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Abstract

We present a model of similarity-based retrieval
which attempts to capture three psychological phe-
nomena: (1) people are extremely good at judging
similarity and analogy when given items to compare.
(2) Superficial remindings are much more frequent
than structural remindings. (3) People sometimes
experience and use purely structural analogical re-
mindings. Our model, called MAC/FAC (for “many are
called but few are chosen”) consists of two stages.
The first stage (MAC) uses a computationally cheap,
non-structural matcher to filter candidates from a
pool of memory items. That is, we redundantly en-
code structured representations as content vectors,
whose dot product yields an estimate of how well the
corresponding structural representations will match.
The second stage (FAC) uses SME to compute a true
structural match between the probe and output from
the first stage. MAC/FAC has been fully imple-
mented, and we show that it is capable of modeling
patterns of access found in psychological data.

Introduction

Similarity-based remindings range from the sublime to
the stupid. On one extreme is being reminded by oc-
taves in music of the periodic table in chemistry. On the
other extreme are times when a bicycle reminds you of
a pair of eyeglasses. Most often, remindings are some-
where in between, such as when a bicycle reminds you of
another bicycle. Our theoretical attention is inevitably
drawn to spontaneous analogy, i.e., structural similarity
unsupported by surface similarity, partly because it offers
perhaps our best entree to studying the creative process.
However, a good model must also capture the frequency
of different outcomes, and research on the psychology of
memory retrieval points inescapably to a preponderance of
the latter two types of similarity — (mundane) literal simi-
larity, based on both structural and superficial commonal-
ities — and (dumb) superficial similarity, based on surface
commonalities. Rare events are hard to model. A major
challenge for research on similarity-based reminding is to
devise a model that will produce chiefly literal-similarity
and superficial remindings, but still produce occasional

analogical remindings.

This paper presents MAC/FAC, a model of similarity-
based reminding which attempts to capture these phenom-
ena. We first review psychological evidence on retrieval
and mapping of similarity comparisons and describe the
design of MAC/FAC. We then describe computational ex-
periements which simulate the patterns of access found in
a psychological experiment, and close by describing fur-
ther avenues to explore.

Framework

Similarity-based transfer can be decomposed into subpro-
cesses. Given that a person has some current target situ-
ation in working memory, transfer from prior knowledge
requires at least (1) accessing a similar (base) situation
in long-term memory, (2) creating a mapping from the
base to the target, and (3) evaluating the mapping. In
the structure-mapping framework (Gentner, 1983, 1988),
mapping is the process by which two representations
present in working memory are aligned and further in-
ferences imported. The process of computing a mapping
from one situation to another is governed by the con-
straints of structural consistency and one-to-one mapping.

This account differs from most psychological treatments
by defining similarity in terms of correspondences between
structured representations. Matches can be distinguished
according to the kinds of commonalities present. An anal-
ogy is a match based on a common system of relations,
especially involving higher-order relations.! A literal stm-
slarity match includes both common relational structure
and common object descriptions. Surface matches are
based primarily on common object descriptions along with
some shared first-order relations.

There is considerable evidence that people are good at
mapping. People can readily align two situations, pre-
serving structurally important commonalties, making the
appropriate lower-order substitutions, and mapping addi-
tional predicates into the target as candidate inferences.
For example, Clement & Gentner (in press) showed peo-
ple analogies and asked which of two lower-order relations,

!We define the order of an item in a representation as fol-
lows: Objects and constants are order 0. The order of a state-
ment is one plus the maximum of the order of its arguments.



both shared by base and target, was most important to
the match. Subjects chose relations that were governed
by shared higher-order relations. In a second study, sub-
jects showed the same sensitivity to connectivity and sys-
tematicity in choosing which predicates to map as can-
didate inferences from base to target. Further, people
rate metaphors as more apt when they are based on rela-
tional commonalities than when they are based on com-
mon object-descriptions (Gentner & Clement, 1988) and
they rate pairs of stories as more sound when they share
higher-order relational structure than when they share
object-descriptions (Gentner & Landers, 1985; Ratter-
mann & Gentner, 1987). We also find effects of relational
structure on judgments of similarity (Goldstone, Medin &
Gentner, in press; Rattermann & Gentner, 1987) and on
the way in which people align perceptually similar pictures
(Markman & Gentner, 1990).

An adequate model of human similarity and analogy
must capture this sensitivity to structural commonality,
by involving structural representations and processes that
align them. This would seem to require abandoning some
highly influential models of similarity: e.g., modeling sim-
ilarity as the intersection of independent feature sets or
as the dot product of feature vectors. However, we show
below that a variant of these nonstructural models can be
useful in describing some aspects of access.

Simalarity-based Access from Long-term Memory: There
is psychological evidence that access to long-term memory
relies more on surface commonalities and less on struc-
tural commonalities than does mapping. For example,
people often fail to access potentially useful analogs (Gick
and Holyoak, 1980). Ross (1984, 1987) further showed
that, although people in a problem-solving task are often
reminded of prior problems, these remindings are often
based on surface similarity rather than on structural sim-
ilarities between the solution principles.

In our research we used the “Karla the hawk” stories
to investigate the determinants of similarity-based access.
We put people in the position of trying to access anal-
ogy and similarity matches from long-term memory and
asked which kinds of comparisons were easiest to retrieve
(Gentner & Landers, 1985; Rattermann & Gentner, 1987).
Subjects first read a large set of stories. Two weeks later,
they were given new stories which matched the original
ones in various ways. Some were true analogs of the first
stories; others were surface matches, sharing lower-order
events and object descriptors but not higher-order rela-
tional structure. Subjects were asked to write out any
prior stories recalled while reading the new stories. After-
wards, they rated all the pairs for soundness: i.e., how well
inferences could be carried from one story to the other.

The results showed that, although subjects rated the
analogies as much more sound than the surface matches,
they were more likely to retrieve surface matches. Surface
similarity was the best predictor of memory access, while
similarity in relational structure was the best predictor
of subjective soundness and also of subjective similarity.
This dissociation held not only between subjects, but also
within subjects. That is, subjects given the soundness

task immediately after the cued retrieval task judged that
the very matches that had come to their minds most easily
(the mere-appearance matches) were highly unsound (i.e.,
unlikely to be useful in inference). This suggests that
analogical access may be based on qualitatively distinct
processes from analogical inferencing?.

Comparison to Current Approaches. Some models of
similarity assume smart processes operating over richly
articulated representations. Most case-based reasoning
models have this character (Schank, 1982; Kolodner,
1988). These models are rich enough to capture processes
like case alignment and adaptation. But their models of
memory access involve intelligent indexing of structured
representations, which can predict superhuman access be-
havior; that is, that people should typically access the
best structural match, even if it lacks surface similarity
with the current situation. Further, models that assume
that elaborate structural mapping processes are used to
compare the current situation with stored situations have
the disadvantage of being hard to scale up to large data
bases. The reverse set of advantages and disadvantages
holds for approaches that model similarity as the result
of a dot product (or some other operation) over feature
vectors, as is commonly done in mathematical models of
human memory (e.g., Medin & Schaffer, 1978) and in con-
nectionist models of learning (Smolensky, 1988). These
models, with their nonstructured representations and rel-
atively simple processes, do not allow for the structural
precision of people’s similarity judgments and inferences.
However, they provide an appealing model of access since:
(1) these computations are simple enough to make it fea-
sible to compute many such matches and choose the best
(the scaling criterion); and (2) being simple, these mod-
els will not always produce the best match (the fallibility
criterion). While this might be a disadvantage in a norma-
tive model, it could be an advantage in modeling human
similarity-based access, provided that the best match is
sometimes produced. Next we propose an approach that
we think may offer the best of both kinds of models.

The MAC/FAC model

The complexity of the phenomena in similarity-based ac-
cess suggests a two-stage model. Consider the computa-
tional constraints on access. The large number of cases in
memory and the speed of human access suggests a compu-
tationally cheap process. But the requirement of judging
soundness, essential to establishing whether a match can
yield useful results, suggests an expensive match process.
A common solution is to use a two-stage process, where
a computationally cheap filter is used to pick out a sub-
set of likely candidates for more expensive processing (c.f.
Bareiss & King, 1989). MAC/FAC uses this strategy. The

2The finding is not that higher-order relations do not con-
tribute to retrieval. Adding higher-order relations led to non-
significantly more retrieval in two studies and to a small but
significant benefit in the third. The point is simply that higher-
order commonalities have a much bigger effect on mapping
once the two analogs are present than they do on similarity-
based retrieval.



puzzling phenomena noted previously, we claim, can be
understood in terms of the interactions of its two stages.

Figure 1 illustrates the components of the MAC/FAC
model. The inputs are a pool of memory items and a
probe, 1.e., a description for which a match is to be found.
The output is a memory description and a comparison of
this description with the probe.

There is little consensus about the global structure of
long-term memory. Consequently, we assume only that at
some stage in access there is a pool of descriptions from
which we must select one (or a few) which is most similar
to a probe. We are uncommitted as to the size of this pool.
It could be the whole of long-term memory, or a subset of
it if one postulates mechanisms for restricting the scope
of search, such as spreading activation or indexing®.

Both stages consist of a matcher, which is applied to ev-
ery input description, and a selector, which uses the evalu-
ation of the matcher to select which comparisons are pro-
duced as the output of that stage. Conceptually, matchers
are applied in parallel within each stage. Since the role
of the MAC stage is to produce plausible candidates for the
FAC stage, we discuss FAC first.

The FAC stage

The FAC matcher is simply the literal similarity compu-
tation defined by structure-mapping. Its output is a set
of correspondences between the structural descriptions, a
numerical structural evaluation of the overall quality of
the match, and a set of candidate inferences represent-
ing the surmises about the probe sanctioned by the com-
parison. In subsequent processing, the structural evalu-
ation provides one source of information about how se-
riously to take the match, and the candidate inferences
provide potential new knowledge about the probe which
must be tested and evaluated by other means. We imple-
ment this computation using SME, the Structure-Mapping
Engine (Falkenhainer, Forbus & Gentner, 1989).

We use literal similarity rather than analogy in order
to get the high observed frequency of surface remindings,
which would mostly be rejected if FAC were strictly an
analogy matcher. We believe this choice is ecologically
sound because mundane matches are often the best guides
to action. Riding a new bicycle, for instance, is often just
like riding other bicycles (Gentner, 1989; Medin & Ortony,
1989). Associating actions with particular complex de-
scriptions makes good computational sense because such
assoclations can often be made before one can delinate
exactly which aspects of a situation are relevant.

Currently FAC selects as output the best match, based
on its structural evalution, and any others within 10% of
it. In pilot studies we have experimented with various cri-
teria, such as broadening the percentage, selecting a fixed

5In current Al systems indexing often yields a unique de-
scription; we view this property as unlikely to scale. For ex-
ample, there could be dozens or even hundreds of experiences
which are similar enough to be put in the same index entry, yet
different enough to make it worthwhile to save them as distinct
memories.

number, and so forth. We settled on the 10% criteria be-
cause it generally returns a single result, only producing
multiple results when there are two extremely close can-
didates. Depending on the assumptions one makes about
subsequent processing, a modification which places a strict
upper bound on the number produced (say, two) may also
be appropriate.

Sometimes a probe reminds us of nothing. There are
several ways this can arise in the MAC/FAC model. First,
the FAC stage may not receive any candidates from the
MAC stage (see below). Second, FAC might reject all can-
didates provided. This shows up by no match hypothe-
ses being created; this has occurred, albeit rarely. Third,
there could be a threshold on structural evaluations, so
that matches below a certain quality simply were not con-
sidered. We view this as psychologically plausible, but do
not include such thresholds currently because we have not
yet found good constraints on them.

The MAC stage

Even though the FAC stage is reasonably efficient?, it is too
expensive to consider running it exhaustively on realistic-
sized memories as the “inner loop” in an analogical pro-
cessing system. The MAC stage uses an extremely cheap
matcher to estimate how well FAC would rate comparisons,
to filter candidates down to a manageable number.

One estimate is the number of match hypotheses that
FAC would generate in comparing a probe to a memory
item, the numerosity of the comparison. If very few lo-
cal matches are hypothesized, then clearly the best global
interpretation cannot be large. On the other hand, nu-
merosity is not a perfect estimator, since having a large
number of local matches does not guarentee a large global
interpretation. This is true because (1) match hypotheses
can end up being ungrounded because some of their argu-
ments cannot be placed into correspondence (and are thus
ignored), and (2) the mutual incompatibilities introduced
by the 1:1 constraint may prevent a single large interpre-
tation from forming, yielding instead several small ones.

The most straightforward way to compute numerosity
is to actually generate and count the match hypotheses.
This is what our original version of MAC/FAC did (Gentner,
1989). It also partly what ARCS (Thagard et al 1990) does.
ARCS builds much of the network which ACME would build
between target and base but between the probe and every
item in memory. We view these solutions as psychologi-
cally and computationally implausible. Even with parallel
and/or neural hardware, it is hard to see how the expense
of generating match hypothesis networks between a probe
and everything in a large pool of memory can provide re-
alistic response times. Instead, we turn to a novel means
of estimating numerosity.

Let P be the set of functors (i.e., predicates, functions,
and connectives) used in the descriptions that constitute

4O(nz) for match hypothesis generation, where n is the

number of items in base or target, and roughly O(log(n?))
to generate a global interpretation, using the greedy merge
algorithm of Forbus & Oblinger (1990).



Figure 1: The MAC/FAC model
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memory items and probes. We define the content vector
of a structured description as follows. A content vector
is an n-tuple of numbers, each component corresponding
to a particular element of P. Given a description D, the
value of each component of its content vector indicates
how many times the corresponding element of P occurs
in D. Components corresponding to elements of P which
do not appear in statements of D have the value zero.
One simple algorithm for computing content vectors is to
simply to count the number of occurrences of each functor
in the description. Thus if there were four occurrences of
IMPLIES in a story, the value for the IMPLIES component
of its content vector would be four®. Thus content vectors
are easy to compute from a structured representation and
can be stored economically.

The MAC matcher works as follows: Each memory item
has a content vector stored with it. When a probe enters,
its content vector is computed. A score is computed for
each item in the memory pool by taking the dot prod-
uct of its content vector with the probe’s content vector.
These scores are fed to the MAC selector, which produces
as output the best match and everything within 10% of it,
as in the FAC stage. (We plan to add a threshold so that
if every match is too low MAC returns nothing.)

Clearly, measuring similarity using content vectors has
critical limitations, since the actual relational structure is
not taken into account. But the dot product can be used
to estimate relative similarity, since it is a good approx-
imation to numerosity. (Essentially, the product of each
corresponding component is an overestimate of the num-
ber of match hypotheses that would be created between
functors of that type.) Content vectors are insufficient be-

5We have also experimented with normalized content vec-
tors, to minimize the effects of size discrepancies. So far we
have seen no significant empirical difference between these al-
gorithms, but we suspect that normalization will be necessary
when adding retrieval thresholds.
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cause they do not provide the correspondences and candi-
date inferences which provide the power of analogy. But
by feeding MAC’s results to the structural matcher of the
FAC stage, we obtain the required inferential power.

This MAC matcher has the properties we desire. [t is
cheap, and could be implemented using a variety of mas-
sively parallel computation schemes, including connec-
tionist. Next, we demonstrate that MAC/FAC provides a
good approximation of psychological data.

Computational Experiments

We have successfully tested MAC/FAC on a variety of de-
scriptions, including simple metaphors and physics sce-
narios. Here we compare the performance of MAC/FAC
with that of human subjects, using the “Karla the Hawk”
stories. For these studies, we wrote sets of stories con-
sisting of base stories plus four variants, created by
systematically varying the kind of commonalities. All
stories share first-order relations, but vary as follows:

Common Common
h.o. relations  object attributes
LS: Yes Yes
SF: No Yes
AN: Yes No
FOR: No No

As discussed above, subjects rated analogy (AN) and
literal similarity (LS) as more sound than surface (SF)
and FOR matches (matches based only on common first-
order relations, primarily events). Previously, we tested
SME running in analogy mode on SF and AN matches and
found that it correctly reflected these human soundness
rankings (Forbus & Gentner, 1989; Skorstad et al, 1987).
Here we seek to capture human retrieval patterns: Does
MAC/FAC duplicate the human propensity for retrieving SF
and LS matches rather than AN and FOR matches. The
idea is to give MAC/FAC a memory set of stories, then probe
with various new stories. To count as a retrieval, a story
must make it through both MAC and FAC.



Table 1: Proportion of correct retrievals given different
kinds of probes

1. Memory contains 9 base stories and 9 FOR matches; probes
were the 9 LS, 9 SF, and 9 AN stories.

2. The rows show proportion of times the correct base story
was retrieved for different probe types.

Probes MAC FAC

LS 1.0 1.0
SF 0.89 0.89
AN 0.67 0.56

In the psychological experiment, the human subjects
had a memory set consisting of 32 stories, of which 20
were base stories and 12 were distractors. They were later
presented with 20 probe stories which matched the base
stories as follows: 5 LS matches, 5 AN matches, 5 SF
matches and 5 FOR matches and told to write down any
prior stories of which they were reminded. The propor-
tions of remindings for different match types were .56 for
LS, .53 for SF, .12 for AN and .09 for FOR. Across three
variations of this study, this retrievability order has been
stable: LS > SF > AN > FOR.

For the computational experiments, we encoded predi-

cate calculus representations for 9 of the 20 story sets (45
stories). These stories are used in all three experiments
described below.
Simulation Ezpertment 1. In our first study, we put the
9 base stories in memory, along with the 9 FOR stories
which served as distractors. We then used each of the
variants — LS, SF, and AN — as probes. This roughly
resembles the original task, but MAC/FAC’s job is easier
because (1) it has only 18 stories in memory, while subjects
had 32, in addition to their vast background knowledge;
(2) subjects were tested after a week’s delay, which may
have caused some memory deterioration.

Table 1 shows the proportion of times the base story

made it through MAC and through FAC. MAC/FAC’s perfor-
mance is much better than that of the human subjects,
perhaps partly because of the differences noted above.
However, its results show the same ordering as those of
human subjects: LS > SF > AN.
Simulation Ezperiment 2. To give MAC/FAC a stronger
challenge, we put the four variants of each base story into
memory. This made a larger memory set (36 stories) and
also one with many competing similar choices. Each base
story in turn was used as a probe. This is almost the
reverse of the task subjects faced, and is more difficult.

Table 2 shows the mean number of matches of different
similarity types that succeed in getting through MAC and
through FAC. There are several interesting points here.
First, the retrieval results (i.e., the number that make
it through both stages) ordinally match the results for
human subjects: LS > SF > AN > FOR. This degree of
fit is encouraging, given the difference in task. Second,
as expected, MAC produces some matches that are rejected
by FAC. This number depends partly on the criteria for
the two stages. Here, with MAC and FAC both set at 10%,

Table 2: Mean numbers of different match types retrieved
when base stories used as probes

1. Memory contains 36 stories (LS, SF, AN, and FOR for 9
story sets); the 9 base stories used as probes

2. Other = any retrieval from a story set different from the one
to which the base belongs.

Retrievals MAC  FAC

LS 0.78 0.78
SF 0.67 0.44
AN 0.33 0.11
FOR 0.22 0.0

Other 1.33 0.22

Table 3: Mean numbers of different match types retrieved

with base stories as probes

1. Memory contains 27 stories (9 SF, 9 AN, 9 FOR); 9 base
stories used as probes.

Retrievals MAC  FAC

SF 0.89 0.78
AN 0.56 0.45
FOR 0.22 0.11
Other 1.11 0.11

the mean number of memory items produced by MAC is
3.3, and the mean number accepted by FAC is 1.5. Third,
as expected, FAC succeeds in acting as a structural filter
on the MAC matches. It accepts all of the LS matches
MAC proposes and some of the partial matches (i.e., SF
and AN), and while rejecting most of the inappropriate
matches (i.e., FOR and matches with stories from other
sets).

Simulation Ezperiment 8. In the prior simulation, LS
matches were the resounding winner. While this is re-
assuring, it is also interesting to know which matches
are retrieved when there are no perfect overall matches.
Therefore we removed the LS variants from memory and
repeated the second simulation experiment, again probing
with the base stories. As Table 3 shows, SF matches are
now the clear winners in both the MAC and FAC stages.
Again, the ordinal results match well with those of sub-
jects: SF > AN > FOR.

Summary of Stmulation Ezperiments. The results are
encouraging. First, MAC/FAC’s ordinal results match those
of human subjects. In contrast, the closest competing
model, Thagard et al’s (1991) ARCS model of similarity-
based retrieval, when given the Karla the hawk story in
memory (along with 100 fables as distractors) and the
four similarity variants as probes, produced two viola-
tions in its order of asymptotic activation. Its asymptotic
activations were LS (.67), FOR (-.11), SF (-.17), AN (-
.27). Thus MAC/FAC explains the data better than ARCS.
This is especially interesting because Thagard et al argue
that a complex localist connectionist network which in-
tegrates semantic, structural, and pragmatic constraints
is required to model similarity-based reminding. While
such models are intriguing, MAC/FAC shows that a simpler



model can provide a better account of the data.

Finally, and most importantly, MAC/FAC’s overall pat-
tern of behavior captures the motivating phenomena: (1)
it produces a large number of LS matches, thus satis-
fying the primacy of the mundane criterion; (2) it pro-
duces a fairly large number of SF matches, thus satisfying
the fallibility criterion; (3) it produces a small number of
analogical matches, thus satisfying the ezistence of rare
events criterion; and finally, (4) its algorithms are simple
enough to apply over large-scale memories, thus satisfying
the scalabilsty criterion.

Discussion

We have presented MAC/FAC, a two-stage similarity-based
model of access. The MAC stage uses content vectors, a
novel summary of structured representations, to provide
an inexpensive “wide net” search of memory, whose re-
sults are pruned by the more expensive literal similarity
matcher of the FAC stage to arrive at useful, structurally
sound matches. We demonstrated that MAC/FAC can sim-
ulate the patterns of access exhibited by human subjects.
We believe that the psychological issues MAC/FAC raises
are worth further study. MAC/FAC is reasonably efficient,
even on serial machines, so we believe it could be a useful
component in performance-oriented Al systems also.

In addition to the psychological issues raised earlier,
there are several computational studies in preparation us-
ing MAC/FAC. These include:

Ezperiments with larger knowledge bases: A crucial ques-
tion for any access model is how well it scales to sub-
stantially larger memories. Two avenues we are exploring
are: (1) using the CYC knowledge base as a source of
descriptions and (2) using MAC/FAC as a tool on the ILS
Story Archive Project to aid in spotting potentially rele-
vant links between stories.

Larger-scale process models: Several psychological ques-
tions about access cannot be studied without embedding
MAC/FAC in a more comprehensive model of analogical
processing. For example, there is ample evidence that
subjects can “tune” their similarity judgements when the
items being compared are both already in working mem-
ory. While it seems clear that MAC is impenetrable, it
is hard to tell whether or not FAC is tunable or whether
a separate similarity engine is required. Order effects in
analogical problem solving (Keane, in press) suggest the
latter. How can the access system be used to incremen-
tally construct abstractions and indexing information to
help structure long-term memory (c.f. Skorstad, Gentner,
and Medin 1988)7
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