LymeDisease) is 

linearized to “[CLS] pathogen causes condition type [SEP] lyme disease [SEP] borrelia [SEP]”, 

where “[CLS]” is the special classification token and “[SEP]” is a separation token used to mark 

boundaries between sentences. 

The training examples are generated from the full set of facts 𝐹 in the 𝐾𝐵. All facts 𝑓 ∈ 𝐹 

are used as positive examples. Negative examples are automatically generated either by shuffling 

the order of concepts in 𝑓 (ignoring facts in which relations are part of the set of symmetrical 

relations 𝑅° such as bordersOn) or by switching a concept within 𝑓 with a random concept in 

𝐶. Without loss of generality, considering all facts 𝑓 ∈ 𝐹 are triples in the format (ℎ, 𝑟, 𝑡) where 

𝑟 ∈ 𝑅 and ℎ, 𝑡 ∈ 𝐶, the set of negative training examples 𝐹− is given by: 

 𝐹− = {(𝑡, 𝑟, ℎ)|(ℎ, 𝑟, 𝑡) ∈ 𝐹 ∧ 𝑟 ∉ 𝑅°} ∪ 

{(ℎ, 𝑟, 𝑡′)|𝑡′ ∈ 𝐶 ∧ 𝑡′ ≠ 𝑡 ∧ (ℎ, 𝑟, 𝑡′) ∉ 𝐹} ∪  

{(ℎ′, 𝑟, 𝑡)|ℎ′ ∈ 𝐶 ∧ ℎ′ ≠ ℎ ∧ (ℎ′, 𝑟, 𝑡) ∉ 𝐹} 

(12) 

Both 𝐹 and 𝐹− are used to fine-tune BERT which is used as a binary classifier. The combined 

set 𝐹 ∪ 𝐹− has a total of 39,447 training examples. A classification head 𝑊′ ∈ ℝ2×|𝐻| is added, 

where |𝐻| is the model’s hidden state size. The output score 𝑠𝑖 ∈ ℝ2 for a fact 𝑓𝑖 ∈ 𝐹 ∪ 𝐹− is 
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computed as 𝑠𝑖 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑇𝐶𝐿𝑆𝑊′𝑇) where 𝑇𝐶𝐿𝑆 ∈ ℝ𝐻 is the hidden vector for the special 

classification token [CLS]. The training is done by optimizing the cross-entropy loss ℒ as in: 

 

ℒ = ∑ (𝑦𝑖 ∗ log(𝑠0
𝑖 ) + (1 − 𝑦𝑖) ∗ log(𝑠1

𝑖 ))

𝑓𝑖 ∈ 𝐹∪𝐹−

 (13) 

Here, the value 𝑦𝑖 represents the expected output, where 𝑦𝑖 = 1 if 𝑓𝑖  ∈  𝐹 or 𝑦𝑖 = 0 if 𝑓𝑖  ∈

 𝐹−. After training, the fine-tuned model achieves 89% fact classification accuracy on a held-out 

development set. 

5.4 Experiments and Results 

In this section, we describe the corpus and data used to extract facts as well as baseline models 

that are used for comparison. All the training details and hyper parameters used during experiments 

are shown in Appendix A.4. 

5.4.1 Corpus and Knowledge Base Details  

We select a subset of Simple English Wikipedia6 articles such that the article titles contain tokens 

in a list of common nouns including animals (e.g., “alligator”), house objects (e.g., “towels”), 

places (e.g., “California”), and science related terms (e.g., “zygote”). Articles with titles such as 

“20th Century Classical Music” or “Harry Potter” are excluded. All the article names from Simple 

English Wikipedia used for these experiments are listed in Appendix A.4. The final corpus 

contains a total of 2,679 articles. 

 Likewise, we selected a subset of NextKB which we believe expresses general facts. This 

is done by selecting all facts from a list of microtheories. In Cyc, a microtheory represents a group 

 
6 https://simple.wikipedia.org/ 



83 
 

of similar assertions and facts. The list includes microtheories such as AnimalActivitiesMt, 

BiologyMt or HumanActivitiesMt. All the facts containing relations such as quotedIsa 

and givenNames are excluded. The final set of facts is available online7 and contains 66,649 

facts covering 3,745 distinct relations and 21,462 concepts. 

 To further analyze this KB subset, we plot in Figure 14 a histogram depicting the frequency 

of relations. In this plot, the values in the horizontal axis refer to the number of times (frequency) 

a relation appears in the KB, while the values in the vertical axis refer to the total number of facts 

with relations in that frequency. For instance, there are 2,497 facts in the KB in which relations 

appear once in the KB, while only 8 facts have relations that appear 10 times. This is evidence that 

the selected facts are relatively sparse, and the frequency of relations follows a long-tail 

distribution. This fact further justifies the use of data-efficient approaches such as analogical 

learning to solve this task. 

 
7 https://github.com/dnr2/analogical-ke 

 

Figure 14: A histogram showing the distribution of relations according to their frequency 

(number of occurrences in distinct facts) in the knowledge base. 
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5.4.2 Baselines 

We compare our results against three other baselines, where the distant-supervised examples from 

AKE are used to create a training and development set. The first is based on the Text-to-text 

Transfer Transformer (or T5) by Raffel et al. (2020), where we fine-tune the model to take as input 

a sentence and output a linearized version of the structured knowledge. The linearized encoding is 

similar to AKE’s Fact Scoring module, where a fact such as (typicalMainConstituent-

TypeType BookCopy Paper) gets encoded as “typicalMainConstituent-TypeType [S] 

BookCopy [S] Paper”. 

Method Estimated Precision 

Relation Extraction * (OpenRE + CNN) 17.1% 

Relation Extraction * (OpenRE + BERT) 20.8% 

Text-to-text (T5 [base]) 26.0% 

Analogy (AKE) 45.7% 

Analogy (AKE + BERT fact scoring) 71.4% 
 

Table 5: Evaluation results showing the estimated precision of AKE and other baselines. Models 

with * can only produce facts with binary relations. 

Two other baselines use the relation extraction model OpenNRE by Han et al. (2019). We 

use both BERT and CNN (Zeng, Liu, Lai, Zhou, & Zhao, 2014) as sentence encoders. Note that 

open implementation of OpenNRE can only predict facts with binary relations, which is limiting 

since the facts in NextKB contain multi-arity relations. For this reason, we exclude any facts with 

more than two arguments while training the OpenNRE baselines. During testing, the head and tail 

arguments for the relation extraction baselines are identified from the surface form of the concepts 

in the KB (taken from CNLU lexical mappings). 
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5.4.3 Results 

After performing knowledge extraction on the Simple English Wikipedia corpus, we evaluate the 

predicted facts (excluding the ones already present in the KB). Unlike other knowledge extraction 

tasks (Mintz, Bills, Snow, & Jurafsky, 2009; Han, et al., 2018), we do not have a held-out test split. 

Instead, we randomly sample 8% of the predicted facts and manually evaluate their correctness. 

The estimated precision averaged across different relations are shown in Table 5. 

When it comes to the number of output facts, the text-to-text (T5) model extracted 6,772 

new facts, while the adapted relation extraction models (OpenRE) using the CNN and BERT 

encoder extracted 2,448 and 2,804 facts, respectively. Interestingly, the OpenNRE models are able 

to perform well on a held-out development set from the distant supervision examples (achieving 

over 80% F1 scores when it comes to predicting the relation given between two concepts) but their 

performance drops on the proposed knowledge extraction task, possibly because some facts and 

relations are outside the distribution of the training data. 

The AKE estimated precision outperforms baselines in terms of precision, predicting a total 

of 4,458 facts covering 58 distinct relations. Adding the BERT fact scoring phase greatly increases 

the precision, but the total number of predicted facts drops to 976 items. Figure 15 shows the 

estimated precision for a subset of AKE predicted facts broken down by relation. After a more 

careful inspection of the results, we see that the system is able to perform reasonably well even 

when the distant supervision data is sparse. For instance, in the initial KB there are only four 

examples of facts in the format (relationAllExists eatsWillingly ?x ?y), but a 

total of 156 new facts are predicted in the end. 
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Furthermore, we performed an error analysis of AKE’s outputs and found that roughly 42% 

of the failures were due to semantic parsing errors. The majority of the remaining erroneous 

predictions were due to classification errors from BERT’s word sense disambiguation component 

and incorrect semantic selection during the creation of query cases. We believe that improving the 

coverage of the training data from FrameNet would greatly mitigate the issues caused by the word 

sense disambiguation component. 

5.5 Conclusion 

Knowledge acquisition is an important task for any intelligent agent that needs to perform general 

reasoning. In this chapter we present AKE, a hybrid approach based on both analogical and neural 

learning that can automatically extract general world knowledge from natural language text. The 

AKE system is built on the Companion Cognitive Architecture, and it extracts patterns from the 

 

Figure 15: Estimated precision of the AKE system broken down by relation types. 



87 
 

semantic representation of the input text, which are later used to analogically predict new facts. 

Two BERT-based modules are introduced to help with both word sense disambiguation and fact 

scoring. Our experiments show that our system is able to outperform other baselines, producing 

high-precision facts from a small number of distantly supervised training examples. 
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6 Natural Language Explanations with Entailment Trees 

With the goal of making the output of neural language models less opaque, in Ribeiro et al. (2022) 

we propose a question-answering system that can create natural language explanations by both (1) 

retrieving supporting evidence from a corpus of textual facts and (2) generating a systematic step-

by-step chain of reasoning from the retrieved textual evidence. In this work, the chain of reasoning 

is represented using entailment trees, which were first introduced by Dalvi et al. (2021). 

Entailment trees are structures comprised of multi-premise entailment steps that show how 

a hypothesis (or an answer to a question) can be explained from simpler textual facts, as depicted 

in Figure 16. The goal is to take as input a textual hypothesis and a corpus of textual premises and 

output such entailment trees as a way to explain the input hypothesis. Entailment trees are more 

expressive than other natural language explanation methods such as retrieval of passages 

(DeYoung, et al., 2020) or multi-hop chains (Jhamtani & Clark, 2020) since it contains multi-

premise textual entailment steps. 

       

 

Figure 16: Example from EntailmentBank dataset. Given a hypothesis H (a combination of 

question and possible answer), the system retrieves a set of textual premises from a corpus C 

and constructs an entailment tree (on the right-hand side) that explains the hypothesis H using 

such premises. Gray nodes represent sentences from the corpus, while blue nodes represent 

generated intermediate conclusions. 
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 Previously, the generation of entailment trees was done by first retrieving a subset of the 

premises from the corpus and then using an encoder-decoder language model to output a textual 

encoding of the entailment trees contaning such premises (Dalvi, et al., 2021; Tafjord, Dalvi, & 

Clark, 2021; Bostrom, Zhao, Chaudhuri, & Durrett, 2021). These approaches had two drawbacks. 

(1) The input size limit of the language models reduces the number of possible retrieved premises 

from the corpus. If incorrect premises are retrieved, the output entailment tree will contain 

inaccurate inferences. (2) The retrieval of premises is done in a single step, and the model cannot 

not recover from a situation where an incorrect set of premises are retrieved. 

To mitigate these issues, we propose the Iterative Retrieval and Generation Reasoner 

(IRGR), a system that can iteratively retrieve premises while generating a single intermediate 

conclusion at a time. The system leverages intermediate conclusions to help with the retrieval of 

premises for the following entailment steps. We show that this approach greatly improves the 

retrieval of premises and consequently generates better explanations for the hypothesis. Our results 

show a 300% gain in the overall correctness of generated entailment trees over previous baselines. 

6.1  Problem Definition 

Formally, the input consists of a corpus of premises 𝐶 (with simple textual facts and rules such as 

“eruptions produce ash clouds” or “a human is a kind of animal”) and a hypothesis ℎ. The goal is 

to output an entailment tree 𝑇 that explains the hypothesis ℎ using a set of retrieved premises from 

𝐶 as nodes. The entailment tree 𝑇 = (ℎ, 𝑆, 𝐸, 𝑃) can be represented as a tree data structure. The 

hypothesis ℎ is always the root node. The leaf nodes are sentences 𝑠𝑖 ∈ 𝑆 which are retrieved from 

the corpus C (i.e., 𝑆 ⊆ 𝐶). The internal tree nodes 𝑒𝑖 ∈ 𝐸 represent intermediate conclusions and 

are new sentences generated by the system. Finally, 𝑝𝑖 ∈ 𝑃 are entailment steps representing one 
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inference step from a conjunction of nodes to an intermediate conclusion (e.g., “𝑠1: eruptions 

produce ash clouds” and “𝑠2: ash clouds block sunlight” => “𝑒1: eruptions block sunlight). 

6.2  Iterative Retrieval and Generation Reasoner 

In order to generate such entailment trees, IRGR intertwines the generation of conclusions with 

the retrieval of premises through multiple iteration steps 𝑡 ≥ 1. The IRGR system has two main 

modules, namely the retrieval module or 𝐼𝑅𝐺𝑅_𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑟 and the generation module or 

𝐼𝑅𝐺𝑅_𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟.  At each iteration step, the 𝐼𝑅𝐺𝑅_𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑟 selects a subset of premises from 

the corpus 𝑆𝑡 ⊆ 𝐶, which are then used by the generation module (𝐼𝑅𝐺𝑅_𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟) to output a 

single entailment step 𝑝𝑡 per iteration, which is appended to the partially generated tree in a 

bottom-up fashion. This process continues until the full entailment tree 𝑇 is generated. The 

retrieval module can be formally represented as follows: 

 
𝑆𝑡 = 𝐼𝑅𝐺𝑅_𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑟(ℎ, 𝑝𝑡−1) 

 
(14) 

Given the set of previously generated intermediate steps 𝑃1:𝑡−1 = (𝑝1, … , 𝑝𝑡−1), the generator 

module can be formally described as: 

 
𝑝𝑡 = 𝐼𝑅𝐺𝑅_𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟(ℎ, 𝑆𝑡, 𝑃1:𝑡−1) 

 
(15) 

The retrieval-generation process has two stop conditions: (1) when the generator produces an 

entailment step that contains the hypothesis ℎ or (2) when 𝑡 ≥ 𝑡𝑚𝑎𝑥, where 𝑡𝑚𝑎𝑥 is the hyper 

parameter limiting the maximum number of generation steps. We give a more detailed description 

of both modules in the following sections. 
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6.2.1  Dense Retrieval of Premises 

The 𝐼𝑅𝐺𝑅_𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑟 module searches over the corpus of premises 𝐶 using dense passage 

retrieval (Karpukhin, et al., 2020). Differently from previous work, the 𝐼𝑅𝐺𝑅_𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑟 fetches 

a different set of premises for each generation step. The 𝐼𝑅𝐺𝑅_𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑟 module may return a 

variable number of premises, meaning that |𝑆𝑡| can change for different iteration steps 𝑡. The size 

|𝑆𝑡| ensures that the concatenation of sentences ℎ ⨁ 𝑆𝑡⨁ 𝑃1:𝑡−1 (the generator module’s input) is 

smaller than the language model input token size limit. In our experiments |𝑆𝑡| ≪ |𝐶| and |𝑆1| =

25. To perform dense passage retrieval, the module uses a sentence encoder function 𝜙 that maps 

sentences to a 𝑀-dimensional vector representation in ℝ𝑀. The sentence encoder tries to map 

semantically similar sentences to vectors that are close together in this 𝑀-dimensional embedding 

space according to some similarity function. Therefore, the retrieval probability for a given 

premise 𝑐  𝑖𝑛 𝐶 given the hypothesis ℎ and the previous entailment step 𝑝𝑡−1 is defined as: 

 

𝑃(𝑐 | ℎ, 𝑝𝑡−1) =
exp(〈𝜙(𝑐), 𝜙(ℎ ⨁ 𝑝𝑡−1)〉)

∑ exp(〈𝜙(𝑐′), 𝜙(ℎ ⨁ 𝑝𝑡−1)〉)𝑐′∈𝐶
 

 

(16) 

In principle, the sentence encoder 𝜙 can by implemented with any neural network 

architecture. In our experiments we use the Siamese Network architecture (Reimers & Gurevych, 

2019) as the underlying model. The embedding space size 𝑀 = 768  and the embeddings vectors 

are normalized such that ‖𝜙(∙)‖2 = 1. 

The training is done by selecting 𝑁 positive and 𝑀 negative examples {(𝑞𝑖 , 𝑐𝑖, 𝑦𝑖)}𝑖=1
𝑁+𝑀 

where 𝑞𝑖 represents the query and is the concatenation of the hypothesis ℎ and some previous 

entailment step 𝑠𝑡−1, the value 𝑐𝑖 is some premise from the corpus 𝐶, and 𝑦𝑖 is a label given to the 

example. The 𝑁 positive examples are taken from the golden entailment trees from training data, 

meaning that 𝑐𝑖 ∈ 𝐿. We use the golden steps as queries and their respective leaf nodes as expected 



92 
 

premises. The negative examples are created by both randomly selecting premises in 𝐶 or by using 

premises incorrectly retrieved by a non-fine-tuned version of the model (hard negatives). 

The expected label 𝑦𝑖 of an example depends on how close the leaf node 𝑐𝑖 ∈ 𝐿 is from the 

intermediate step 𝑠𝑡 in the golden entailment tree. Given that 𝑎𝑛𝑡(𝑠𝑡) is the set of antecedents (or 

child nodes) of the entailment step 𝑠𝑡, then the value of the label 𝑦𝑖 is given by: 

 

𝑦𝑖 = {

0, 𝑖𝑓 𝑐𝑖 ∉ 𝐿
𝜆, 𝑖𝑓 𝑐𝑖 ∈ 𝐿 𝑎𝑛𝑑 𝑐𝑖 ∉ 𝑎𝑛𝑡(𝑠𝑡) 

1, 𝑖𝑓 𝑐𝑖 ∈ 𝐿 𝑎𝑛𝑑 𝑐𝑖 ∈ 𝑎𝑛𝑡(𝑠𝑡)
 (17) 

Which means that 𝑦𝑖 = 1 if it is a positive example of a premise that is directly used by the 

entailment step, or 𝑦𝑖 =  𝜆 if the premise is in the entailment tree but is not directly related to the 

entailment step 𝑠𝑡. Essentially, the value 𝜆 ∈ [0: 1] gives lower priority to leaf nodes not relevant 

to the current entailment step (in our experiments we use 𝜆 = 0.75). More concretely, consider 

the entailment tree example from Figure 16. If “int1: eruptions block sun light” is the entailment 

 

Figure 17: Entailment tree showing a challenging example when retrieving premises for the first 

entailment step. Some leaf nodes have lower similarity to the hypothesis (root) node. 
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step 𝑠𝑡 and “sent1: eruptions produce ash clouds” is the premise of interest 𝑐𝑖, then 𝑦𝑖 = 1 since 

𝑐𝑖 is an antecedent (or child node) of 𝑠𝑡. On the other hand, if the premise is “s3: plants die without  

sunlight” then 𝑦𝑖 = 𝜆 since 𝑐𝑖 is not a direct descendent of the node 𝑠𝑡. Finally, the encoder 𝜙 is 

then trained by minimizing the cosine similarity loss ℒ𝜙 which is given by: 

 

ℒ𝜙 =
1

𝑁 + 𝑀
 ∑ (𝑦𝑖 −

〈𝜙(𝑐𝑖), 𝜙(𝑞𝑖)〉

‖𝜙(𝑐𝑖)‖ ‖𝜙(𝑞𝑖)‖
)

𝑁+𝑀

𝑖=1

 

 

(18) 

6.2.2 Conditional Retrieval 

The first retrieval step is a special case since there are no previously entailed steps, and the retrieval 

depends solely on ℎ. When the entailment tree is deep, the retrieval is often more challenging 

because leaf nodes have lower semantic similarity to the hypothesis. A challenging case is depicted 

in Figure 17, where the leaf node “a human is a kind of animal” is very dissimilar relative to the 

hypothesis, “An astronaut requires the oxygen in a spacesuit backpack to breathe”. To improve 

Function: CONDITIONAL-RETRIEVAL 
Input:  Hypothesis ℎ, corpus 𝐶, number of initial retrieved premises 𝑘0. 
Parameters: Conditioning factor 𝜔. 
Output: Retrieved premises 𝑆1.  
01:  𝑄 ←  {ℎ}  /* set of queries */ 
02:  𝑆1 ←  {} 
03:  for  𝑖 from 0 to k0 do 
04:  𝐶′ ←  {𝑐 ∈ 𝐶: 𝑐 ∉ 𝑆0} 
05:  if 𝑖 ≥ 𝜔 then 
06:   𝑠𝑖 ← 𝑎𝑟𝑔𝑚𝑎𝑥(𝑐∈𝐶′)𝑃(𝑐|𝑄) 

07:   𝑄 ← 𝑄 ∪ {𝑠𝑖}  
08:  else 
09:   si ←  𝑎𝑟𝑔𝑚𝑎𝑥(𝑐∈𝐶′)𝑃(𝑐|ℎ) 

10:   end if 
11:  𝑆1 ← 𝑆1 ∪ {𝑠𝑖} 
12:  end for 
13:  return 𝑆1 

 

Figure 18: Conditional Retrieval Algorithm. 
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the retrieval quality, we perform a conditional retrieval on the first step when 𝑡 = 1, which consists 

of retrieving a set of premises using the hypothesis ℎ, then concatenating ℎ. 

with the partial retrieved premises 𝑆𝑡
′ ⊆ 𝑆𝑡 themselves. The conditional retrieval algorithm is 

shown in Figure 18. 

 The conditional retrieval algorithm assumes that leaf nodes (premises) are more similar 

among each other than to the root node (hypothesis). First the algorithm builds a set 𝑄 containing 

the sentences that will be used as queries. Assuming that k0 premises will be retrieved, then the 

first 𝜔 retrievals use only the hypothesis ℎ as the query. Afterwards, all the remaining retrieval 

results are saved in 𝑄 and are later concatenated to the hypothesis and are used as a query in order 

to retrieve more premises. In our experiments we set 𝜔 = 15 and k0 = 25. 

Input: ℎ, 𝐚𝐧𝐝 𝑆1 for 𝑡 = 1 

hypothesis: Eruptions can cause plants to die;  

sent1: eruptions produce ash clouds; 

sent2: ash clouds block sunlight; 

sent3:  plants die without sunlight; 

Output: 𝑃1 for 𝑡 = 1 

sent1 & sent2 -> int1: Eruptions block sunlight; 

Input: ℎ, 𝑆1, and  𝑃1 for 𝑡 = 2 

hypothesis: Eruptions can cause plants to die;  

sent3: plants die without sunlight; 

sent1 & sent2 -> int1: Eruptions block sunlight; 

Output: 𝑃2 for 𝑡 = 2 

sent3 & int1 -> hypothesis; 
 

Table 6: Input and output example for the 𝐼𝑅𝐺𝑅_𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 module during generation for two 

iteration steps. The entailment tree structure is encoded using plain text. 
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6.2.3 Explanation Generation 

The proposed 𝐼𝑅𝐺𝑅_𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 module outputs one entailment step per iteration. It is built on an 

encoder-decoder language model and handles the structured nature of entailment trees by encoding 

the edges and nodes as plain text. Both the input and output trees are encoded using any valid 

topological order, from leaves to the root node (i.e., the hypothesis node ℎ). We follow Dalvi et al. 

(2021) and encode the leaf nodes 𝑠𝑖 ∈ 𝑆 using the symbol “sent”, the inner nodes 𝑒𝑖 ∈ 𝐸 are 

using the symbol “int” and the root node ℎ uses the symbol “hypothesis”. For instance, the 

input and output of the 𝐼𝑅𝐺𝑅_𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 for the example in Figure 16 at iterations 𝑡 = 1 and 𝑡 =

2 is shown below in Table 6. In this example, it is assumed that the corpus consists of only the leaf 

nodes from that specific entailment tree (i.e., s1, s2 and s3). Note that a leaf node already used 

Function: ITERATIVE-RETRIEVAL-GENERATION 
Input: Hypothesis ℎ, corpus 𝐶, number of initial retrieved premises 𝑘0. 
Parameters: Conditioning factor 𝜔,  maximum number of entailment 
steps 𝑡𝑚𝑎𝑥. 
Output: Predicted entailment tree 𝑇.  
01:  𝑇 ←  ""  /* entailment tree as empty string */ 
02:  𝑃 ← ()  /* empty list of intermediate steps */ 
03:  for 𝑡 from 1 to t𝑚𝑎𝑥 do 
04:  𝐶′ ←  {𝑐 ∈ 𝐶: 𝑐 ∉ 𝑆0} 
05:  if 𝑡 > 1 then 
06:   𝑆𝑡 ← 𝐼𝑅𝐺𝑅_𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑟(ℎ, 𝑝𝑡−1) 
08:  else 
09:   𝑆𝑡 ←  CONDITIONAL-RETRIEVAL(ℎ, 𝐶, 𝑘0)  
10:   end if 
11:  𝑝𝑡 ← 𝐼𝑅𝐺𝑅_𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟(ℎ, 𝑆𝑡, 𝑃1:𝑡−1) 
12:  𝑃 ← 𝑃 ⨁ ( 𝑝𝑡) 
13:  𝑇 ← UPDATE-ENTAILMENT-TREE(𝑇, 𝑝𝑡, 𝑆𝑡) 
14:  if ℎ ∈ 𝑝𝑡 then 
15:   return 𝑇  
16:   end if 
17:  end for 
18:  return 𝑇 

 

Figure 19: Iterative Retrieval and Generation Reasoner Algorithm. 
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in the previously generated entailment steps 𝑃1:𝑡−1 are removed from the input context and when 

the model produces an entailment step that has the hypothesis as conclusion, then the whole 

iterative retrieval and generation process stops. The algorithm combining the retrieval and 

generation steps is shown in Figure 19.  The UPDATE-ENTAILMENT-TREE sub routine will update 

the string representing the entailment tree 𝑇 similar to the updates shown in Table 6. The ⨁ 

operator is used to represent concatenation of lists. 

The generator module is based on the Text-to-text Transfer Transformer (or T5) by Raffel 

et al. (2020) and is trained in an auto-regressive fashion, where the model predicts future values 

from past predicted values. The training examples are generated from the golden entailment trees, 

where an example is generated for each entailment step. We select the model weights with the 

highest number of perfectly generated entailment trees (the Overall All-Correct metric described 

below) on the development set to be used for tests. 

6.3 Experiments and Results 

In this experiment, we evaluate how well our system can generate truthful explanations that can 

show the entailment of a hypothesis from a set of textual premises. We evaluate our system on the 

ENTAILMENTBANK dataset (Dalvi, et al., 2021), where the hypothesis are accompanied by answer-

question pairs taken from the ARC grade school science dataset (Clark, et al., 2018), while the 

textual premises are part of the WorldTree V2 corpus (Jansen, Wainwright, Marmorstein, & 

Morrison, 2018). The ENTAILMENTBANK dataset contains 1,840 questions with a total of 5,881 

entailment steps. The corpus of premises 𝐶 will contain the sentences from the WorldTree V2 

corpus plus a few additional premises created by the ENTAILMENTBANK annotators and contains 

around 11 thousand sentences covering various grade-school level science topics. 
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6.3.1 Implementation Details 

When running experiments, we used machines with four Tesla V100 GPUs, each with 16GB of 

VRAM memory. For the retrieval module, we use the Sentence Transformer (Reimers & 

Gurevych, 2019) library. We fine tune the all-mpnet-base-v28 encoder, which is based on 

the MPNet language model (Song, Tan, Qin, Lu, & Liu, 2020) and fine-tuned on over one billion 

training sentence pairs, ultimately designed to be general purpose models. The generator module 

used the HuggingFace’s Transformers (Wolf, et al., 2020) implementation of the t5-large9, 

which is an encoder-decoder model with 770 million parameters and 512 tokens of context size 

limit. The T5 model itself was pre-trained on the “Colossal Clean Crawled Corpus” with mixture 

of unsupervised and supervised tasks where each task is converted to text-to-text format. Further 

implementation details with training hyper parameters and settings are available in Appendix A.6. 

6.3.2 Retrieval Evaluation 

Before evaluating the whole IRGR pipeline, we test the 𝐼𝑅𝐺𝑅_𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑟 separately to understand 

how our proposed approach impacts the retrieval of premises. We chose two different metrics to 

evaluate the system and baselines. The first metric is the well-known information retrieval metric 

recall at k (or R@𝑘) which computes the recall given the top-k retrieved entries from the corpus. 

Given the set of retrieved premises 𝑆 ⊆ 𝐶 and the set of golden (or expected) premises 𝑆∗ ⊆ 𝐶 

such that  |𝑆| = 𝑘, then the R@𝑘 is given by |𝑆 ∩ 𝑆∗| |𝑆∗|⁄ . The second metric, called All-Correct 

is a strict metric that expects that all the premises from 𝑆∗ are retrieved from the set of retrieved 

premises. Therefore, the value of this metric is equal to 1 if and only if 𝑆∗ ⊆ 𝑆. For our experiments 

 
8 Available at https://huggingface.co/sentencetransformers/all-mpnet-base-v2 
9 Available at https://huggingface.co/t5-large 

https://huggingface.co/sentencetransformers/all-mpnet-base-v2
https://huggingface.co/t5-large
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we set 𝑘 = 25, since this is roughly the number of premises that can fit inside the generator module 

limited input context. 

 Two approaches are used as baselines. The first uses the python implementation of the 

Okapi BM25 ranking function10, which is commonly used to estimate the relevance of documents 

given a query. This ranking function uses bag-of-words and ranks entries in a corpus according to 

the frequency of occurrences of query terms in such entries. The second baseline uses the retrieval 

module from EntailmentWriter, which is based on Tensorflow-Ranking-BERT (Han, Wang, 

Bendersky, & Najork, 2020) and constructed on top BERT representations. 

In addition to these baselines, we include three variations of the 𝐼𝑅𝐺𝑅_𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑟 module. 

The first performs the conditional retrieval algorithm as shown in Figure 18. The second IRGR 

variation (“w/o conditional ret.”) does not rely on the conditional retrieval, only using the 

hypothesis ℎ as the input query to retrieve premises. The third and final variation (“full pipeline”) 

tries to simulate the full pipeline where retrieval is combined with generation through multiple 

iterations. It performs conditional retrieval for the first iteration, and then uses the intermediate 

nodes from the golden entailment tree for the remaining iterations. Note that this variation retrieves 

more than 25 premises total, but we include these results as an upper bound performance for the 

IRGR system as a whole. 

The retrieval evaluation results for both R@25 and All-Correct are shown in Table 7. The 

results show that our retrieval module outperforms the baselines by a large margin.  Notably using 

the conditional retrieval improves the IRGR’s R@25 results by 6.0% and All-Correct results by 

6.8%, showing that retrieving premises using only the hypothesis is not as effective as using the 

hypothesis plus other intermediate retrieved premises as the query. 

 
10 Available at https://pypi.org/project/rank-bm25/ 

https://pypi.org/project/rank-bm25/
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6.3.3 Entailment Tree Generation Evaluation 

We follow the same metrics defined by Dalvi et al. (2021) when evaluating our system on 

entailment trees generation. These metrics compare the predicted entailment tree 𝑇 = (ℎ, 𝑆, 𝐸, 𝑃) 

with the golden entailment tree 𝑇∗ = (ℎ, 𝑆∗, 𝐸∗, 𝑃∗) from the ENTAILMENTBANK dataset. The 

evaluation metrics use an algorithm to find a mapping between the nodes from 𝑇 and 𝑇∗, similar 

to the metrics from Inoue, Stenetorp, & Inui (2020). The algorithm gathers the ancestor leaf 

sentences for each intermediate node 𝑝 ∈ 𝑃 and 𝑝∗ ∈ 𝑃∗, then uses Jaccard similarity on the set of 

leaf sentences to find the best pairings. Any predicted intermediate node with zero similarity to 

any golden intermediate nodes gets assigned to a dummy empty node. The metrics evaluate the 

correctness of generated entailment trees according to four categories, testing if the model (1) used 

the correct leaf nodes (2) generated correct entailment steps (3) generated reasonable sentences for 

the intermediate conclusions (4) overall correctness of the entailment tree. For each of these four 

categories, we compute F1 metrics All-Correct metrics. The All-Correct metric is more restrictive 

and is only equal to 1 if and only if F1 = 1, otherwise it is set to 0. The metrics are summarized 

below: 

Method R@25 All-Correct 

Okapi BM25 45.01 22.35 

EntailmentWriter 59.76 34.70 

IRGR 68.28 44.70 

- w/o conditional ret. 64.41 40.29 

- full pipeline* — 51.47 
 

Table 7: Results for the retrieval module. Methods with * retrieve more than 25 premises. 
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• Leaves (F1, All-Correct): Tests if the set of predicted leaf nodes 𝑆 matches the set of 

golden leaf nodes 𝑆∗. 

• Steps (F1, All-Correct): Tests if entailment steps follow the correct tree structure by 

comparing set of premises of the paired nodes 𝑝 and 𝑝∗. 

• Intermediates (F1, All-Correct): Tests if sentences of the generated intermediate 

conclusions are correct. This is done by computing the textual similarity between the 

conclusions 𝑒 ∈ 𝐸 and 𝑒∗ ∈ 𝐸∗ from the paired nodes 𝑝 and 𝑝∗. The textual similarity uses 

Method 
Leaves Steps Intermediates Overall 

F1 All-Cor. F1 All-Cor. F1 All-Cor. All-Cor. 

EntailmentWriter 39.9   3.8   7.4   2.9 35.9   7.1   2.9 

IRGR 45.6 11.8 16.1 11.4 38.8 20.9 11.5 

- w/o iter. 46.6 10.0 11.3 08.2 38.7 20.9 08.2 

- w/o iter. & cond. 36.1  3.8   6.1   3.2 30.5 10.3   3.2 
 

Table 8: Scores for our proposed IRGR method on the EntailmentBank dataset. Each produced 

entailment tree is evaluated among four dimensions on the test set. The F1 scores measure the 

overlap between predicted and golden data. On the other hand, for each data point the all-correct 

(abbreviated to “All-Cor.”) metrics are one when the F1 score is equal to one, and zero 

otherwise. 

Task Method 
Leaves Steps Intermediates Overall 

F1 All-Cor. F1 All-Cor. F1 All-Cor. All-Cor. 

Gold 
EntailmentWriter* 98.7 86.2 50.5 37.7 67.6 36.2 33.5 

IRGR 99.6 97.6 51.1 37.6 66.8 34.1 32.1 

Gold + 

Distr. 

EntailmentWriter* 84.3 35.6 35.5 22.9 61.8 28.5 20.9 

IRGR 69.9 23.8 30.5 22.3 47.7 26.5 21.8 
 

Table 9: Scores for our proposed IRGR method on the EntailmentBank dataset for task not 

requiring retrieval. The “Gold” task contains all gold leaf nodes, while “Distr.” task contains 

gold leaf nodes and distractors randomly selected from the corpus. The EntailmentWriter* 

reported has equivalent model size to IRGR. 
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𝐵𝐿𝐸𝑈𝑅𝑇 (Sellam, Das, & Parikh, 2020), a learned evaluation metric based on BERT.  

Whenever 𝐵𝐿𝐸𝑈𝑅𝑇(𝑒, 𝑒∗) ≥ 0.28 then the generated intermediate conclusions are 

considered correct. 

• Overall (F1, All-Correct): The overall correctness, meaning that all other metrics have 

All-Correct equal to one. 

We use EntailmentWriter (Tafjord, Dalvi, & Clark, 2021) as a baseline, which is an encoder-

decoder model that learns to output the entailment trees as linearized texts. EntailmentWriter uses 

the 11 billion parameter version of T5, which is around one order of magnitude larger than the T5 

model used in IRGR. As shown in Table 8, our method outperforms the baselines on all the metrics. 

Noticeably, the “Overall All-Correct” metric has an increase in value of over 300.0%. The gains 

are mostly due to IRGR’s improved retrieval-generation capabilities, as suggested by the ablation 

results “- w/o iter. & cond.” (when IRGR does not iteratively retrieve premises or perform 

conditional retrieval), which performs similarly to EntailmentWriter. Furthermore, the “- w/o iter.” 

results (when IRGR does not iteratively retrieve and generate) are also better than 

EntailmentWriter and serve as further evidence that conditional retrieval is helpful when finding 

premises in the corpus. 

To evaluate if the iterative generation alone has any impact in the results, we run experiments 

on two other tasks that do not require retrieval. In the “Gold” task the leaf nodes are taken from 

the golden entailment trees. The “Gold + Distr.” task mixes the leaf nodes from the golden 

entailment trees with some distractor premises taken at random from the corpus. The experiment 

results are shown in Table 9. In this table the results are for a version of EntailmentWriter that has 

the same number of parameters as IRGR, where they both use the t5-large model.  The results 
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show negligible differences in the “Overall All-Correct” metrics, which means that iterative 

generation can produce accurate entailment trees when compared to generation in a single pass. 

To understand how the size of the entailment tree influence the generation results, we plot 

in Figure 20 the results for different metrics and tasks according to the number of entailment steps 

in the golden entailment trees. The graph on the left-hand side shows the All-Correct metric for 

the three evaluation tasks (“gold”, “gold + distractors”, “retrieval”), while the graph on the right-

hand side shows the F1 values (for “leaves”, “steps”, and “intermediate” metrics) for the 

“retrieval” task. The results indicate that the problem becomes more challenging as the number of 

entailment steps increases. For instance, the IRGR model cannot perfectly predict any entailment 

tree with five or more entailment steps. This phenomenon is likely due to the nature of the problem, 

where errors are compounded across entailment steps and a single mistake will cause the predicted 

entailment tree to receive an All-Correct score of zero. 

6.3.4 Retrieval Error Analysis 

To obtain some insights on the types of retrieval errors made by the 𝐼𝑅𝐺𝑅_𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑟 module on 

the ENTAILMENTBANK dataset, we fetch 25 premises for each data point in the development set. 

 

Figure 20: Results broken down by number of entailment steps in the golden entailment tree. 
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These premises are split into a set of true positives (correctly retrieved) and false negatives 

(expected premises that failed to be retrieved). We compute the number of overlapping unigrams 

and bigrams between the hypothesis and the premises in these two sets. The numbers show that 

true positives contain 28.5% more unigrams overlap and 68% more bigrams overlap to the 

hypothesis when compared to false negatives. This suggests that the retrieval module struggles 

with premises that are syntactically dissimilar to the hypothesis. Furthermore, we investigate how 

the tree depth (number of nodes in the path from the tree node to the leaf node) influences retrieval 

results. We notice that true positive nodes have an average tree depth of 2.3 when compared to the 

average depth of 3.0 of false negatives, which indicates that leaf nodes for larger entailment trees 

tend to be harder to retrieve. 

6.3.5 Generation Error Analysis 

To identify issues and possible improvement avenues, we manually annotate 50 predicted 

entailment trees generated by IRGR that differ from the golden entailment tree. We categorize 

these errors as follows: Incorrect or Missing Leaves (52%) are caused by errors in the retrieval 

of premises from the corpus. Invalid Entailment Steps (32%) happen when the generated 

conclusion (or intermediate nodes) is incorrect and should have not been entailed from the 

premises. Among those errors there are cases when the IRGR generation module simply copies 

one of the premises as conclusion, which might be related to hallucination problems associated 

with generative language models (Ji, et al., 2023). Imperfect Evaluation (12%) are cases where 

the generated entailment tree differs from the golden entailment tree but still had reasonable 

premises and entailment conclusions. Disconnected Entailment Trees (4%): is when the final 

output does not form a tree structure or follows the specified output format. 
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6.4 Conclusion 

It is desirable that language systems output human-interpretable explanations instead of simply 

giving a discrete answer to a question. In this Chapter, we propose IRGR, a new neural network 

architecture that can generate structured natural language explanations in the form of entailment 

trees, showing how a hypothesis follows from a given set of retrieved premises. The IRGR 

architecture iteratively retrieves premises while generating inferences from such premises, one 

step at a time. We show that this approach has advantages over previous baselines, where the 

retrieval of premises can leverage intermediate conclusions generated by the model. 

  



105 
 

7  Structured Reasoning and Explanation Benchmark 

Some recent question-answering research has demonstrated that it is possible to use generative 

language models to perform reasoning directly over natural language input (Clark, Tafjord, & 

Richardson, 2021). Furthermore, it was shown that producing an intermediate natural language 

chain-of-thought can improve very large language models’ accuracy when answering questions in 

a few-shot prompt settings (Wei, et al., 2022). Several datasets and benchmarks were proposed to 

evaluate the reasoning and explanation capabilities of such systems. Most noticeably, the 

ENTAILMENTBANK dataset (Dalvi, et al., 2021) discussed in Chapter 6 contains multi-step 

explanations in the form of entailment trees. However, ENTAILMENTBANK has three shortcomings. 

First, it requires the creation of a set of textual hypotheses that represent the question-answer pair 

and are used as the root of entailment trees. Second, it requires a hand-crafted corpus of textual 

facts. Third, it only contains questions from a single domain, namely science exam questions. 

To bridge the gap in resources for training and evaluating general multi-step reasoning 

capabilities over natural language, we introduce in Ribeiro et al. (2023) the STructured REasoning 

and Explanation Multi-Task benchmark (or STREET for short). The STREET benchmark is a 

multi-task and multi-domain dataset. It contains a collection of problems involving quantitative 

reasoning (math questions), analytical reasoning (logic puzzle questions) and commonsense 

reasoning (science and process understanding questions). We build upon existing QA datasets by 

creating annotations that explain how an answer can be derived from the information contained 

within the questions. These structured multi-step and multi-premise explanations are named 

reasoning graphs, as shown in Figure 21. There is a total of 35.8 thousand questions in STREET 

and each question is annotated with a reasoning graph. When combined, all the reasoning graphs 
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Figure 21: Examples of questions, explanations, and answers from the STREET benchmark. 

The questions are taken from the Grade School Math (GSM8K) dataset and from the Analytical 

Reasoning – Law School Admission Test (AR-LSAT). The reasoning graphs containing 

structured step-by-step explanations for the given answers are created by our expert annotators. 

The question, explanation and answers are broken down into textual logical units (or TLUs), 

and form nodes with entailments expressed as directed edges. 
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in STREET amount to a total of 151.1 thousand reasoning steps (or multi-premise textual 

entailments), of which 14.7 thousand were generated by human annotators. All the tasks in 

STREET were carefully selected such that no entity-centric knowledge (e.g., details such as “What 

film won the most Oscars in 1992?”) needs to be retrieved, and most of the information is contained 

within the problem description itself. Therefore, we add more emphasis on the reasoning problem, 

with an average of 7.8 reasoning steps per question-answer pair and more complex reasoning 

structures than previous datasets. 

 We evaluate a fine-tuned version of T5 (Raffel, et al., 2020) and few-shot prompting 

version of GPT-3 (Brown, et al., 2020) on the STREET data. Given a question, the models are 

expected to output the answer together with the corresponding reasoning graph. Our proposed 

metrics evaluate the correctness of the predicted reasoning graphs compared to the expected golden 

data in terms of the generated conclusions and the structure of the graph. Interestingly, the 

experiment results show that even when achieving high answer accuracy, these baseline models 

still struggle to produce coherent reasoning graphs and perform much worse than humans (around 

200% worse graph similarity scores) on more challenging STREET tasks. 

7.1  Task Definition 

The tasks in STREET can be formally defined as follows. Consider the standard Machine Reading 

Comprehension (MRC) task 𝑇 = (𝑄, 𝐶, 𝑂, 𝐴), consisting of a question 𝑄, an optional context 𝐶 

containing a passage or question details, a list answer options 𝑂 = {𝑜1, … , 𝑜𝐾} in the case of K-

way multiple choice questions, the expected answer 𝐴, where 𝐴 ∈ 𝑂 if answer options are 

provided. Some MRC tasks (Ling, Yogatama, Dyer, & Blunsom, 2017; Camburu, Rocktäschel, 
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Lukasiewicz, & Blunsom, 2018) will also include a rationale 𝑅, which is a plain (unstructured) 

textual explanation for the answer 𝐴. 

 To build the reasoning graphs we break down all the textual content from the MRC 

components into chunks, which we call textual logical units (or TLUs). The TLUS are essentially 

a consecutive subsequence of tokens from the elements in 𝑇 that are used as premises for the 

entailments in the reasoning graph. Formally, assume some component Ψ ∈ 𝑇 from the MRC task 

with tokens Ψ = (𝑡1, … , 𝑡|Ψ|). The TLUs of Ψ are the list of token spans 𝑇𝐿𝑈(Ψ) =

((t1, … , t𝑏1
), (tb1

, … , t𝑏2
), … , (t𝑏(|𝑇𝐿𝑈(Ψ)|−1)

, … , t|Ψ|)) such that the TLU span boundaries follow 

1 ≤ 𝑏𝑖 ≤ |Ψ| and for any two indexes 𝑏𝑖 < 𝑏𝑗 then 𝑖 < 𝑗. Examples of TLUs from the GSM8K 

question in Figure 21 are “Natalia sold clips to 48 of her friends in April” and “Natalia sold 48 + 

24 = 72 clips in April and May”. The TLUs are automatically extracted by breaking down 

paragraphs or sentences using boundaries such as punctuation marks or key tokens such as “and” 

or “then”. The pseudocode of the algorithm used is shown in Appendix B.2. 

 Each task 𝑇 will be accompanied by a reasoning graph which is encoded as a directed 

acyclic graph data structured. The reasoning graphs 𝐺 can be formally defined as a set of vertices 

and edges 𝐺 = (𝑉, 𝐸) such that the set of vertices 𝑉 ⊆ (𝑇𝐿𝑈(𝑄) ∪ 𝑇𝐿𝑈(𝐶) ∪ 𝑇𝐿𝑈(𝑂) ∪

𝑇𝐿𝑈(𝐴) ∪ 𝑇𝐿𝑈(𝑅)) and the set of edges 𝐸 ⊆ 𝑉 × (𝑇𝐿𝑈(𝑂) ∪ 𝑇𝐿𝑈(𝐴) ∪ 𝑇𝐿𝑈(𝑅)) contain pair 

of nodes. The direction of the edges always points from the premise nodes (or antecedents) to an 

intermediate conclusion node. All the premises and edges connected to a conclusion node represent 

an entailment or reasoning step. Note that nodes and edges in the Reasoning Graph don’t contain 

any other attached labels, which means that logic concepts such as negation, conjunction and 

disjunction must be explicitly stated in the text of the TLU as in “If new jazz or used jazz are not 

on sale, then new pop is on sale”. 
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7.2  STREET Dataset Details 

The STREET benchmark contains a total of 35.8 thousand questions in various domains. A 

reasoning graph is provided along with each question-answer pair. With all reasoning graphs 

combined, the benchmark contains 151.1 thousand reasoning steps (or textual entailments), of 

which 14.7 thousand were created by expert annotators while the remaining were generated 

programmatically. A summary of STREET’s five tasks can be found in Table 10. 

The question-answer pairs are taken from the following five existing datasets: the AI2 

Reasoning Challenge or ARC (Clark, et al., 2018), Sequential Context-Dependent Execution 

dataset or SCONE (Long, Pasupat, & Liang, 2016), Grade School Math or GSM8K (Cobbe, et al., 

2021), Algebra Question Answering with Rationales or AQUA-RAT (Ling, Yogatama, Dyer, & 

Blunsom, 2017), and Analytical Reasoning – Law School Admission Test or AR-LSAT (Zhong, 

et al., 2022).  

TASK 

NAME 

TASK 

DOMAIN 

# ORIGINAL 

QUESTIONS 

# USED 

QUESTIONS 

# REASONING 

STEPS 

ANSWER 

TYPE 

ARC Science 7,787 1,840 5,881 4-Way MC 

SCONE Processes 14,574 14,574 130,482 State Pred. 

GSM8K Math 8,792 1,030 4,666 Number 

AQUA-RAT Math 101,449 1,152 7,179 5-Way MC 

AR-LSAT Logic 2,046 500 2,885 5-Way MC 

TOTAL --- 134,648 19,096 151,093 --- 
 

Table 10: A summary of the tasks in the STREET benchmark. The questions with multiple 

choice answers are labeled “K-Way MC”, which stands for “K-way multiple choice”. 
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For the first two datasets (ARC and SCONE) the reasoning graphs are programmatically 

extracted from the intermediate states provided by the original datasets. The ARC dataset contains 

multiple-choice grade school science questions about various topics including geography, biology 

and astronomy. We include the data provided by ProPara (Dalvi, et al., 2021) to build the reasoning 

graphs, where the premises don’t need to be retrieved and will be provided as part of the MRC 

context 𝐶. On the other hand, the SCONE dataset contains questions about processes and how a 

toy world evolves over time. There are three subtasks in SCONE, each starts with a description of 

a toy world. In SCONE’s Alchemy subtask, a set of beakers containing chemicals of different 

colors are manipulated (e.g., “pour the content of the third beaker into the last beaker, then mix 

it.”). In SCONE’s Scene subtask, there are a set of  positions, some of which people with different 

outfits are standing on, and a sequence of movements occur (e.g., “a man in a red hat moves to the 

right of the man with a blue shirt”). In SCONE’s Tangrams subtask has different figures that 

aligned sequentially, then some of these figures move or are removed from the list (e.g., “swap the 

1st and 5th figure”). In the end, the initial toy world will change, and the system is expected to 

predict the final state of the world. 

 

Figure 22: Proportion of reasoning graphs in each STREET task according to the number of 

reasoning (or entailment) steps. 
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The third and fourth datasets (GSM8K and AQUA-RAT) contain grade school and high 

school level math questions. Only unstructured explanations (or rationales) are provided in the 

original datasets, and we convert them into reasoning graphs by identifying the fact nodes and 

connecting them using entailment edges. The final dataset (AR-LSAT) contains complex 

analytical reasoning questions that involve multiple entities and rules described in its context. For 

ARLSAT we create the reasoning graphs from scratch. We ask expert annotators to create a step-

by-step textual explanation of the answer given to the question and the context paragraph. As 

shown in Figure 22, the STREET benchmark contains a greater number of reasoning steps than 

most of the existing reasoning and explanation datasets with an average of 7.8 reasoning steps per 

answer. In contrast, most multi-hop QA datasets contain two or three steps per question (Yang, et 

al., 2018). 

7.2.1 Annotation Details 

Since some of the STREET questions are relatively challenging to solve, we chose expert 

annotators with undergraduate or graduate level education as opposed to randomly selected online 

workers. Furthermore, human annotators were given an usnlimited amount of time to complete 

each annotation task.  For quality control we perform two annotation passes for each reasoning 

step and a third pass to break ties when needed. We use these extra annotations to compute 

annotation agreement using Fleiss Kappa 𝜅 (Fleiss, 1971), where each directed edge inside a 

reasoning graph is treated as a binary question. The computed value of 𝜅 = 0.79 indicates 

substantial agreement among annotators. We estimate that a total of 1,467 (paid) work hours were 

required to annotate the STREET data. Further annotation and dataset details including examples 

for each STREET task and annotation user interface can be found in Appendix B.1 and Appendix 

B.3. 
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7.3  Experiments 

7.3.1 Baseline Models 

We use two popular generative language models as baselines that take as input the questions 

broken down in textual logical units (TLUs)s and output the reasoning graph in textual format. We 

choose generative language models as baselines since they have been shown to have relatively 

strong reasoning capabilities (Wei, et al., 2022; Wang, et al., 2023). The first baseline uses the T5 

[large] with 770 million parameters which is fine-tuned on the full training data for each 

STREET task. The second baseline uses GPT-3 [davinci], more specifically the text-

davinci-002 with 175 billion accessed through OpenAI’s API11.  The GPT-3 [davinci] 

model takes as input only a few input examples (few-shot learning) instead of fine-tuning on 

STREET data. Further fine-tuning and few-shot learning details are shown in Appendix A.7. 

The textual encoding of reasoning graphs follows a similar approach to (Dalvi, et al., 2021). 

First, we assign consecutive number IDs for each TLU as in “(X)” (where X is a number) for the 

 
11 Available at: https://platform.openai.com/docs/models/gpt-3 

$question$ = (1) Natalia sold clips to 48 of her friends 

in April, and then (2) she sold half as many clips in 

May. (3) How many clips did Natalia sell altogether in 

April and May? 

 

$proof$ = (1) & (2) -> (4): Natalia sold 48/2 = 24 clips 

in May; (1) & (3) & (4) -> (5): Natalia sold 48+24 = 72 

clips altogether in April and May; (3) & (5) -> (6): The 

answer is 72; 
 

Figure 23: Example of textual encoding of a reasoning graph from GSM8K task. 

https://platform.openai.com/docs/models/gpt-3
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context, question and answer options. Afterwards, all the reasoning steps are sorted according to 

some valid topological order such that any intermediate conclusions will appear before other 

intermediate conclusions that have them as ancestor nodes. These reasoning steps are also assigned 

consecutive number IDs. The entailments from the reasoning step are encoded as “(X) & (Y) 

-> (Z)”, assuming that the TLUs with id “(X)” and “(Y)” are the antecedents of the TLU with 

id “(Z)”. To illustrate this encoding method, the textual representation of the GSM8K example 

from Figure 21 is shown in Figure 23. 

7.3.2 Evaluation Metrics 

The baseline models are evaluated according to both the predicted answer 𝐴𝑝 and predicted 

reasoning graph 𝐺𝑝. We propose three main metrics which are described below. 

Answer Accuracy: The first metric evaluates if the predicted answer 𝐴𝑝 is the same as the golden 

answer 𝐴𝑔. For the tasks with multiple-choice or numerical answers, the answers are compared 

using exact match, meaning that 𝐴𝑝 = 𝐴𝑔. For SCONE the predicted answer is a concatenation of 

the end state of each object tracked by the process. 

Reasoning Graph Accuracy: The second metric compares the predicted reasoning graph 𝐺𝑝 =

(V𝑝, E𝑝) and golden reasoning graph 𝐺𝑔 = (V𝑔, E𝑔) in terms of both graph structure and the content 

of the intermediate conclusion nodes. It starts by aligning the nodes from V𝑝 and V𝑔 using the 

nodes’ premises as anchors. Given two matched reasoning step nodes v𝑝 ∈ V𝑝 and v𝑔 ∈ V𝑔  then 

their textual values are compared using a similarity function 𝜎(text(v𝑝), text(v𝑔)) to determine if 

the nodes are equivalent. If any two aligned nodes differ in terms of their textual values or set of 

nodes 
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from their antecedents, then the reasoning graph accuracy is set to zero, otherwise it is set to one. 

The textual similarity function 𝜎 varies depending on the STREET task being evaluated. The 

details regarding the matching algorithm and similarity functions used are shown in Appendix B.4. 

Note that small dissimilarities between 𝐺𝑝 and 𝐺𝑔 can cause the value of this metric to be zero, 

which means this is a relatively strict metric. 

Reasoning Graph Similarity: The last metric is a “softer” version of Reasoning Graph Accuracy 

and uses a graph edit distance 𝛿(𝐺𝑝, 𝐺𝑔) function to compute the similarity between the predicted 

and golden reasoning graph. The allowed operators in the graph edit distance function 𝛿 are 

insertion, deletion and substitution, where each operation has a fixed cost equal to one. The textual 

similarity function 𝜎 is used to test if two nodes are equal. The Reasoning Graph Similarity metric 

𝑠𝑖𝑚(𝐺𝑝, 𝐺𝑔) is normalized (meaning that 𝑠𝑖𝑚(𝐺𝑝, 𝐺𝑔) ∈ [0: 1]) and computed as follows: 

 
𝑠𝑖𝑚(𝐺𝑝, 𝐺𝑔) = 1 − [

𝛿(𝐺𝑝, 𝐺𝑔)

max(|V𝑝| + |E𝑝|, |V𝑔| + |E𝑔|)
] 

 

(19) 

 We add a special case when computing the graph reasoning similarity and assign 

𝑠𝑖𝑚(𝐺𝑝, 𝐺𝑔) = 0 if the answers don’t match 𝐴𝑝 ≠ 𝐴𝑔. We show an example in Figure 24, 

illustrating the edit distance value for a small graph. In that specific example, the reasoning graph  

 

Figure 24: Edit distance between two reasoning graphs. Gray nodes are premises, blue nodes are 

intermediate conclusions, and the red node is the answer. Dotted red edges and dotted red nodes 

were removed, while the dotted green edge was used as a substitution to one of the removed 

edges. 
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similarity can be computed as 𝑠𝑖𝑚(𝐺𝑝, 𝐺𝑔) = 1 − 4 max(6 + 7, 5 + 4) ≅ 0.6923⁄ . In general, 

computing  the edit distance between any two graphs is computationally expensive as the problem 

is NP-Complete (Abu-Aisheh, Raveaux, Ramel, & Martineau, 2015; Abu-Aisheh, Raveaux, 

Ramel, & Martineau, 2018). To circumvent this issue, we compute an approximation of this value 

using the edit distance implementation from the networkx python library12. 

7.3.3 Results 

The main results are shown in Table 11. The results for SCONE are averaged across the different 

sub tasks (namely Alchemy, Scene, and Tangrams). From the table we can see that T5 [large] 

outperforms or is on par with GPT-3 [davinci] on both ARC and SCONE, while the opposite 

is true for GSM8K and AQUA-RAT. Even though T5 [large] is a much smaller model relative 

to GPT-3 [davinci], we believe that there are enough examples in ARC and SCONE that the 

 
12 https://networkx.org/ 

Method ARC SCONE GSM8K AQUA-RAT AR-LSAT 

Answer Accuracy 

Random Guess 17.1 --- --- 20.0 20.0 

T5 [large] (fine-tuned) 93.5 69.6 10.4 28.7 28.0 

GPT-3 [davinci] (few-shot) 20.8 02.3 34.8 30.2 19.0 

Reasoning Graph Accuracy 

T5 [large] (fine-tuned) 17.1 60.0 00.7 00.0 00.0 

GPT-3 [davinci] (few-shot) 01.7 01.2 00.7 00.0 00.0 

Graph Similarity 

T5 [large] (fine-tuned) 44.1 67.0 05.4 00.9 00.3 
GPT-3 [davinci] (few-shot) 15.1 01.9 16.0 05.2 01.1 

 

Table 11: Results of different models across all five defined reasoning tasks. Numbers in 

percentage. The “Random Guess” results are included to facilitate visualization since different 

tasks have different answer types. 
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fine-tuning gives the T5 [large] model an edge. On the other hand, it seems that both baselines 

struggle with AR-LSAT and their results are not much better than the random guess results. The 

AR-LSAT results are consistent with Zhong et al. (2022) which has demonstrated that generative 

models still struggle with more complex analytical reasoning tasks. 

It is interesting to see that for certain tasks the Reasoning Graph Similarity metric has 

similar values to the Answer Accuracy metric. For instance, the Reasoning Graph Similarity for 

T5 [large] on SCONE is 96.2% of the Answer Accuracy value, which means that whenever the 

model outputs the right answer it also produces a reasonable multi-step explanation. Conversely, 

the Reasoning Graph Similarity for T5 [large] on AQUA-RAT is only 2.9% of the Answer 

Accuracy, which means that the predicted reasoning graph does not align well with the human 

annotated data. This is evidence that sometimes a model can predict the correct answer but can’t 

generate a reasonable explanation for that answer. 

 To better understand the quality of the predicted reasoning graphs generated by the 

baselines, we plot the Reasoning Graph Similarity values for questions which were accurately 

answered in Figure 25. In addition to the baseline results, we evaluate the human performance on 

a subset of data for each STREET task. To obtain human results, we ask other human annotators 

with graduate level education to build the reasoning graphs from scratch for 100 randomly sampled 

questions from the test set, where they are also given the correct answer to the questions.  

 The results show that on both SCONE and GSM8K, the baseline models perform on a 

similar level to the estimated human performance, where T5 [large] is even able to outperform 

human results on the SCONE task. We believe this is the case because SCONE questions are based 

on a synthetic world and the reasoning steps required to answer questions are more standardized 

across data points, which allowed fine-tuned models to accurately predict the reasoning graphs. 
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On the other hand, both baseline models perform significantly worse than the estimated human 

performance on AQUA-RAT and AR-LSAT, where human-generated reasoning graphs achieve 

200% higher reasoning graph similarity compared to the language models. Nonetheless, the overall 

reasoning graph similarity for AQUA-RAT and AR-LSAT are relatively lower than the other 

tasks. This could be due to the fact that for these tasks there are more valid outputs (there are 

multiple ways one can explain the answer to a question). Therefore, we believe that automatic 

evaluation of explanations can still be a challenge, which is a phenomenon also seen in other 

natural language generation fields (Celikyilmaz, Clark, & Gao, 2020). 

 

Figure 25: Histogram with Reasoning Graph Similarity of baseline models for each STREET 

task. Results are compared with human performance on a randomly selected subset of the test 

data.  
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7.4  Conclusion 

In this Chapter we introduce STREET, a multi-step and multi-premise reasoning and explanation 

benchmark. We build upon existing QA datasets from different domains and add annotated 

explanations to their answers in the form of reasoning graphs. These reasoning graphs show step-

by-step how premises in the question’s context can be used to infer intermediate conclusions which 

are then used to predict the final answer. We evaluated two generative language models on the 

STREET tasks (namely T5 [large] and GPT-3 [davinci]) and found that these models still 

struggle to generate coherent reasoning graphs when compared to humans for certain STREET 

tasks. We hope that STREET will pave way for future work on natural language reasoning and 

will serve as a valuable way to systematically evaluate explanations for complex questions. 
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8  Conclusions 

In this dissertation we study how two prominent AI architectures can perform reasoning directly 

over natural language input. The first AI architecture, called Companion, is a cognitive architecture 

that integrates a general-purpose language parser with analogical learning capabilities and is able 

to achieve strong performance in language tasks from a relatively small number of training 

examples. The second AI architecture, called Transformers, is a neural model that relies on 

attention mechanism to learn universal language representations and can better capture long-range 

dependencies between words in the input sequence. We build upon these AI architectures while 

proposing new algorithms, modeling strategies and methods that are used to solve a variety of 

language tasks including process understanding, knowledge extraction, and analytical question-

answering. In the following sections we show how our experiments and findings support the claims 

of this thesis and discuss open questions and possible avenues for future research. 

8.1 Claims Revisited 

[Claim A] Discrete actions and processes in natural language can be accurately modeled 

using qualitative reasoning and structured action representations. 

In Chapter 4 we introduce a Step Semantics, a framework that take inspiration from qualitative 

reasoning and provides a set of representation conventions of discreate actions and changes in 

processes using OpenCyc and FrameNet concepts. When paired with analogical learning 

capabilities of Companion, this framework can be successfully applied to model processes from 

the ProPara dataset, a procedural text understanding dataset that keeps track of the state of entities 

of interest (called participants) described in the input paragraphs. We combine methods from 

analogical QA learning, which is used to predict state changes on a sentence level, with a dynamic 
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programming algorithm, which enforces commonsense constraints on a paragraph level. We show 

how our analogical system can answer ProPara questions with strong performance when compared 

to neural network baselines. 

[Claim B] Analogical learning can be successfully applied to solve complex reasoning tasks 

in natural language, while being explainable and data efficient. 

In Chapter 4 and 5 we use the analogical learning capabilities in Companion are applied to answer 

questions about procedural texts and extract general world knowledge from Simple English 

Wikipedia articles using distant supervision. Furthermore, analogical learning is shown to have 

desirable properties when it comes to learning from a few training examples and producing 

inspectable intermediate representations which are used to make predictions. When tested on 

ProPara, our proposed APTU system is able to achieve 84.3% for macro-avg and 79.5% of the F1 

score with just 100 training examples out of the 2,639 total training sentences, outperforming other 

baselines trained on full data. In the knowledge extraction domain, we show that our Analogical 

Knowledge Extraction (AKE) system is able to learn high precision facts even from a sparse KB 

such as NextKB, where most of the relations follow a long tail distribution when it comes to their 

frequency in facts. 

[Claim C] Explainability issues of neural models can be mitigated by training such models 

to output a step-by-step structured explanation of their predictions. 

When compared to other AI methods, artificial neural networks have strong generalization 

properties but are still regarded as black-box systems. In Chapters 6 and 7, we show how 

Transformer-based language models can be used to not only answer complex reasoning questions, 

but also output a human-friendly structured explanation of their output. First, we use the 

EntailmentBank dataset which contains explanations in the form of entailment trees to train a 
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generative model to output a step-by-step explanation of their answers. Our method, called 

Iterative Retrieval and Generation Reasoner (IRGR), performs multiple retrieval and generation 

steps in order to predict an entailment tree that explains a certain hypothesis (or question-answer 

pair). We show that IRGR is able to obtain around 300% gains in overall correctness when 

compared to other baselines. Second, we created a new Structured Reasoning and Explanation 

Benchmark called STREET that contains multi-step and multi-premise explanation for questions 

in various domains. Interestingly, we show that for some of the STREET tasks popular language 

models still lag behind humans when it comes to generating explanations to their answers. 

8.2 Future Work 

While we propose various methods and techniques to reason over natural language with the 

Companion and Transformer architectures, we believe there are still many open questions and 

possible research avenues that can be explored. 

8.2.1 Other Integrations Between Companion and Transformer Architectures 

We use both Companions and Transformer-based language models to solve various language 

tasks. Since both architectures have their own properties when it comes to generalization, data-

efficiency and explainability, one obvious question is how to further integrate these architectures, 

so they mitigate each other’s weaknesses. For instance, one common issue found in our error 

analysis was due to mistakes made by the Companion’s language parser. We showed in our AKE 

system that it is possible to train the BERT language model on FrameNet data to predict word 

senses that will guide the system when making down-stream predictions. One promising next step 

would be to further integrate the language model to help the guide CNLU parser rank different 

grammatical and semantic choices to filter out unlikely parse trees and choice sets. Another direct 
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application of language models would be to simplify the input text or fix grammatical inaccuracies, 

so the parsing process is simplified. 

8.2.2 Generalization of Analogically Learned Query for Procedural Text Understanding. 

We show that Step Semantics could have generic applications in terms of representing state 

changes described in procedural texts. One interesting experiment that could be performed would 

be to generalize the query cases learned from the training examples in the ProPara dataset to other 

domains, such as understanding recipes (Kiddon, Ponnuraj, Zettlemoyer, & Choi, 2015), without 

any additional training data. For instance, the sentence “let the meat absorb the brine in the bowl” 

implies a state change (or movement event) that can be generalized from the sentence “Roots 

absorb water from the soil” in one of ProPara’s paragraphs. 

8.2.3 Improving Structured Reasoning Explanation Generation 

Even though the structured explanation of both Entailment Trees and Reasoning Graphs are over 

natural language units (e.g., retrieved premises and intermediate conclusions), the problem of 

generating these types of structured explanations can still be framed as search problem similar to 

the symbolic reasoning systems. For instance, more recent works on Entailment Bank have shown 

promising results when using a reasoning controller (Hong, Zhang, Yu, & Zhang, 2022) to perform 

search both forwards (from premises to hypothesis) and backwards (from hypothesis to possible 

required intermediate conclusions), similar to meet-in-the-middle search approaches. Another 

possible research avenue is to leverage other networks’ architectures such as Graph Neural 

Networks (Wu, et al., 2020) to better model these graph-like explanations. 
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Appendix 

A  Implementation and Experiment Details 

A.1 Query Case Construction 

As mentioned in Section 3.1.4, Analogical Question-Answering Training (Crouse, 2021) is used 

to create query cases that connect relevant parts of the semantic representation 𝑆 of the input text 

with a desired target logical form 𝑇. The semantic representation 𝑆 is a list of choice-sets, each of 

which contains a list of choices and their associated logical forms as shown in Figure 2. The query 

case construction algorithm, called STRUCTURE-AWARE-ALIGNMENT, is shown in Figure 26 and 

Function: STRUCTURE-AWARE-ALIGNMENT 
Input:  Semantic representation of input text 𝑆, target logical expressions 𝑇. 
Parameters: Preference weight 𝜆 
Output: Mapping 𝑀∗ with improved correspondences between 𝑆 and 𝑇. 
01:  𝑀𝑏𝑒𝑠𝑡 ← SME(𝑆, 𝑇) 
02:  𝑠𝑐𝑜𝑟𝑒𝑏𝑒𝑠𝑡 ← 𝑠𝑟(𝑀𝑏𝑒𝑠𝑡) + ∑ 𝜆(𝑎,𝑏)∈𝑀𝑏𝑒𝑠𝑡

∗ 𝑂𝑛𝑡𝐶𝑜𝑛(𝑎, 𝑏) 

03:  while  𝑇𝑟𝑢𝑒 do 
04:  𝑀𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑀𝑏𝑒𝑠𝑡 
05:  foreach 𝑀 in  NEIGHBOR-MAPPINGS(𝑀𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 𝑆, 𝑇) do 

06:   𝑠𝑐𝑜𝑟𝑒 ← 𝑠𝑟(𝑀) + ∑ 𝜆(𝑎,𝑏)∈𝑀 ∗ 𝑂𝑛𝑡𝐶𝑜𝑛(𝑎, 𝑏) 

07:   if 𝑠𝑐𝑜𝑟𝑒 > 𝑠𝑐𝑜𝑟𝑒𝑏𝑒𝑠𝑡  then 
08:    𝑠𝑐𝑜𝑟𝑒𝑏𝑒𝑠𝑡 ←  𝑠𝑐𝑜𝑟𝑒   
09:    𝑀𝑏𝑒𝑠𝑡 ←  𝑀 
10:   end if 
11:  end for 
12:   if 𝑀𝑏𝑒𝑠𝑡 = 𝑀 do 
13:   return 𝑀 
14:   end if 
15:  end while 

 

Figure 26: Structure-aware alignment algorithm used during the query cases construction in 

analogical learning. 
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uses the output of SME as a first-pass solution. Afterwards, it performs a local search to improve 

the 

Connectivity following the constraints among choices. In these algorithms, the function 

𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠(𝑎, 𝑏) returns 𝑇𝑅𝑈𝐸 if and only if the logical forms (or mappings containing logical 

forms) 𝑎 and 𝑏 are conflicting. The SME output contains a mapping 𝑀 with a set of 

correspondences between elements in the base and target logical expressions encoded as a list of 

pairs. Here, the function 𝑠𝑟(∙) takes a mapping 𝑀 and counts the number of statements in the 

mapping. The statements from the output mapping 𝑀 from STRUCTURE-AWARE-ALIGNMENT is 

Function:  NEIGHBOR-MAPPINGS  
Input: Mapping 𝑀, Semantic representation of input text 𝑆, target logical expressions 𝑇. 
Parameters: None. 
Output: Union of the set of conflict-free mappings 𝑀𝑜𝑛𝑒 and 𝑀𝑡𝑤𝑜 of one or two neighbor 
substitutions, respectively. 
01:  𝑀𝑜𝑛𝑒 ← ∅ 
02:  𝑀𝑡𝑤𝑜 ← ∅ 
03:  foreach 𝑒𝑑𝑔𝑒  in 𝑀 do 
04:  𝑀′ ← 𝑀 − 𝑒𝑑𝑔𝑒 
05:  foreach (𝑠, 𝑡) in 𝑆 × 𝑇 do 
06:   if 𝑠, 𝑡 not in 𝑒𝑑𝑔𝑒′ ∈ 𝑀’ and not 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠(𝑠, 𝑀’) then 
07:    𝑀𝑛𝑒𝑤 ← 𝑀′ ∪ {(𝑠, 𝑡)}   
08:    𝑀𝑜𝑛𝑒 ← 𝑀𝑜𝑛𝑒 ∪ {𝑀𝑛𝑒𝑤} 
09:   end if 
10:  end for 
11:  end for 
12:  foreach 𝑒𝑑𝑔𝑒1, 𝑒𝑑𝑔𝑒2  in 𝑀 × 𝑀  do 
13:  𝑀′ ← 𝑀 − (𝑒𝑑𝑔𝑒2, 𝑒𝑑𝑔𝑒2) 
14:  foreach (𝑠1, 𝑡1), (𝑠2, 𝑡2) in (𝑆 × 𝑇) × (𝑆 × 𝑇) do 
15:   if (𝑠1, 𝑡2, 𝑠2, 𝑡2 not in 𝑒𝑑𝑔𝑒′ ∈ 𝑀’ and not 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠(𝑠1, 𝑀’)  
       and not 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠(𝑠2, 𝑀’) and not 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑠(𝑠1, 𝑠2)) then 
16:    𝑀𝑛𝑒𝑤 ← 𝑀′ ∪ {(𝑠1, 𝑡1), (𝑠2, 𝑡2)}   
17:    𝑀𝑡𝑤𝑜 ← 𝑀𝑡𝑤𝑜 ∪ {𝑀𝑛𝑒𝑤} 
18:   end if 
19:  end for 
20:  end for 
21:  return 𝑀𝑜𝑛𝑒 ∪ 𝑀𝑡𝑤𝑜  

 

Figure 27: A sub-routine in the structure-aware alignment algorithm used to find neighboring 

mapping. 
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used to create a query case. The statements in 𝑀 that come from 𝑆 will be included in the query case’s 

antecedent, and the statements in 𝑀 that come from 𝑇 will be included in the query case’s consequent. 

A.2 List of Step Semantics Associated FrameNet Frames  

A more complete list of FrameNet frames associated with the five different types of steps is shown 

below. Note that this is not an exhaustive list since other FrameNet frames could also be associated 

with these step types depending on the context of the verbs and the abstraction of the entities 

involved. For instance, we include the frame FN_Forming_relationships to represent the 

creation of a relationship as in the sentence “The individual befriended the little dogs by giving 

them treats”, even though relationship is an abstract entity. 

• Creation Steps: 

o FN_Creating, FN_Coming_to_be, FN_Cause_to_start, 

FN_Intentionally_create, FN_Awareness, 

FN_Labor_product, FN_Forming_relationships, 

FN_Being_born, FN_Manufacturing, FN_Cooking_creation, 

FN_Text_creation, FN_Knot_creation, FN_Duplication, 

FN_Achieving_first, FN_Forging, 

FN_Awareness_change_scenario, FN_Activity_start, 

FN_Amalgamation, FN_Assemble, FN_Cause_to_amalgamate, 

FN_Come_into_effect 

• Destruction Steps: 

o FN_Destroying, FN_Cause_to_fragment, 

FN_Breaking_apart, Breaking_off, FN_Ceasing_to_be, 

FN_Dying, FN_Death, FN_Sacrificing_for, FN_Attaching, 
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FN_ Activity_stop, FN_Becoming_separated, 

FN_Breaking_out_captive, FN_Cause_to_end, FN_Erasing, 

FN_Fire_end_scenariom FN_Losing_someone, FN_Rotting 

• Property Change Steps:  

o FN_Ontogeny, FN_Undergo_change, FN_Becoming, 

FN_Improvement_or_decline, FN_Transition_to_a_state, 

FN_Change_of_phase_scenario, 

FN_Cause_change_of_consistency, 

FN_Cause_change_of_phase, FN_Cause_change_of_strength, 

FN_Adjusting, FN_ Aging, FN_ Becoming_dry, 

FN_Becoming_visible, FN_Catching_fire, 

FN_Cause_to_be_wet, FN_Cause_to_burn, 

FN_Cause_to_wake, FN_Change_of_consistency, 

FN_Change_of_phase, FN_Corroding, FN_Cure, FN_Cutting, 

FN_Damaging, FN_Go_into_shape, FN_Rejuvenation, 

FN_Reshaping 

• Quantity Change Steps: 

o FN_Nuclear_process, FN_Amassing, 

FN_Cause_change_of_position_on_a_scale, FN_Aggregate, 

FN_Absorb_heat, FN_Adding_up, FN_Aging, 

FN_Cause_temperature_change, 

FN_Cause_proliferation_in_number, FN_Expansion, 
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FN_Fall_asleep, FN_Proliferating_in_number, 

FN_Rotting, FN_Transfer, FN_Waking_up 

• Subprocess / Event Steps:  

o FN_Removing, FN_ Dressing, FN_Undressing, FN_Arranging, 

FN_Arriving, FN_Attending, FN_Breathing, FN_Building, 

FN_Bringing, FN_Burying, FN_Cause_fluidic_motion, 

FN_Cause_motion, FN_Cause_to_move_in_place, 

FN_Departing, FN_Disembarking, FN_ Dodging, FN_ Dunking, 

FN_Downing, FN_Emptying, FN_Escaping, FN_Excreting, 

FN_Exporting, FN_Exercising, FN_Extradition, 

FN_Filling, FN_Fleeing, FN_Fluidic_motion, 

FN_Freeing_from_confinement, FN_Getting_up, 

FN_Ingest_substance, FN_Ingestion, FN_Installing, 

FN_Invading, FN_Kidnapping, FN_Mass_motion, FN_Motion, 

FN_Motion_directional, FN_Passing, FN_Patrolling, 

FN_Placing, FN_Procreative_sex, FN_Quitting_a_place, 

FN_Redirecting, FN_Removing_scenario, FN_Repel, 

FN_Replacing, FN_Ride_vehicle, FN_ Sending, 

FN_Separating, FN_Setting_out, FN_Smuggling, 

FN_Storing, FN_Taking, FN_Touring, FN_Travel, 

FN_Traversing, FN_Visiting, 

FN_Visiting_scenario_arrival, 
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FN_Visiting_scenario_departing, 

FN_Visiting_scenario_arrival, FN_Visitor_departure 

 

A.3 Common Sense Constraint Algorithm Sub Routines 

The first subroutine UPDATE-TABLE simply updates the dynamic programming table 𝐷 according 

to the possible state changes and is shown in Figure 28. The table is only updated if the table entry 

has not been updated or if score is higher than the existing values. 

Function: UPDATE-TABLE 
Input: Dynamic programming  table 𝐷, step index 𝑛, participant index 𝑚, previous existence 
state 𝑝𝑟𝑒𝑣, next existence state 𝑛𝑒𝑥𝑡, prediction event 𝑒𝑣𝑒𝑛𝑡, update score 𝑠𝑐𝑜𝑟𝑒. 

Parameters: None 
Output: Updated table 𝐷. 
01:  𝑠𝑐𝑜𝑟𝑒𝑛𝑒𝑤 ← 0 
02:  if 𝑐𝑜𝑠𝑡 not 𝒏𝒖𝒍𝒍 then 
03:  𝑠𝑐𝑜𝑟𝑒𝑛𝑒𝑤 ← 𝑠𝑐𝑜𝑟𝑒𝑛𝑒𝑤 + 𝑐𝑜𝑠𝑡 
04:  end if 
05:  if 𝐷[𝑛][𝑚][𝑝𝑟𝑒𝑣][0] not 𝒏𝒖𝒍𝒍 then 

06:   𝑠𝑐𝑜𝑟𝑒𝑛𝑒𝑤 ← 𝑠𝑐𝑜𝑟𝑒𝑛𝑒𝑤 + 𝐷[𝑛][𝑚][𝑝𝑟𝑒𝑣][0] 
07:  end if 
08:  if 𝑐𝑜𝑠𝑡 not 𝒏𝒖𝒍𝒍 then  /* event update */ 
09:  if (𝐷[𝑛 + 1][𝑚][𝑛𝑒𝑥𝑡][0] is 𝒏𝒖𝒍𝒍) or (𝑠𝑐𝑜𝑟𝑒𝑛𝑒𝑤 > 𝐷[𝑛 + 1][𝑚][𝑛𝑒𝑥𝑡][0]) then 
10:    𝐷[𝑛 + 1][𝑚][𝑛𝑒𝑥𝑡][0] ← (𝑠𝑐𝑜𝑟𝑒𝑛𝑒𝑤, 𝑒𝑣𝑒𝑛𝑡, 𝑝𝑟𝑒𝑣) 
11:    end if 
12:  else  /* propagate prev. row update */ 
13:  if (𝐷[𝑛][𝑚][𝑝𝑟𝑒𝑣][0] is not 𝒏𝒖𝒍𝒍) and ((𝐷[𝑛 + 1][𝑚][𝑛𝑒𝑥𝑡][0] is 𝒏𝒖𝒍𝒍) or  
        (𝑠𝑐𝑜𝑟𝑒𝑛𝑒𝑤 > 𝐷[𝑛 + 1][𝑚][𝑛𝑒𝑥𝑡][0])) then 
14:    𝐷[𝑛 + 1][𝑚][𝑛𝑒𝑥𝑡][0] ← (𝑠𝑐𝑜𝑟𝑒𝑛𝑒𝑤, 𝑒𝑣𝑒𝑛𝑡, 𝑝𝑟𝑒𝑣) 
15:    end if 
16:  endif 
17:  return 𝐷 

 

Figure 28: update table subroutine for the commonsense constraint algorithm. 
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After populating the dynamic programming table 𝐷, the Reconstruct-Output-Grid 

subroutine creates the final state change prediction table that is expected to answer ProPara 

Questions as shown in Figure 29. 

The APPLY-INERTIA assumes that the state of the participant should not change until an event 

happens. This function takes the output grid 𝐺 and propagates the grid entries (i.e., participant 

states) to completely fill the grid at column 𝑐𝑜𝑙. If two adjacent events disagree with the location, 

then choose the location of either 𝑝𝑟𝑒𝑣𝑒𝑣𝑒𝑛𝑡 or 𝑐𝑢𝑟𝑒𝑣𝑒𝑛𝑡 according to which one has the highest 

score. 

A.4 Analogical Knowledge Extraction Article Names 

Function: RECONSTRUCT-OUTPUT-GRID 
Input:  Dynamic programming table 𝐷 with size (𝑁 + 1, M, 2). 
Parameters: None. 
Output: State change output grid 𝐺. 
01:  Create the output grid G with size (𝑁 + 1, 𝑀) 
02:  for 𝑐𝑜𝑙 from 0 to 𝑀 − 1 do 
03:   𝑠𝑡𝑎𝑟𝑡𝑠𝑡 ← 0 if 𝐷[𝑁][𝑐𝑜𝑙][0][0] > 𝐷[𝑁][𝑐𝑜𝑙][1][0] else 1 
04:  𝑐𝑢𝑟𝑠𝑡 ← 𝑠𝑡𝑎𝑟𝑡𝑠𝑡 
04:  𝑝𝑟𝑒𝑣𝑒𝑣𝑒𝑛𝑡 ← 𝒏𝒖𝒍𝒍 
04:  𝑝𝑟𝑒𝑣𝑟𝑜𝑤 ← 𝑁 + 1 
05:  for 𝑟𝑜𝑤 from N to 0 do /* propagate states backwards */ 

06:   𝑐𝑢𝑟𝑒𝑣𝑒𝑛𝑡 ← 𝐷[𝑟𝑜𝑤][𝑐𝑜𝑙][𝑐𝑢𝑟𝑠𝑡][1]  
07:   if 𝑐𝑢𝑟𝑒𝑣𝑒𝑛𝑡 is not 𝒏𝒖𝒍𝒍 then 
08:    APPLY-INERTIA(𝐺, 𝑐𝑢𝑟𝑒𝑣𝑒𝑛𝑡, 𝑝𝑟𝑒𝑣𝑒𝑣𝑒𝑛𝑡, 𝑟𝑜𝑤 − 1, 𝑝𝑟𝑒𝑣𝑟𝑜𝑤 − 1, 𝑐𝑜𝑙)  
09:    𝑝𝑟𝑒𝑣𝑒𝑣𝑒𝑛𝑡 ←  𝑐𝑢𝑟𝑒𝑣𝑒𝑛𝑡 
09:    𝑝𝑟𝑒𝑣𝑟𝑜𝑤 ←  𝑟𝑜𝑤 
10:   end if 
11:  end for 
12:   APPLY-INERTIA(𝐺, 𝒏𝒖𝒍𝒍, 𝑝𝑟𝑒𝑣𝑒𝑣𝑒𝑛𝑡, 0, 𝑝𝑟𝑒𝑣𝑟𝑜𝑤 − 1, 𝑐𝑜𝑙) 
14:  end for 
15:  return  𝐺 

 

Figure 29: reconstruct output grid subroutine for the commonsense constraint algorithm. 
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Full list of Simple English Wikipedia article names used for the knowledge extraction the 

experiments are listed below. Some of the article names are simplified with lower case ASCII-

friendly characters and spaces are replaced with the dash “-” characters. 

aardvark, abstinence, acceleration, accent, accident, accordion, account, acetylene, acid, acid, 

acid-rain, acne, acorn, acre, action, actor, addiction, addition, address, adelaide, adhesive, 

adjective, adjustment, administration, administrator, adolescence, adrenal-gland, adult, 

adventure, adverb, advertisement, afghanistan, africa, age, agent, agreement, air, air-conditioner, 

air-space, aircraft, airport, alabama, alaska, albania, alberta, albinism, album, alcohol, alder, 

algae, algeria, alkali, alkali-metal, allergy, alligator, alloy, almond, alphabet, alpine-tundra, 

alternative, aluminium, ambulance, amino-acid, amoeba, ampere, amphibian, amylase, 

anaerobic-digestion, analysis, anaphylaxis, anatomy, ancestor, anchor, andorra, anemia, 

anesthetic, angel, anger, angle, angola, animal, animation, ankle, ant, antarctic-krill, antarctica, 

anteater, antenna, anthem, antibody, antidote, antigen, anus, anxiety, apartment, ape, aphelion, 

apparatus, applause, apple, apple-juice, application, apricot, april, apron, aquarium, aquifer, arc, 

arcade, arch, archer, archery, architecture, area, argentina, argon, argument, arithmetic, arizona, 

arkansas, arm, armadillo, armenia, armour, army, array, arrow, arsenic, art, artery, arthropod, 

artist, asexual-reproduction, ash-tree, asia, asian, aspirin, assam, asset, asteroid, asteroid-belt, 

asthenosphere, astronaut, astronomer, astronomy, athlete, atmosphere, atmospheric-pressure, 

atom, atomic-mass, atomic-theory, attack, audience, august, aunt, australia, austria, author, 

authority, autism, automaton, autotroph, autumn, avalanche, avocado, award, axe, axle, 

azerbaijan, baby, back, bacon, badminton, bag, bahrain, baker, ball, ballet, balloon, bamboo, 

banana, band, bandage, bandicoot, bangladesh, bank, bar, barber, bark, barley, barnacle, 

barometer, baseball, basement, basin, basket, basketball, bast, bat, bath, bathroom, battery, 
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battle, beach, beak, beaker, bean, bear, beard, beauty, beaver, bed, bedroom, bee, beef, beer, 

beetle, behavior, beijing, being, belarus, belgium, belief, belize, bell, belt, bench, benchmark, 

benin, benzene, berkshire, berry, beryllium, bhutan, bias, bicycle, biennial-plant, bile, binary-

fission, binoculars, biochemistry, biodiversity, biogeography, biological-weapon, biologist, 

biology, biomass, biome, biosphere, biotechnology, bird, birth, birthday, biscuit, bison, bissau, 

bit, bivalve, black-death, black-hole, black-pepper, black-powder, blackberry, blackbird, 

blackboard, blacksmith, blade, bleach, blender, blindness, blonde, blood, blood-pressure, blood-

transfusion, blood-vessel, blossom, blouse, blue-cheese, blue-whale, blueberry, boa, boat, body, 

bomb, bone, bonfire, book, boomerang, boot, boron, boss, botanist, botany, botswana, bottle, 

bowl, box, boy, boyfriend, brain, brake, branch, brand, brass, brass-instrument, brazil, bread, 

breakfast, breast, breast-cancer, breath, breed, bribery, brick, bridge, british-museum, bromine, 

bronze, broom, brown-bear, brown-dwarf, brunei, brush, bryophyte, bucket, budgerigar, budget, 

building, bulb, bulgaria, bullet, bun, buoyancy, burial, burn, burundi, bus, business, butter, 

buttercup, butterfly, button, c, c, cabbage, cabin, cabinet, cable-car, cactus, cadmium, cafe, 

caffeine, cage, cake, calcium, calculator, calendar, california, calorimeter, cambodia, camel, 

camera, camera-lens, cameroon, campaign, canada, canal, cancer, candle, candy, cane, canoe, 

canon, cantaloupe, canteen, canvas, canyon, capillary, capital, capital-accumulation, capital-

city, captain, car, caracal, carbon, carbon-dioxide, carbon-monoxide, carbon-steel, card, 

cardboard, career, caretaker, cargo, caribbean, carnival, carnivore, carp, carpenter, carpet, carrot, 

cartilage, cartoon, cash, castle, cat, cataract, caterpillar, cathedral, cattle, cave, cavity, cayenne-

pepper, cecum, ceiling, cell-division, cell-membrane, cell-wall, cellular-respiration, cellulose, 

census, centimetre, centipede, centre, centripetal-force, century, cerebellum, cerebrum, 

ceremony, certificate, cervix, chad, chair, chalk, chameleon, chancellor, chaos, charcoal, chart, 
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cheese, cheetah, chemical-bond, chemical-compound, chemical-element, chemical-equation, 

chemical-reaction, chemical-substance, chemist, chemistry, chemotherapy, cherry, chess, chest, 

chicken, child, chile, chimpanzee, chin, china, chinchilla, chipmunk, chisel, chitin, chloride, 

chlorine, chlorophyll, chloroplast, chocolate, chocolate-cake, choice, choir, cholera, cholesterol, 

chongqing, chromium, chromosome, church, cider, cigar, cigarette, cinnamon, circle, 

circumference, citizen, citric-acid, citrus, city, civilization, clam, clamp, clarinet, claw, clay, 

cleanliness, climate, clipboard, clock, cloth, clothing, cloud, clover, cluster, coal, coast, coat, 

cobalt, cocaine, cocoa, cocoon, cod, code, coffee, coffin, coin, cola, cold-front, college, 

collision, colombia, colon, colonization, colony, colorado, columbia, column, coma, comb, 

combat, combustion, comet, commerce, commodity, communication, community, comparison, 

compass, competition, complete-metamorphosis, composition, compost, computation, 

computer, concentration, concept, concert, concrete, condensation, condom, conduction, 

conductor, cone, conference, conifer, connecticut, connection, constellation, constipation, 

construction, construction-worker, container, continent, continuity, continuum, contract, 

contraction, convection, cookbook, cookie, cooperation, copper, copy, coral, coral-reef, cornea, 

cornwall, coronation, corporation, correlation, corrosion, cottage, cotton, council, country, 

county, county-seat, county-town, courage, court, cousin, cowboy, coyote, crab, cracker, craft, 

crater, crayon, cream, creativity, creed, crescent, crew, cricket, crime, croatia, crocodile, crop, 

crop-rotation, crust, crystal, crystallization, cuba, cube, culprit, culture, cumbria, cup, cupboard, 

currant, curry, cursor, curve, cushion, custard, custom, customer-service, cuticle, cutlery, 

cuttlefish, cyanobacteria, cycle, cyclone, cylinder, cynicism, cyprus, cystic-fibrosis, cytokine, 

cytoplasm, cytosol, dairy-product, dam, dance, dandelion, darkness, data, database, daughter, 

day, death, death-penalty, debate, debris, debt, decade, decapod, december, deer, defense, 
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definition, deflation, deforestation, degree, dehydration, deinonychus, delaware, demonstration, 

denial, denmark, density, deoxyribose, desert, design, dessert, detective, device, devil, devon, 

diagnosis, diagram, diameter, diamond, diaper, diaphragm, diarrhea, diatom, dice, dictator, 

dictionary, difference, digestion, dill, dimension, dimetrodon, dingo, dinner, dinosaur, direction, 

director, disability, disaster, disco, disease, dish, dishwasher, disk, distance, distribution, district, 

ditch, division, divorce, djibouti, doctor, doctrine, documentation, dodo, dog, dogma, dollar, 

dolphin, dome, domestic-goat, domestic-pig, domestic-sheep, domestication, dominica, donkey, 

door, dough, doughnut, dove, dozen, dragonfly, drain, drainage, drama, drawer, drawing, dream, 

dress, drink, drizzle, drought, drug, drum, drummer, duck, duke, dune, duodenum, dust, dwarf, 

dye, eagle, ear, earth, earth-science, earthquake, echidna, echinoderm, ecology, economics, 

economist, economy, ecosystem, ecuador, edge, education, eel, efficiency, egypt, ejaculation, 

elastic, elastic-energy, elbow, electric-charge, electric-current, electric-motor, electrical-circuit, 

electrical-energy, electrical-resistance, electrician, electricity, electromagnet, electromagnetic-

radiation, electromagnetic-wave, electron, electron-microscope, electronics, element, 

elementary-particle, elephant, elevation, elevator, ellipse, elm, embryo, embryology, emerald, 

emotion, emperor, emperor-penguin, emphysema, empire, employee, emu, encyclopedia, 

endometrium, endoskeleton, enemy, energy, energy-conservation, engine, engineer, england, 

entertainment, entomology, envelope, environment, enzyme, eon, epididymis, epilepsy, 

episode, equation, equator, equinox, era, erection, eritrea, erosion, error, erythropoietin, essay, 

essex, estonia, estuary, ethane, ethanol, ethiopia, ethology, eucalyptus, eukaryote, eurasia, 

europe, european-commission, evaporation, event, event-horizon, evergreen, evidence, 

evolution, evolutionary-biology, example, existence, exoskeleton, experience, experiment, 

exploitation, explorer, explosion, extinction, eye, eyebrow, eyeglasses, eyelash, face, fact, 
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factory, fairy, falcon, family, farm, farmer, fashion, fast-food, fate, father, fault, fear, feather, 

february, feedback, fellow, felt, fence, fermentation, fern, ferret, fertilization, fertilizer, festival, 

fetus, fever, fibrous-protein, fiction, fife, fig, fiji, fin, fine, finger, fingernail, finland, fir, fire, 

fire-salamander, fireplace, firework, fish, flag, flagellum, flame, flashlight, flask, flatworm, 

flavor, flea, flight, flipper, floor, florida, flour, flower, fluid, fluorine, flute, flux, fly, fog, food, 

foot, football, footballer, footwear, force, force-field, forehead, forest, forestry, fork, formula, 

fossil, fossil-fuel, fowl, fox, fraction, fracture, framework, france, freedom, freeway, frequency, 

fresh-water, friday, friend, friendship, frog, frost, fructose, fruit, fruit-tree, fuel, fungus, fur, 

furniture, future, g, gabon, galaxy, galena, gallon, game, gamete, garbage, garden, gargoyle, gas, 

gasoline, gate, gazelle, gear, gecko, gender, gene, general-relativity, generation, genetics, genie, 

genus, geography, geology, gerbil, germ, german-empire, germany, ghana, ghost, giant-anteater, 

giant-panda, giant-salamander, giant-squid, gill, gin, ginkgo, giraffe, girl, glacier, gland, glass, 

glaze, glider, globe, glossary, gloucestershire, glove, glucose, glue, glycogen, glycolysis, 

gnome, gnu, god, gold, goldfish, golf, gonad, gondola, gonorrhea, goodbye, goodness, goose, 

gooseberry, gopher, gorilla, gospel, government, governor, gradient, grain, gram, grandparent, 

granite, grape, grapefruit, graph, graphite, grass, grasshopper, grave, gravitational-energy, 

gravity, greece, green-tea, greenhouse, greenhouse-effect, greenhouse-gas, grenada, grey-wolf, 

griffin, ground, group, guatemala, guava, guinea, guinea-pig, guitar, gull, gun, guyana, 

gymnastics, gymnosperm, h, habitat, haddock, hail, hair, hairdresser, haiti, hallucination, halo, 

halogen, ham, hamburger, hamlet, hammer, hampshire, hamster, hand, handball, hanuman, 

happiness, harbor, hardware, hare, harmony, harp, harvest, hat, hawaii, hawthorn, head, 

headache, health, healthy-diet, heart, heart-disease, heartbeat, heat, heat-capacity, heat-

conduction, heat-engine, heaven, hedgehog, height, helicopter, helium, hello, helmet, hematite, 
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hemisphere, hemoglobin, hepatitis, herb, herbivore, herd, hereditary-disease, hero, herring, 

hertfordshire, heterotroph, hibernation, hierarchy, high-school, high-voltage, highland, 

highway, hill, hinge, hippopotamus, histogram, historian, history, hobby, hockey-stick, hoe, 

holiday, holland, holly, homeostasis, homework, honduras, honey, honeycomb, horizon, 

hormone, hornet, horror, horror-film, horse, horseshoe, hospital, hostage, hot-sauce, hot-spot, 

hotel, hour, house, houseplant, huckleberry, hue, human, human-evolution, human-migration, 

humidity, hummingbird, humpback-whale, hungary, hydrocarbon, hydrogen, hydrogen-

peroxide, hydroxide, hyena, hygiene, hymn, hypertension, hypothesis, ice, ice-age, ice-cream, 

iceberg, iceland, icon, idaho, idea, idiot, igloo, ileum, illinois, illness, illusion, imagination, 

immunity, immunization, inch, incisor, income, incomplete-metamorphosis, incubation-period, 

india, indian, indiana, indigo, individual, indonesia, industrial-revolution, industry, inertia, 

infection, infectious-disease, infertility, inflammation, inflation, influenza, information, 

infrastructure, inhalation, inheritance, injury, ink, inorganic-compound, insect, insecticide, 

insectivore, insolation, institution, instrument, insulation, insulin, intelligence, interest, internal-

energy, international-law, international-organization, interval, intestine, invasion, invention, 

inventor, iodine, ion, ionic-bond, ionic-compound, iowa, iran, iraq, ireland, iron, iron-oxide, 

irrigation, island, isotope, israel, issue, isthmus, italy, ivory, j, jackal, jade, jaguar, jail, jam, 

jamaica, janitor, january, jasmine, javan-tiger, jay, jazz, jejunum, jelly, jellyfish, jerboa, jerk, 

jersey, jet-engine, jewel, jewelry, job, jockey, john, joint, joke, jordan, joule, journal, journalist, 

judge, juice, july, june, jungle, kangaroo, kangaroo-rat, kansas, kaolinite, karate, kayak, 

kazakhstan, kebab, kelp, kelvin, kent, kentucky, kenya, keratin, kerosene, ketchup, kettle, key, 

kidney, kiln, kilogram, kilometre, kilt, kinetic-energy, kinetic-theory, king, kingdom, kiribati, 

kitchen, kiwi, knee, knife, knight, knob, knot, knowledge, knuckle, koala, krill, kuwait, 
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kyrgyzstan, l, labium, laboratory, lactose, ladder, lake, lamp, lancashire, land, landfill, landslide, 

language, lantern, laptop, large-intestine, larva, laser, latex, latitude, latvia, lava, law, lawn, lead, 

leader, leaf, leather, lebanon, lecture, leech, leek, leg, legend, leicestershire, leisure, lemon, 

lemonade, lemur, length, lens, leopard, lesotho, lesson, letter, lettuce, lever, liberia, librarian, 

library, libya, license, liechtenstein, life, ligament, light, light-pollution, lightbulb, lighthouse, 

lightning, lily, limestone, lincolnshire, line, linen, linguistics, link, lion, lip, lipstick, liquid, list, 

literacy, literature, lithium, lithosphere, lithuania, litre, liver, livestock, lizard, llama, lobster, 

local-government, lock, locomotion, locust, logic, logo, lord, loudspeaker, louisiana, luggage, 

lullaby, lumber, lung, lung-cancer, luxembourg, lymphocyte, lynx, m, ma, macau, macedonia, 

machine, madagascar, madness, magazine, magic, magma, magnesium, magnet, magnetic-field, 

magnetism, maine, majority, malaria, malawi, malay, malayan-tiger, malaysia, mali, mall, 

malta, mammal, mammary-gland, man, manager, mango, manitoba, manure, map, marathon, 

marble, margarine, marker, market, marmalade, marmot, marriage, marsh, martinique, 

maryland, mascot, mass, massachusetts, mast, material, mathematician, mathematics, matter, 

mauritania, mauritius, max, may, mayor, meal, meat, medical-emergency, medication, 

medicine, medicine-man, medium, medusa, meerkat, meiosis, melody, melon, member, 

membrane, membrane-protein, meningitis, menstruation, mental-illness, merchant, mercury, 

meristem, metabolism, metal, metamorphosis, meteorology, methane, method, metre, mexico, 

michigan, microbiology, microorganism, microscope, microwave, microwave-oven, middle-

school, migrant-worker, migration, mile, military-engineer, milk, milk-powder, millipede, 

mind, mineral, minister, minnesota, minute, miracle, mirror, missile, mississippi, missouri, 

mitosis, mitten, mixture, moat, modem, moldova, mole, molecule, mollusc, momentum, 

monaco, monarch, monastery, monday, money, mongolia, monitor, monk, monkey, 
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monosaccharide, monotreme, monster, montana, montenegro, month, monument, moose, mop, 

morality, morning, morocco, mosque, mosquito, moss, moth, mother, motion-sensor, motorway, 

mountain, mountain-climber, mouse, mouth, movement, movie, mozambique, mud, mud, mule, 

multicellular-organism, multiplication, municipality, murder, muscle, muse, museum, 

mushroom, music, musical-instrument, musician, musk-deer, mussel, mustache, mustard-plant, 

mutation, mycelium, nail, namibia, nancy, nasal-cavity, nation, national-park, natural-disaster, 

natural-environment, natural-gas, natural-resource, nature, nausea, navigation, nebraska, nectar, 

needle, neighbour, neon, nepal, nerve, nest, net, netball, netherlands, network, neuron, 

neurotransmitter, neutron, nevada, news, newspaper, newt, newton, nickel, nicotine, niger, 

nigeria, nightmare, nitrogen, noble-gas, noise, nonmetal, noodle, noon, norfolk, norm, northern-

hemisphere, northern-territory, northumberland, norway, nose, nostril, notebook, noun, novel, 

november, nuclear-energy, nuclear-fission, nuclear-fusion, nuclear-power, nuclear-reaction, 

nuclear-reactor, nuclear-weapon, nucleotide, number, nun, nunavut, nurse, nutrient, nylon, o, 

oak, oar, oat, oaxaca, obesity, observation, observatory, october, octopus, odor, office, officer, 

official, offspring, ohio, oil, okapi, oklahoma, olive-oil, olive-tree, oman, omelette, omnivore, 

onion, ontario, opinion, orange, orangutan, orbit, orca, orchestra, orchestra-pit, ore, oregon, 

organelle, organic-chemistry, organic-compound, organism, organization, oriole, orphan, 

osprey, ostrich, oval, ovary, oven, ovum, owl, ownership, oxbow-lake, oxidation, oxide, oxygen, 

oyster, p, pain, painting, pakistan, palace, palestine, palm-tree, panama, pancake, pancreas, 

pangolin, panther, papaya, paper, paperback, parachute, paragraph, paraguay, paralysis, 

parameter, parasitism, parent, park, parliament, parrot, parsley, particle, pascal, passport, past, 

pasta, pasture, patch, patent, pathogen, pattern, pea, peace, peach, peafowl, peanut, pear, pearl, 

pelican, pelvis, pen, pencil, penguin, penicillin, penis, pennsylvania, penny, pepper, pepsin, 
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percent, perception, perch, percussion-instrument, perfume, perihelion, periodic-table, peru, 

pesticide, pet, petroleum, pharmacist, pharynx, phenomenon, phenotype, philippines, 

philosopher, phloem, phosphate, phosphorus, photographer, photography, photon, 

photosynthesis, phrase, phylum, physical-law, physical-property, physiology, pi, pianist, piano, 

picture, pie, piece, pigment, pillar, pillow, pilot, pin, pine, pineapple, pint, pipe-smoke, piston, 

pituitary-gland, pizza, placenta, plain, planet, plankton, plant, plant-stem, plaque, plastic, plate, 

platelet, platinum, platypus, playground, plow, plum, plunger, pneumonia, pocket, pocket-

gopher, pod, poet, poetry, poison, poland, polar-bear, police, police-officer, politician, 

pollination, pollutant, pollution, polyp, polysaccharide, pomegranate, pond, poodle, population, 

population-density, porcelain, pore, pork, porpoise, portugal, position, possession, poster, pot, 

potassium, potato, potential, potential-energy, poverty, powder, power, power-station, power-

structure, prairie, prayer, precipitation, predator, prediction, pregnancy, presentation, president, 

pressure, prevention, price, pride, priest, primate, prime-minister, prince, princess, principal, 

prison, prisoner, prize, probability, problem, producer, profession, professor, profit, project-

management, prokaryote, pronghorn, propeller, property, proposal, protein, protest, protist, 

proton, protractor, province, psychoanalysis, puberty, public-school, pudding, puddle, pulley, 

pulmonary-artery, pulmonary-hypertension, pump, pumpkin, pupa, pylon, pyramid, python, q, 

qatar, quake, quality, quantity, quart, quarter, quartz, quebec, queen, question, queue, quiz, r, 

rabbit, rabies, racket, radar, radian, radiation, radio, radio-telescope, radio-wave, radioactive-

decay, radius, radon, raid, raid, railway-station, rain, rainbow, rainbow-trout, rainforest, 

rainstorm, raisin, ranch, raspberry, rat, ratio, raven, ravioli, raw-material, ray, razor, reality, rear, 

rear-window, receipt, recorder, recreation, rectangle, rectum, red-panda, reduction, reed, referee, 

reference, reflection, refraction, refrigerator, region, reindeer, relative-humidity, religion, 
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renewable-energy, renewable-resource, reproduction, reptile, republic, resin, resistor, 

respiration, restaurant, retina, reunion, revolution, reward, rhinoceros, rhubarb, rhythm, rib-

cage, ribose, ribosome, rice, rifle, ring, riot, river, road, robot, rock, rocket, rodent, rodeo, roe, 

role, roller-coaster, roman, roman-emperor, romania, roof, room-temperature, root, rope, rose, 

rose-hip, rotation, rowan, royal-family, rubber, rug, rule, ruler, rumble, russia, rust, rutland, 

rwanda, s, sail, sailor, saint, sake, salad, salamander, salinity, saliva, salivary-gland, salmon, 

salmonberry, salt, salt-water, salvador, samoa, sand, sandstone, sandwich, sarcasm, sardine, 

saskatchewan, satellite, sauce, sausage, savanna, scar, scarcity, schizophrenia, science, scientist, 

scissors, scone, score, scorpion, scotland, screw, scrotum, sea, sea-anemone, sea-cucumber, sea-

level, sea-urchin, seafood, seal, search-engine, season, seaweed, sebaceous-gland, second, 

second-person, secretary, secretion, seed, segment, seizure, semen, seminal-vesicle, senate, 

senegal, sensation, sense, sentence, september, septum, sequence, serbia, series, servant, server, 

service, set, sewer, sex, sex-organ, sexual-reproduction, shade, shadow, shampoo, shape, shark, 

shaving, shelf, shellfish, shelter, shield, shield-volcano, ship, shire, shirt, shock, shoe, shooter, 

shop, shore, shoulder, shovel, shower, shrew, shrimp, shrub, siberian-tiger, sibling, sickle, side, 

sight, sign, silicon, silk, similarity, simulation, singapore, singer, sir, siren, site, size, skeleton, 

skin, skink, skirt, skull, skunk, sky, skyscraper, slang, sleeve, slide, slope, sloth-bear, slovakia, 

slovenia, small-intestine, smile, smoke, smoothie, snack, snail, snake, snow, snow-leopard, 

snowball, snowflake, snowman, soap, soap-bubble, social-contract, social-worker, society, 

sock, sodium, sodium-hydroxide, soft-drink, softball, software, soil, soil-moisture, solar-eclipse, 

solar-energy, solar-radiation, soldier, solstice, solubility, solution, solvent, somalia, somersault, 

somerset, son, song, soul, sound, soup, southern-hemisphere, southwest, soy-milk, soy-sauce, 

soybean, space-shuttle, spacecraft, spade, spaghetti, spain, spear, special-relativity, spectrum, 
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speech, speed, sperm, sphere, spice, spider, spinach, spinal-cord, spiny-lobster, spirit, spleen, 

sponge, spoon, spore, sport, spree, spring, spruce, squid, squirrel, stainless-steel, stalactite, stalk, 

standard, standard-deviation, stapler, star, starch, starvation, state, statement, statue, steak, 

steam, steam-engine, steel, steppe, stethoscope, stick, stimulus, sting, stingray, stirrup, stoat, 

stock, stomach, stone, stone-fruit, stopwatch, storage, stork, storm, strategy, strawberry, stream, 

street, strength, string, structure, student, studio, stuff, subduction, sublimation, submarine, 

substance, suburb, succulent-plant, sudan, sugar, sugar-beet, suggestion, suicide, sulfur, sultan, 

sumatran-tiger, summary, summer, sun, sunburn, sunflower, sunlight, sunscreen, sunset, 

superman, supermarket, supernova, surface, surface-area, surgery, suriname, survivor, sussex, 

sustainable-development, swamp, swan, swaziland, sweden, switzerland, sword, syllable, 

symbiosis, symbol, symmetry, symptom, syphilis, syria, syrup, system, table, table-salt, tadpole, 

tail, tajikistan, talent, tank, tanzania, tapeworm, tapir, tarsier, taste, tattoo, tax, taxi, taxon, 

taxonomy, tea, teacher, team, teapot, teaspoon, technique, technology, teenager, telephone, 

telescope, television, temperature, template, temple, tendon, tennessee, tennis, tent, tentacle, 

test, test-tube, testosterone, tetanus, texas, textbook, texture, thailand, theatre, theorem, theory, 

thermal-energy, thermometer, thorax, thought, thousand, threat, throat, throne, thumb, thunder, 

thunderstorm, thursday, tibet, tidal-force, tide, tiger, tile, tillage, timbre, time, time-zone, tin, 

tire, titanium, toaster, tobacco, toddler, toe, togo, toilet, tolerance, tomato, tomorrow, tonga, 

tongue, tonne, tooth, toothache, toothbrush, tornado, torque, toucan, touch, tourism, towel, 

tower, town, toy, trademark, trader, trail, tram, transaction, transition-metal, translation, 

transparency, transpiration, transport, tray, treaty, tree, trench, trial, triangle, tribe, trinity, 

trolley, trombone, tropical-cyclone, tropical-rainforest, trout, truck, trumpet, tsunami, tuatara, 

tuba, tuberculosis, tuesday, tuna, tundra, tungsten, tunisia, tunnel, turbine, turkey, turkmenistan, 
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turtle, tuvalu, twin, typewriter, tyrannosaurus, uganda, ukraine, ulcer, umbilical-cord, umbrella, 

uncle, underwear, unemployment, ungulate, unicellular-organism, unicorn, uniform, unit, 

universe, university, uranium, urban-area, urethra, urination, urine, uruguay, utah, uterus, 

uzbekistan, vacation, vacuum, vacuum-tube, vagina, vaginal-secretion, valley, value, vampire, 

vampire-bat, vampire-squid, van, vanilla, vanuatu, vapor, vascular-plant, vascular-tissue, vase, 

vector, vegetable, vegetable-oil, vegetation, vehicle, vein, velocity, venezuela, verb, vermont, 

vertebrate, vessel, vibration, vice-president, victim, video, video-game, vienna, vietnam, 

vietnam-war, village, villain, vinegar, violence, violet, violin, virginia, virus, viscacha, visible-

light, vitamin, vocabulary, voice, volcano, vole, volleyball, volt, voltage, volume, vulture, vulva, 

waiter, wall, wallet, war, war-crime, wart, washington, wasp, wasp, waste, waste-heat, water, 

water-vapor, water-wheel, waterfall, watermelon, waterway, watt, wavelength, wax, weapon, 

weasel, weather, weather-station, wedge, wednesday, weed, week, weekend, weight, west, 

wetland, whale, whale-shark, wheat, wheel, wheelbarrow, wheelchair, whip, whisker, whistle, 

white-dwarf, whorl, width, wife, wild-turkey, wildebeest, wind, windmill, window, wine, wing, 

winter, winter-storm, wire, wisconsin, witch, witness, wolverine, woman, wombat, wonder-

woman, wood, woodland, woodpecker, woodwind-instrument, wool, word, word-order, worker, 

world, worm, worship, wrist, wristwatch, writer, wyoming, xylem, xylem-vessel, year, yeast, 

yemen, yes, yoga, yoghurt, yorkshire, yukon, z, zambia, zebra, zebra-mussel, zero, zimbabwe, 

zinc, zoo, zygote 

 

A.5 Knowledge Extraction Hyperparameters and Training Settings 

Here are the training details and hyperparameters mentioned in submodule for AKE as well as 

baseline models. 
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Word Sense Disambiguation: the disambiguation module uses the Hugging Face’s distribution 

of BERT13 [base-uncased] as the base model to predict the word senses associated with 

FrameNet frames. It is fine-tuned by optimizing the cross-entropy loss using Adam optimizer, with 

a learning rate of 10−4 and trained for 10 epochs with a batch size of 32 examples. 

Construction of Query Cases and Fact Prediction: the hyper parameters by the SEMANTIC-

SELECTION algorithm in Figure 12 were set to 𝜆1 = 1, 𝜆2 = 0.2, 𝜆3 = 5, 𝜆4 = 5, 𝜀1 = 0.3 . The 

hyper parameters used in Equation (14) were set to 𝜆5 = 1, 𝜆6 = 1, 𝜆7 = 1, 𝜆8 = 1, 𝜀2 = 2.5. 

These values were chosen according to the importance and magnitude of each score while 

considering the results of trial runs. 

Fact Scoring: the fact scoring module uses the Hugging Face’s distribution of BERT [base-

uncased] to score predicted facts as a post processing step. The model is fine tuned to optimize 

the cross-entropy loss using the AdamW optimizer, with a learning rate of 5 ∗ 10−5 and is trained 

for 3 epochs with a batch size of 16 examples. 

Text-to-text T5 Training Details: the baseline uses the Hugging Face’s distribution of T514 

[small] on a set of 3,962 sentence-fact pairs. The model was trained auto-regressively using the 

AdamW optimizer, with a learning rate of 3 ∗ 10−4 for 2 epochs. 

Relation Extraction Training Details: Both Relation Extraction baselines (with CNN and BERT 

encoders) use the OpenNRE15 implementation. They are trained on a dataset of 28,800 training 

examples and 3,000 validation sentence-fact pairs, where 50% of which were negative examples.  

Sentences that reference two entities that are not connected by a fact in the KB were used as 

negative examples. All facts with more than two examples were discarded. The model with CNN 

 
13 Available at https://huggingface.co/docs/transformers/model_doc/bert 
14 Available at https://huggingface.co/docs/transformers/model_doc/t5 
15 Available at https://github.com/thunlp/OpenNRE 

https://huggingface.co/docs/transformers/model_doc/bert
https://huggingface.co/docs/transformers/model_doc/t5
https://github.com/thunlp/OpenNRE
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encoder was trained with a learning rate of 1 ∗ 10−1, for 500 epochs with a batch of 160 examples. 

The BERT based model was trained with a learning rate of 2 ∗ 10−5, for 10 epochs with a batch 

size of 64 examples. The remaining hyperparameter were kept as the OpenNRE defaults. 

A.6 Iterative Reasoner Hyperparameters and Training Settings 

The 𝐼𝑅𝐺𝑅 − 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 uses the Hugging Face’s distribution of the encoder-decoder T516 

[small] model. The model weights with best Overall: All-Correct metric on the validation set 

were selected. The module was trained auto-regressively using the Adam optimizer and with the 

following hyper parameters: learning rate: 3 ∗ 10−5, train epochs: 15, training batch size: 4, 

validation batch size: 4, maximum number of input tokens: 512, maximum number of output 

tokens: 256, warm-up steps: 0, weight decay: 0. 

The 𝐼𝑅𝐺𝑅 − 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑟 module uses the version all-mpnet-base-v2 from the Sentence- 

Transformers library. The model is fine-tuned to optimize the cosine similarity loss using the 

AdamW optimizer with the following hyper parameters: learning rate: 5 ∗ 10−5, epochs: 10, 

training batch size: 32, validation batch size: 32, loss function: cosine similarity loss, warm-up 

steps: 0, weight decay: 0. 

A.7 Reasoning Graph Generation Hyperparameters and Training 

Settings 

Full supervision: The T5 [large] model uses the Hugging Face’s distribution17 model (770 

million parameters) is trained on each task separately. The training is done using a machine with 

four NVIDIA Tesla V100-SXM2 with 16GB of VRAM each. We select the model weights 

 
16 Available at https://huggingface.co/docs/transformers/model_doc/t5 
17 Available at https://huggingface.co/docs/transformers/model_doc/t5 

https://huggingface.co/docs/transformers/model_doc/t5
https://huggingface.co/docs/transformers/model_doc/t5
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(checkpoint) with highest answer accuracy on the development set. The model is fine-tuned auto 

regressively and uses the AdamW as optimizer. The training runs for up to 30 epochs with training 

batch size of 2 data examples. The learning rate starts at zero and is gradually increased to its 

maximum value of 3 ∗ 10−5. After 1000 steps, the learning rate is decreased following a cosine 

function scheduler. The weight decay 10−3. During the generation step we use beam search with 

a beam size of 5. 

Few-shot prompting: we run GPT-3 [davinci] by accessing OpenAI’s API18. The API 

provides access to a few model variants and for our experiments we use the largest advertised 

model, namely text-davinci-002 (175B parameters). When generating the reasoning 

graphs, we select up to 5 examples (depending on the tasks and models, fewer prompt examples 

might be provided due to the encoder token size limit) as few-shot prompts for the model. We use 

greedy decoding and use the remaining default hyperparameters, not setting any maximum or 

minimum output size. 

  

 
18 Available at: https://platform.openai.com/docs/models/gpt-3 

https://platform.openai.com/docs/models/gpt-3
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B  Structured Reasoning and Explanation Benchmark 

B.1 Data Examples 

Below are data point textual encoding examples for each of the five tasks in STREET taken from 

the development set. The SCONE task contains three different sub-tasks (namely Alchemy, Scene, 

and Tangrams), and we show examples for each of them separately since their format change 

among different subtasks. 

ARC: 

$question$ = (1) the sun rising / setting occurs once per day 

(2) the sun setting is a kind of event (3) the sun rising is a 

kind of event (4) Which event occurs on a daily cycle? (5) A) 

The Sun rises and sets. (6) B) Earth tilts on its axis. (7) C) 

Earth revolves around the Sun. (8) D) The Moon revolves around 

Earth.  

 

$proof$ = (1) & (2) & (3) -> (9): the sun rising and setting is 

the event that occurs once per day; (9) -> (10): The answer is 

A); 

SCONE (Alchemy): 

$question$ = (1) first beaker has 0 chemicals (2) second beaker 

has 1 green chemical (3) third beaker has 1 purple chemical (4) 

fourth beaker has 1 orange chemical (5) fifth beaker has 1 green 

chemical (6) sixth beaker has 1 red chemical (7) seventh beaker 
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has 1 yellow chemical (8) throw out the orange chemical (9) then, 

add the leftmost beaker of green chemical to the yellow chemical 

(10) mix it (11) then, add the remaining green chemical to it 

(12) mix that too  

 

$proof$ = (4) & (8) -> (13): fourth beaker has 0 chemicals; (2) 

& (7) & (9) -> (14): seventh beaker has 1 yellow and 1 green 

chemical; (2) & (9) -> (15): second beaker has 0 chemicals; (14) 

& (10) -> (16): seventh beaker has 2 brown chemicals; (16) & (11) 

& (5) -> (17): seventh beaker has 2 brown and 1 green chemicals; 

(11) & (5) -> (18): fifth beaker has 0 chemicals; (17) & (12) -

> (19): seventh beaker has 3 brown chemicals; 

SCONE (Scene): 

$question$ = (1) position 1 has no person (2) position 2 has no 

person (3) position 3 has no person (4) position 4 has no person 

(5) position 5 has person in red shirt and yellow hat (6) position 

6 has no person (7) position 7 has no person (8) position 8 has 

no person (9) position 9 has no person (10) position 10 has no 

person (11) a man in a yellow shirt appears on the right of the 

man in a red shirt and yellow hat (12) a second man in a yellow 

shirt appears on the left end (13) he leaves (14) the man in the 

red shirt and yellow hat moves one space to the left (15) a man 

in a red shirt appears on his right  
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$proof$ = (11) & (6) -> (16): position 6 has person in yellow 

shirt and no hat; (1) & (12) -> (17): position 1 has person in 

yellow shirt and no hat; (17) & (13) -> (18): position 1 has no 

person; (14) & (4) & (5) -> (19): position 4 has person in red 

shirt and yellow hat; (14) & (5) -> (20): position 5 has no 

person; (20) & (15) -> (21): position 5 has person in red shirt 

and no hat; 

SCONE (Tangrams): 

$question$ = (1) position 1 has figure A (2) position 2 has 

figure D (3) position 3 has figure E (4) position 4 has figure C 

(5) position 5 has figure B (6) swap the 1st and 5th figure (7) 

swap the 1st and 3rd figure (8) swap them back (9) delete the 

5th figure (10) add it back  

 

$proof$ = (1) & (6) -> (11): position 1 has figure B; (5) & (6) 

-> (12): position 5 has figure A; (11) & (7) -> (13): position 1 

has figure E; (3) & (7) -> (14): position 3 has figure B; (13) & 

(8) -> (15): position 1 has figure B; (14) & (8) -> (16): position 

3 has figure E; (12) & (9) -> (17): position 5 has no figure; 

(17) & (10) -> (18): position 5 has figure A; 

GSM8K: 
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$question$ = (1) Adam and Tom are brothers. (2) Adam is 8 years 

old and (3) Tom is 12 years old. (4) In how many years will their 

combined age be 44 years old?  

 

$proof$ = (2) & (3) -> (5): At present, the two brothers have a 

combined age of 8 + 12 = 20 years old.; (5) -> (6): Therefore, 1 

year means an increase in the sum of their ages by 1 * 2 = 2 

years.; (4) & (5) -> (7): Adam and Tom need a total of 44 - 20 = 

24 more years to be 44 years old together.; (6) & (7) -> (8): So 

both brothers will be 44 years old together after 24 / 2 = 12 

years.; (4) & (8) -> (9): The answer is 12; 

AQUA-RAT: 

$question$ = (1) Three birds are flying at a fast rate of 900 

kilometers per hour. (2) What is their speed in miles per minute? 

(3) [1km = 0.6 miles] (4) A)32400 (5) B)6000 (6) C)600 (7) D)60000 

(8) E)10  

 

$proof$ = (0) -> (9): To calculate the equivalent of miles in a 

kilometer; (3) -> (10): 0.6 kilometers = 1 mile; (10) & (1) -> 

(11): 900 kilometers = (0.6)*900 = 540 miles; (0) -> (12): In 1 

hour there are 60 minutes; (11) & (12) & (2) -> (13): Speed in 

miles/minutes = 60 * 540 = 32400; (13) & (2) & (4) -> (14): 

Correct answer - A; (14) -> (15): The answer is A); 
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AR-LSAT: 

$question$ = (1) Four boys - (2) Fred, Juan, Marc, and Paul - 

(3) and three girls - (4) Nita, Rachel, and Trisha - (5) will be 

assigned to a row of five adjacent lockers, (6) numbered 

consecutively 1 through 5, (7) arranged along a straight wall. 

(8) The following conditions govern the assignment of lockers to 

the seven children: (9) Each locker must be assigned to either 

one or two children, (10) and each child must be assigned to 

exactly one locker. (11) Each shared locker must be assigned to 

one girl and one boy. (12) Juan must share a locker, (13) but 

Rachel cannot share a locker. (14) Nita’s locker cannot be 

adjacent to Trisha’s locker. (15) Fred must be assigned to locker 

3. (16) Which one of the following is a complete and (17) accurate 

list of the children who must be among those assigned to shared 

lockers? (18) A) Fred, Juan (19) B) Juan, Paul (20) C) Juan, 

Marc, Paul (21) D) Juan, Marc, Trisha (22) E) Juan, Nita, Trisha  

 

$proof$ = (1) & (3) & (5) -> (23): Four boys and three girls will 

be assigned to five adjacent lockers; (10) & (11) & (9) -> (24): 

Each locker can be assigned to max two children, one girl and 

one boy, and one child must be assigned to exactly one locker; 

(12) & (14) -> (25): Kids who can share lockers : Juan, Nita, 
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Trisha; (13) -> (26): Kids not sharing lockers : Rachel; (0) -> 

(27): Answer is 22; (27) -> (28): The answer is E); 

 

B.2 Textual Logical Units Extraction 

In Figure 30 we show the TLU extraction pseudo-code. This simple script is used to extract TLUs 

from the components of the questions, context and others. The algorithm shown uses Python’s 

module “re” style of regular expression and matching to determine boundaries between TLUs. The 

pattern values used are “(.)|(,)|(!)|(?)|(and)|(then)”. 

B.3 Further Annotation Details 

Annotation Instructions 

Function: EXTRACT-TEXTUAL-LOGICAL-UNITS 
Input: Text of component 𝑡𝑒𝑥𝑡. 
Parameters: Boundary patterns 𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠. 
Output: List of textual logical units 𝑡𝑙𝑢𝑠.  
01:  𝑚𝑎𝑡𝑐ℎ𝑒𝑠 ← 𝑡𝑒𝑥𝑡. 𝑟𝑒𝑔𝑒𝑥_𝑚𝑎𝑡𝑐ℎ(𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠) 
02:  𝑡𝑙𝑢𝑠 ←  ∅ 
02:  𝑙𝑎𝑠𝑡𝑃𝑜𝑠 ←  0 
03:  for  𝑚𝑎𝑡𝑐ℎ ∈ 𝑚𝑎𝑡𝑐ℎ𝑒𝑠  do 
04:  𝑡𝑙𝑢 ←  𝑡𝑒𝑥𝑡. 𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔(𝑙𝑎𝑠𝑡𝑃𝑜𝑠, 𝑚𝑎𝑡𝑐ℎ. 𝑒𝑛𝑑) 
05:  if 𝑚𝑎𝑡ℎ. 𝑡𝑒𝑥𝑡 ∈ {“, ”, “𝑎𝑛𝑑”, “𝑡ℎ𝑒𝑛”} then 
05:   if 𝑡𝑜𝑘𝑒𝑛𝑠(𝑡𝑙𝑢). 𝑠𝑖𝑧𝑒 ≥ 5  then 
05:        𝑡𝑙𝑢𝑠. 𝑝𝑢𝑠ℎ(𝑡𝑙𝑢) 

06:        𝑙𝑎𝑠𝑡𝑃𝑜𝑠 ← 𝑚𝑎𝑡𝑐ℎ. 𝑒𝑛𝑑 
07:    end if 
09:   end if 
11:  end for 
21:  return 𝑡𝑙𝑢𝑠 

 

Figure 30: textual logical units extraction algorithm. 
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All the expert annotators were given instructions with the description of the annotation task, some 

expected examples and a list of guidelines on how to properly label the data. We held multiple 

meetings to elucidate any further questions about the annotation effort. The overall annotation 

instructions are summarized below: 

• Completeness: The premises (directed edges) should contain all the information needed 

to ensure that the conclusion nodes are entailed given the premise. 

• Relevance: Edges connecting nodes should ensure the entailment is correct, and no further 

irrelevant edges should be included.  

• Purposefulness: The nodes containing the question and the answer should always be 

included in the final reasoning graph.  

• Granularity: While writing the step-by-step rationales (in the case of AR-LSAT), the 

entailments should be fine-grained, encoding a single inference or logical step.  

Annotation User Interface 

In Figure 31 we show the user interface used to annotate STREET data with an example from the 

GSM8K task. The user interface consists of a web-based form with fields containing the question, 

context, answer choice, and answer. During annotation, each form consisted of a single entailment 

step in the reasoning graph and the annotators had to select which premises were associated with 

the current entailment step. For AR-LSAT annotators were also asked to write the step rationale, 

or conclusion from the entailment step. In Figure 31 the fields on the left-hand side contain the 

TLUs from the question and context while the fields on the right-hand side contain fields to select 

the premises for the current reasoning step.  
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B.4 Evaluation Metrics  

The textual similarity function 𝜎(𝑎, 𝑏)  is a binary function that maps the text of two nodes (𝑎 and 

𝑏) to a TRUE or FALSE value. We use different textual similarity functions for each task in 

STREET. When a reasoning step contains no antecedents (for instance, when a reasoning step 

conclusion is used as a supporting fact such as “one hour has 60 minutes”, then that node might 

not have antecedents). The similarity used for each task are described below: 

SCONE: The nodes in scone follow a well-defined textual structure, therefore the node similarity 

returns TRUE if and only if 𝑎 = 𝑏. 

 

Figure 31: Annotation user interface designed to author the reasoning graphs. 
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GSM8K and AQUA-RAT: We parse the node text and extract all the mathematical values inside 

the node. For instance, “Natalia sold 48 / 2 = 24 clips in May” would be converted to the set 

{48, 2, 24}. Then the similarity function returns TRUE if the sets extracted from a and b are equal.  

ARC and AR-LSAT: Since the conclusions in the reasoning graph can be any arbitrary text use 

the BLEURT (Sellam, Das, & Parikh, 2020) as the text similarity function. BLEURT is a trained 

metric that uses the BERT language model and was shown to have better correlation to human 

judgment than standard metrics like BLEU and ROUGE. We define that BLEURT > 0.25 as the 

threshold that decides if two texts 𝑎 and 𝑏 are similar enough. 


