
REPRESENTING PHYSICAL AND DESIGN KNOWLEDGE IN INNOVATIVE DESIGN

BY

NIKITAS MARINOS SGOUROS

Diploma, National Technical University of Athens, 1988
M .S ., University of Edinburgh, 1990

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate School of
Northwestern University, 1993

Evanston, Illinois

©Copyright by Nikitas Marinos Sgouros 1993

All Rights Reserved

ii

ABSTRACT

Representing Physical and Design Knowledge in Innovative Design

Nikitas Marinos Sgouros

The ability to design is one of the hallmarks of intelligent behavior, since it allows

an agent to shape its environment according to its needs . Therefore developing

computational models of design should be one of the primary goals for a discipline

such as Artificial Intelligence that aims to create intelligent artifacts.

This thesis describes DIAS, a computational framework for innovative engineer-

ing design . This framework provides ways for representing the physical and design

knowledge in a domain, along with methods for allowing these different types of

knowledge to interact during the design process . This model has been instantiated

in OUZO, a program that designs separation systems in chemical engineering.

iii

To my family

iv

ACKNOWLEDGEMENTS

I would like to thank:

• My advisor, Kenneth Forbus, for all the support and direction during this
research.

• The members of my committee, Larry Birnbaum, Gregg Collins and Chris
Riesbeck, for serving on my final committee and providing helpful comments.

• The NASA Johnson Space Center and the NASA Langley Research Center
for supporting this research.

• All of the members of the Qualitative Reasoning Group at Northwestern
and especially Dennis Decoste, John Everett, Keith Law, Chris Lopez and
Yusuf Pisan for all the discussions and the technical support through all
these years.

• All of my friends during this time and especially Joyce Montigny, Costas
Sakellariou, Mike Sang and Chris Wisdo.

• My mother, Pinelopi, and my sister, Marina, for their love and support
throughout the years .

v

TABLE OF CONTENTS

1 Introduction	 1

1 .1 The Design Problem	 2

1 .2 What is this thesis all about?	 2

1 .3 Background and Motivation	 4

1 .3 .1 Design from Physical Principles	 4

1 .3 .2 Qualitative Reasoning	 6

1 .4 Summary of Results	 9

1 .5 Reader's Guide	 9

2 A Computational Account of Innovative Design	 11

2 .1 The Main Ideas	 12

2 .2 Modeling Engineering Design	 12

2 .3 Physical Knowledge	 14

2.3 .1 Representations	 14

2.3 .2 Reasoning Methods	 15

2 .4 Design Knowledge	 20

2.4 .1 Heuristics	 20

2.4 .2 Representing Heuristics	 23

2.4 .3 Strategies	 25

vi

2 .4 .4 Configuration Synthesis Rules	 26

2 .5 Controlling Design	 27

2 .5.1 Qualitatively analyze the current design description 	 27

2 .5.2 Construct and solve the numerical models	 27

2 .5.3 Apply the design strategies and the configuration synthesis

rules	 27

2 .6 Where does DIAS apply?	 29

2 .7 Advantages of this approach	 31

2 .7.1 DIAS grounds design knowledge in physical knowledge 	 31

2 .7.2 DIAS automates the interaction between physical and design

knowledge	 31

2 .7.3 DIAS supports hierarchies of decisions in innovative design 	 31

2 .7.4 DIAS supports different design methods	 32

2 .8 Relation to other work	 32

2 .8.1 Computer-Aided Design (CAD) Systems 	 32

2 .8.2 Expert Systems for Design	 34

2 .8.3 Case-Based Design Systems 	 36

2 .8.4 Physical Principles Design Systems	 37

3 The Design of Separation Systems in Chemical Engineering

	

39

3 .1 Introduction	 40

3 .2 Distillation	 41

3 .3 Extractive Distillation	 43

3 .4 Separation Properties of Substances 	 45

3 .5 Design of Separation Sequences in Chemical Engineering	 45

3 .5.1 Overview of Process Synthesis 	 45

vii

3.5 .2 The Binary Distillation Design Problem	 46

3.5 .3 Separation System Design for Multicomponent Mixtures

	

47

3.5 .4 Design Methods	 48

3.5 .5 Evolutionary Methods	 48

3.5 .6 A Commonsense Interpretation of the General Separation

Heuristics	 49

3.5 .7 The Cost of Adaptation in Evolutionary Strategies	 52

4 Representing Physical Knowledge in OUZO	 56

4 .1 Physical Knowledge and Physical Models	 57

4 .2 Qualitative Models	 58

4.2 .1 Qualitative Analysis	 59

4 .3 Binary Distillation Columns	 59

4.3 .1 Overview	 59

4.3 .2 The Dynamic Behavior of Binary Distillation Columns	 60

4.3 .3 Steady-State Model of an Ideal Binary Distillation Column

	

81

4 .4 Separation Systems for Multicomponent Mixtures 	 82

4.4 .1 Overview	 82

4.4 .2 Multicomponent Distillation	 89

4 .5 Numerical models	 110

4 .6 Model Testing	 114

4 .7 Discussion	 115

5 Representing Design Knowledge in OUZO	 117

5 .1 Introduction	 118

5.1 .1 Heuristics	 118

5.1 .2 The Interpreter Primitives 	 119

5 .1 .3 The Heuristic Library	 122

5 .1 .4 Strategies	 145

5 .1 .5 Configuration Synthesis Rules 	 151

5 .2 Controlling OUZO	 154

5 .3 Discussion	 156

6 Examples	 158

6 .1 Overview	 159

6 .2 The Binary Distillation Design Problem 	 159

6.2.1 The Design Specifications	 159

6.2.2 The Program Trace	 160

6.2.3 Statistics	 163

6 .3 The C6 Separation Synthesis Problem	 164

6.3.1 The Nath & Motard Strategy Trace	 166

6.3.2 The Seader & Westerberg Strategy Trace	 168

6.3.3 Results	 170

6 .4 The n-Butylene Purification Problem	 171

6.4.1 The Seader & Westerberg Trace	 171

6.4.2 The Nath & Motard Strategy Trace	 174

6.4.3 Results	 176

6 .5 Discussion	 176

7 Conclusions	 188

7 .1 Contributions	 189

7 .2 Future Work	 189

7.2.1 Generate explanations during the design process 	 189

7.2.2 Automate search for better design strategies 	 190

ix

7.2 .3 Use more sophisticated model formulation techniques 	 190

7.2 .4 Extend OUZO to other design domains	 190

APPENDIX	 192

A Qualitative Process Theory : An Overview	 192

A .1 An example	 194

B Numerical Models for Multicomponent Columns	 195

B.1 Computing Relative Volatilities 	 196

B.2 Generating Cost Estimates	 200

C Configuration Synthesis Rules in OUZO	 207

C .1 Overview	 208

D Creating Representations for Heuristics in OUZO	 222

BIBLIOGRAPHY	 225

x

LIST OF FIGURES

1 .1 Problem specification and possible design for the n-Butylene purifi-

cation problem. Columns with an asterisk (*) correspond to extrac-

tive distillation units. The rest are ordinary distillation columns	 5

1 .2 The architecture of DIAS	 7

2 .1 The engineering design process 	 13

2 .2 Qualitative analysis flowchart	 16

2 .3 Numerical Model Construction flowchart	 17

2 .4 Numerical Equation Solving flowchart 	 19

2 .5 Perform least tight separation first . The actual heuristic in OUZO

and its interpretation . The terms preceded with a `?' correspond

to variables	 22

2 .6 An example of a design strategy description 	 26

2 .7 Example of a configuration synthesis rule in OUZO	 26

2 .8 The controller algorithm in DIAS	 28

2 .9 Typical computer-aided design environment	 33

2 .10 Typical expert system for design 	 35

3 .1 A typical distillation column	 42

xi

3 .2 Extractive distillation unit for the separation of isobutane from 1-

butene using furfural as the mass separating agent	 44

3 .3 The difference in the number of alternatives in grassroots and retrofit

design	 54

4 .1 Predicates refering to quantities in the distillation model	 60

4 .2 The objects in the binary distllation model 	 61

4 .3 Views associated with objects in the binary distillation model 	 63

4 .4 View and perspective associated with the negligible vapor holdup

assumption	 65

4 .5 Views associated with the equilibrium stages and constant molal

overflow assumptions	 66

4 .6 View and perspective associated with the constant relative volatility

assumption	 67

4 .7 View and perspective associated with gas flow 	 69

4 .8 The gas flow process	 70

4 .9 View and perspective associated with liquid flow 	 71

4 .10 The liquid flow process 	 72

4 .11 Model fragments that decribe the physical activity between two

succesive stages in a column	 74

4 .12 Views associated with the vaporization process in the binary distil-

lation model	 75

4 .13 The vaporization process in the binary distillation model 	 76

4 .14 View and perspective associated with the condensation process in

the binary distillation model	 77

4 .15 The condensation process in the binary distillation model	 78

4 .16 Feed and product flow processes for the binary distillation model	 80

xii

4 .17 Enforce the steady-state assumption 	 82

4 .18 A set of relevant features for binary distillation design	 83

4 .19 The relations between the feed and product compositions under a

steady-state asssumption	 84

4 .20 The relation between incoming and outgoing gas and liquid flow

rates between successive stages in a column under steady-state con-

ditions	 85

4 .21 The relation between incoming and outgoing gas and liquid flow

rates under steady-state conditions in a total condenser . Similar

views describe these relations in the case of a partial condenser and

a partial or total reboiler 	 86

4 .22 Defining the objects in the multicomponent distillation model 87

4 .23 Introducing substance properties that depend on pressure or tem-

perature	 90

4 .24 Introducing the quantities for computing equilibrium ratios 	 91

4 .25 Introducing separation properties for each substance	 92

4 .26 Introducing general separation system properties	 94

4 .27 Introducing the properties for the input mixture to the first column

of a separation system	 95

4 .28 Determining the distillate product components for an ordinary dis-

tillation column	 96

4 .29 Determining the bottom product components for an ordinary dis-

tillation column	 97

4 .30 Describing the distillate and bottom flow rates for the keys 	 99

xiii

4 .31 Determining the distillate product components in the extractive

distillation case . The ?p-s variable stands for the polar solvent

used in extractive distillation 	 100

4 .32 Determining the bottom product components in the extractive dis-

tillation case	 101

4 .33 Determining the key flow rates in the extractive distillation case .

	

102

4 .34 Computing the unobtained column products for distillation	 103

4 .35 Computing the unobtained products for extractive distillation . 103

4 .36 Introducing ordinary distillation features at reference conditions . . 104

4 .37 Introducing extractive distillation features at reference conditions . 105

4 .38 Introducing ordinary distillation features in actual conditions . . 107

4 .39 Introducing extractive distillation features in actual conditions . . . 108

4 .40 Calculating the relative volatility for two possible keys in the refer-

ence conditions specified by the design system 	 111

4 .41 Estimating the number of stages in a binary column 	 113

5 .1 Typical heuristic form. This particular heuristic favors ordinary

over extractive distillation for any column	 118

5 .2 Feed the ordinary distillation alternatives in the heuristic analysis	 122

5 .3 Determine the separation for the current column 	 124

5 .4 The heuristic rule that favors the smallest production set 	 125

5 .5 Avoid extreme operating conditions in the column	 126

5 .6 Disregard separations with very small relative volatility between

the keys. The rules presented correspond to reference conditions

for the column. There is an analogous set of rules for the actual

operating conditions for the column	 127

xiv

5 .7 The forms in the figure combine representations for three heuristics:

(i) Disregard separations with small relative volatility between the

keys (ii) Perform least-tight separation first and (iii) Save the most

difficult separation for last 	 128

5 .8 Two heuristic rules are represented by the form in the figure : (i)

Favor distillation (ii) Avoid separations using a mass separating

agent (MSA)	 129

5 .9 Perform least tight separation first . Usually a good reason for re-

jecting a simple distillation process in the second heuristic rule is the

activation of evolutionary heuristics that challenge the separations

proposed by this heuristic 	 130

5 .10 A separation method using a MSA cannot be used to isolate another

MSA	 131

5 .11 Remove a MSA from one of the products in another, subsequent

separation process . A good reason for rejecting the separation pro-

posed by the second rule is the activation of evolutionary heuristics

that challenge this rule	 132

5 .12 Set split fractions of the key components to prespecified values	 133

5 .13 Remove components one by one as overhead products 	 133

5 .14 Favor ambient operating pressure	 134

5 .15 Separate the most plentiful component first 	 135

5 .16 Challenge Heuristic 11	 136

5 .17 Examine the neighboring structures if the values of the approxima-

tions used to describe their difficulty are close to each other .

	

137

5 .18 Challenge Heuristic 15	 139

5 .19 Examine neighbors to decide if the MSA removal should be delayed . 140

xv

5 .20 Challenge Heuristic 10 	 141

5 .21 Create all the possible interchanges	 142

5 .22 Reject the interchanges that rearrange extractive distillation units	 143

5 .23 Prefer interchanges that do not constitute almost equivalent choices

using the Perform-Least-Tight-Separation-First heuristic	 143

5 .24 Schedule alternatives in the Seader & Westerberg method 	 144

5 .25 Check for consistent numerical values in binary distillation design . 145

5 .26 Determine the location of the feed stage in binary distillation 146

5 .27 Compare the design specifications with the results of the analysis

phase	 147

5 .28 Update inaccurate estimates	 148

5 .29 Modify numerical estimates	 149

5 .30 Typical strategy form and its interpretation . This particular form

represents the evolutionary rules for the Nath & Motard design

strategy	 150

5 .31 The part of the Nath & Motard strategy that develops the initial

design flowsheet	 152

5 .32 The part of the Seader & Westerberg strategy that develops the

initial design flowsheet	 152

5 .33 The part of the Seader & Westerberg strategy that controls the

application of the evolutionary heuristics 	 153

5 .34 The design strategy for the binary distillation design problem	 153

5 .35 The controller algorithm in OUZO	 155

6 .1 The qualitative description for the binary distillation problem . . . 161

6 .2 Numerical specifications for the binary distillation design problem . 162

xvi

6 .3 A 12-stage binary distillation column with a partial condenser . The

feed enters the column at stage 6	 177

6 .4 The qualitative description for the C 6 separation synthesis problem . 178

6 .5 The numerical data for the C 6 separation synthesis problem .

	

. 179

6 .6 The flowsheets generated by the Nath & Motard method for the

C6 separation problem . The columns with an asterisk (*) indicate

extractive distillation units 	 180

6 .7 The flowsheets generated by the Seader & Westerberg method for

the C6 separation problem . The columns with an asterisk (*) indi-

cate extractive distillation units 	 181

6 .8 The qualitative description for the n-Butylene purification problem . 182

6 .9 The numerical data for the n-Butylene purification problem 183

6 .10 The flowsheets generated by the Seader & Westerberg method for

the n-Butylene purification problem . The columns with an asterisk

(*) indicate extractive distillation units	 185

6 .11 The first two flowsheets generated by the Nath & Notard method for

the n-Butylene purification problem . The columns with an asterisk

(*) indicate extractive distillation units	 186

6 .12 The last two flowsheets generated by the Nath & Notard method for

the n-Butylene purification problem . The columns with an asterisk

(*) indicate extractive distillation units	 187

A .1 The input to a separation system for multicomponent mixtures . A

term preceeded with a question mark (e .g. ?system) is a variable

which is instantiated as part of the model construction process . . . 194

xvii

B.1 Computing the vapor pressures and the equilibrium ratios of the

substances in a multicomponent mixture for the ordinary distilla-

tion case	 197

B.2 Computing the relative volatilities of the substances in a multicom-

ponent mixture for the ordinary distillation case	 198

B.3 Computing infinite activity coefficients and selectivities for the ex-

tractive distillation case . The parameters for which we have sup-

plied no equations in this figure (e .g. Energy-of-Interaction, NonPolar-

Solubility, etc) are computed directly from the physical properties

table	 199

B.4 Computing the relative volatilities of the substances in a multicom-

ponent mixture for the extractive distillation case 	 200

B.5 Estimating the Phi parameter for ordinary distillation and a ternary

mixture . The program uses similar equations for quadratic, quintic

and hexadic mixtures as well as for the extractive distillation case . 203

B.6 Estimating the minimum reflux ratio for a given separation using

the Underwood method for the ordinary distillation case 	 204

B.7 Estimating the required diameter for a column that achieve a given

separation for the ordinary distillation case 	 205

B.8 Computing the height and the final cost estimate for the current

column in the ordinary distillation case 	 206

C .1 Assert the feed flow rates for a separation system that feeds from

the distillate products of the current column . There is a similar rule

for the bottom products for the current column . A pair of similar

rules are also used for the distillate and bottom products for the

extractive distillation case	 208

xviii

C .2 Insert physical properties for each substance and separation system

in the design description	 209

C .3 Include the relations between the boiling points of substances in the

design description	 210

C .4 Assert the feed flow rates for the polar solvent in a separation system

that feeds from the bottom products of the current column 	 210

C .5 Update the number of stages in a binary column 	 211

C .6 Create the description for a new column in a separation system .

	

212

C .7 Include the products of the current column in the flowsheet for the

ordinary distillation case . There is a similar rule for the extractive

distillation case	 213

C .8 Detect product splits	 214

C .9 Instantiate a new separation system to isolate the desired products

that are included in the distillate for the current column . There is

a similar rule for the bottom products of a column	 215

C .10 Assert the desired products and their recoveries for a separation

system that feeds from the distillate products of the current column.

A similar rule is used for the bottom products 	 216

C .11 Assert the feed properties for a separation system that feeds from

the distillate products of the current column . There is a similar

rule for the bottom products of the current column	 217

C .12 Determine whether we have a complete design 	 218

C .13 Evolve the current flowsheet 	 219

C .14 Evolve the current flowsheet according to the Seader Westerberg

strategy	 220

C .15 Implement design decisions and evolve the current design	 221

xix

D .1 Remove a MSA from one of the products in another, subsequent

separation process	 224

xx

LIST OF TABLES

1 .1 Engineering costs to prepare process designs 	 3

2 .1 Major heuristics for separation system design 	 21

2 .2 Some evolutionary heuristics used in OUZO	 22

2 .3 Primitives for design actions	 24

3 .1 Physical properties for multicomponent distillation input example .

	

43

4 .1 Statistics for the performance of SIMGEN in the distillation model . 115

5 .1 The major heuristic rules for establishing the initial separation

structure . The arrows indicate the rules supported by the Nath

& Motard and the Seader & Westerberg evolutionary strategies . . 123

5 .2 The evolutionary rules for the Nath & Motard design method . . . 135

6 .1 Statistics for the distillation design example . The times shown cor-

respond to the time spent in finding the first acceptable design in

the problem	 164

6 .2 Problem definition for the C6 separation synthesis problem	 165

6 .3 The separation alternatives for COLUMN1 	 166

6 .4 Performance results for the C6 separation propblem in OUZO	 170

6 .5 Problem specification for the n-Butylene purification problem	 171

xxi

6 .6 The separation alternatives for COLUMN1	 184

6 .7 Performance results for the n-Butylene purification problem 	 184

Chapter 1

Introduction

1

2

1 .1 The Design Problem

Design is the process by which a set of functional specifications and a set of
available components are used to create a description of an artifact that satisfies
these specifications . The design description has to be detailed enough to allow the
manufacturing, fabrication or construction of the desired artifact [25].

Engineering is defined as [66] :

"The application of science and mathematics by which the properties
of matter and the sources of energy in nature are made useful to people
in structures, machines, products, systems and processes ."

Engineering design differs from other kinds of design in that it applies en-
gineering methods to generate descriptions of useful devices . It consists of two
major phases [47] . The analysis phase elaborates on the design specifications and
determines the behavior of the current design . The synthesis phase decides on the
individual components and indicates their possible interconnections.

Engineering design problems belong to three categories, depending on the type
of search space they explore [58]:

• Routine design problems are those in which the components of design are
known and there is a specific method for assembling these components . Ex-
amples of routine design problems are the design of simple electronic compo-
nents (adders, inverters, etc), or the design of simple car parts like clutches.

• Innovative design problems are those in which the components of design are
known, but there is no straightforward method for assembling these compo-
nents in a way that satisfies the design specifications . Examples include the
design of a new car model, or a new CD player.

• Creative design problems are those in which not even the components of
design are completely known . A typical example is the invention of the
wheel.

In the rest of the thesis the word design refers to engineering design.

1 .2 What is this thesis all about?

This thesis describes DIAS 1 , a computational framework that enables the trans-
formation of informal accounts of engineering design into precise computational

'Design Integrating Analysis and Synthesis .

3

Engineering Costs to prepare alternatives (1977)

Table 1 .1 : Engineering costs to prepare process designs.

models for performing the design task . Informal accounts of design typically in-
clude references to the physical principles for analyzing the behavior of the de-
signed artifact, along with general descriptions of heuristics and the methods by
which these are applied . DIAS includes a set of representations and techniques by
which these different types of knowledge are integrated in a computational model
of design.

This research concentrates on innovative design problems . The ideas we present
have been implemented in a program called OUZ0 2 that supports the synthesis of
separation systems, an important innovative design problem in chemical engineer-
ing [57] . The program can generate designs that are similar in complexity to
examples from the chemical engineering research literature.

There is more than one level of engineering design and DIAS focuses on the
early part of the process, commonly refered to as conceptual design. Conceptual
design applies a set of approximate but efficient evaluation criteria in minimizing
the number of candidate designs . It creates rough drafts for a small set of promis-
ing designs that are analyzed in more detail in later stages of the process . For
example, in chemical engineering a rough draft is a flowsheet that indicates the
interconnections between the different process units and provides cost estimates
for each one of them. These estimates are approximate screening calculations
aimed at reducing the number of design choices rather than providing accurate
cost data [13] . Table 1 .1 3 gives an idea of the relative costs associated with pro-
ducing estimates in chemical engineering design . Study estimates have a probable
accuracy up to +25% of the final cost . Preliminary estimates have a +12% accu-

20UZ0 is not an acronym for anything . It merely denotes the state of euphoria of the author
while developing this program.

'The data are taken from [48] .

Less than
$1 mil

	

$1-$5 mil $5-$50 mil
Type of estimate

	

Plant

	

Plant

	

Plant
Study ($ thousand)

	

5-15

	

12-30

	

20-40
Preliminary ($ thousand)

	

15-35

	

30-60

	

50-90
Definitive ($ thousand)

	

25-60

	

60-120

	

100-230

4

racy. Finally, definitive estimates should lie within +6% of the actual cost . OUZO

is intended to support the creation of study estimates.

The importance of conceptual design is indicated by the fact that only 1%

of the alternatives examined at this level constitute viable designs [13] . There-

fore, inefficiencies at the conceptual level have serious consequences for the rest

of design, since they result in erroneous decisions very early on in the process.

These decisions propagate to more detailed levels of design and are very hard to

recover from. While current engineering design programs concentrate mostly on

the detailed levels of design, our research aims to automate the conceptual level

of design.

Figure 1 .1 describes a sample input and output for OUZO . The input specifica-

tions require the design of a separation system for recovering the components of a

6-component mixture in four specific sets of products . One of the possible designs

is shown below the problem specification . It consists of five columns. For each

column the program computes an estimate for its installation cost which is shown

at the bottom of the figure . There are 1,344 possible designs for this problem . The

program examines only four of them before it reaches a final solution . The results

of the program are consistent with the ones presented in the chemical engineering

research literature [43].

1 .3 Background and Motivation

1 .3 .1 Design from Physical Principles

The role of computers in engineering or scientific problem-solving tasks has been

mainly to provide numerical solutions to sets of equations . Thus, computational

techniques typically are used only in the later stages of the problem-solving activity

as model solvers, and play insignificant roles during the earlier and very important

part of model formulation.

Recently, a new approach to design known as design from physical principles
has emerged as a promising alternative to either semi-automatic approaches like

computer-aided design systems or fully automatic but very domain-specific pro-

grams like expert systems . Physical principles systems can be loosely defined as

[34] :

"Programs that integrate representations of skills from mathematics,

physics, and engineering in design . "

5

Problem Specification
Feed

	

Desired Products

	

Conditions
Component Component Name Mole Fraction Product Component Temperature =

1 Propane .0147 1 1 = 53 .89°C
2 n-Butane .5029 2 2 Pressure =
3 Butene-1 .1475 3 3, 4, 5 = 5 .62 kg/cm 2
4 Trans-Butene-2 .1563 4 6 Total Flow Rate =
5 Cis-Butene-2 .1196 = 303 .04 kg mol/h
6 n-Pentane .0590

posecl ~esiSv~
Propane

70-

Colunnnnmm5

	

$ 8,667

Col:annnmmIl
$ 66,416

Bute ne -1
n-Bata ne

Traas-Bute ne-2 /
/ C is-Bute ne -2

n-Pe nta ne

	

Furfura 1

Co airziu s2
$ 36,265

Cohaurnmm3

	

Cok irrnmm4
$ 18,932

	

$ 11,609

Figure 1 .1 : Problem specification and possible design for the n-Butylene purifi-
cation problem. Columns with an asterisk (*) correspond to extractive distillation
units . The rest are ordinary distillation columns.

6

The hope behind these programs is that the availability and use of all these dif-
ferent types of knowledge will provide them with the efficiency and the generality
that are necessary for automating innovative or even creative design.

There are two main problems that need to be addressed for programs designing
from physical principles:

• The Representation Problem consists of developing adequate representations
for the knowledge used in design.

• The Integration Problem consists of developing ways of integrating all these
different kinds of knowledge in design.

DIAS addresses both problems in the context of innovative design. In particu-
lar, as a solution to the representation problem we partition the knowledge used
into two categories:

• Physical knowledge describes the principles that engineers use in modeling
physical phenomena.

• Design knowledge describes the methods and rules that are specific to design.
Most of the design knowledge is heuristic in nature.

We deal with the integration problem by developing a computational frame-
work that integrates qualitative, numerical and heuristic knowledge (Figure 1 .2).
More specifically, DIAS accepts as inputs the specifications for the design problem,
along with a set of components describing the physical and the design knowledge
for the domain of interest . Physical knowledge generates and analyzes design al-
ternatives. Design knowledge prunes the number of design choices . The output in
this approach is a list of numerical and structural descriptions for each proposed
design.

1 .3 .2 Qualitative Reasoning

The purpose of the qualitative reasoning enterprise is [71]:

" . . . to develop computational theories of the core skills underlying
engineers, scientists and just plain folk's ability to hypothesize, test,
predict, create, optimize, diagnose and debug physical mechanisms ."

Until recently, most of the applications of qualitative reasoning were centered
around producing qualitative simulations of physical systems . This was a con-
sequence of the fact that the field had developed early on quite sophisticated

7

Figure 1.2 : The architecture of DIAS.

Design Stra to g ie s Design Specifications

Configuration
Synthesis
Rules

Qualitative
Domain
'Ihe o ry

Design Heuristic s

Design Knowledge

Numeric alMode Is

Physical Knowledge
Design Program

A list o f d e signs, e a c h consisting of:

(1) A set ofnumeric alva lue s for the
design parameters

(2)Adescriptionofthe structure of
the artifact

8

techniques for simulating physical systems . Design programs were not popular
in these early days, due to the lack of detailed domain theories for sufficiently
complex physical systems . The problem was exacerbated by:

• The absence of modeling strategies that could support the creation of qual-
itative descriptions for complex physical systems.

• The large computational complexity involved with qualitative simulations.
This allowed large domain theories to be tested only under certain operating
conditions (e .g. steady-state assumptions).

• The lack of integration between the qualitative models and the quantitative
knowledge used by engineers in their domains.

The recent development of self-explanatory simulator compilers like SIMGEN
[21] extends the ways in which qualitative methods can be used in the design
process . The main idea behind these systems is the automatic creation of simu-
lators that integrate qualitative and numerical models during simulation . These
programs can then be used either as ordinary numerical simulators tracking the
behavior of a given model over time, or as powerful explanation tools that gen-
erate qualitative explanations for the behavior of a system at any point in time.
SIMGEN-like systems possess two features that are of potentially great interest
to automated design systems:

• They are capable of automatically producing simulation code for the behav-
ior of a system . Consequently, the efficiency of the analysis phase of design
is improved.

• The kind of qualitative analysis they use is computationally more efficient
than traditional qualitative simulation.

More specifically, the qualitative analysis in SIMGEN determines the condi-
tions under which each qualitative model fragment [15] is active and guides the
selection of appropriate numerical models . DIAS uses a subset of this analysis to
support the construction of numerical models for possible designs.

This research demonstrates how qualitative models and reasoning techniques
can be integrated with representations for numerical models and design knowledge.
In particular, it describes how a qualitative modeling language like QP Theory
[18] and compositional modeling techniques [15] can support the generation and
analysis of alternatives during conceptual design .

9

1 .4 Summary of Results

There are two main results for this research:

1. A computational model of innovative engineering design (DIAS) that allows
informal ideas expressed in terms of heuristic design strategies and knowl-
edge about the physical principles that describe physical systems to be trans-
formed into precise computational models for performing the design task.

2. A computer program (OUZO) that applies this model to the design of sep-
aration systems in chemical engineering.

1 .5 Reader's Guide

The thesis is organized around seven chapters . Here is what they contain:

1. Introduction . This chapter provides an overview of the design process and
the types of design problems . It explains the background and motivation for
this work and summarizes the major results of this research.

2. A Computational Account of Design . This chapter presents the main
ideas of the design approach in this thesis . It shows how we model en-
gineering design as a sequence of design cycles in DIAS . Furthermore, the
decomposition between the physical and design knowledge, the design inter-
preter and the way in which the design process is controlled in our model
are described and discussed . Finally, related work in AI and engineering is
presented and compared with DIAS.

3. The Design of Separation Systems in Chemical Engineering . This
chapter serves as an introduction to separation systems for readers who are
unfamiliar with chemical engineering . It offers a brief overview of separation
processes and in particular equilibrium separation processes . In addition,
it provides a description of the state of the art in process synthesis with a
particular emphasis on the design of separation systems . . Finally, it presents
and discusses a set of filtering strategies we developed for describing the
major heuristics in separation system design, along with the computational
costs of the design methods implemented in OUZO.

4. Representing Physical Knowledge in OUZO . This chapter describes the
domain theory that models separation systems . Both qualitative and nu-
merical models are presented . The justifications behind our representation
decisions are presented and analyzed .

10

5. Representing Design Knowledge in OUZO . This chapter presents and an-
alyzes the representations for heuristics, design strategies and configuration

synthesis rules in OUZO . In addition, it describes the implementation of an
interpreter for the design knowledge . Finally, it explains the algorithm for

controlling the design process in this system.

6. Examples . One example for binary distillation design and four examples

for multicomponent separation sequences are presented in detail.

7. Conclusions . In this chapter we give a summary of the whole approach.
We review the contributions of this research . Finally, we make suggestions

for future work in this area.

There are four appendices:

• Appendix A reviews Qualitative Process Theory.

• Appendix B describes the numerical models that calculate the relative

volatilities and the cost estimates for the design alternatives.

• Appendix C describes the configuration synthesis rules that create the
actual design description.

• Appendix D gives an example of how we develop the representations for
heuristic rules in OUZO .

Chapter 2

A Computational Account of
Innovative Design

11

12

2 .1 The Main Ideas

This thesis describes DIAS, a computational framework for innovative engineering
design that enables the transformation of informal accounts of design into com-
putational models for performing the design task . DIAS supports a common dis-
tinction drawn in these informal descriptions between experience-learned heuris-
tics and science-based models [40] . In our approach physical knowledge consists
of science-based models and represents the understanding that engineers have of
physical systems . During the analysis phase, it generates descriptions of the behav-
ior for possible designs. In addition, it computes design alternatives during the
synthesis phase . Design knowledge refers to heuristic knowledge that describes
how design is performed . It is used during the synthesis phase to prune the num-
ber of design choices . Furthermore, it suggests physical conditions or particular
parameter values that increase the efficiency of the analysis phase.

DIAS uses qualitative and numerical models for capturing the physical knowl-
edge in design . Heuristics, strategies and configuration synthesis rules are used
for representing the design knowledge in a domain . We present an interpreter
that transforms the design knowledge representations into appropriate rules and
implements the actions suggested by the heuristics using a set of primitives.

DIAS models engineering design as the generation, evaluation and implemen-
tation of design alternatives in a sequence of design cycles . This thesis describes a
novel controller algorithm that orchestrates the use of the different types of knowl-
edge in the design cycle and is independent of specific design methodologies (i .e.
evolutionary or heuristic methods) . The rest of this chapter outlines the elements
of this approach in more detail.

Although the need for integrating qualitative and numerical models with heuris-
tic representations has been stressed repeatedly in the engineering literature (e .g.
[60], [40]), computational models that use this approach to fully support the gen-
eration and evaluation of designs have not previously existed . This work demon-
strates that these systems are indeed possible.

2 .2 Modeling Engineering Design

DIAS describes engineering design as the generation, evaluation and implementa-
tion of design alternatives . Design alternatives (or choices) are mutually exclusive
decisions that trigger changes to the structure of the artifact . For example, some
of the design alternatives for multicomponent mixtures in OUZO consist of mu-
tually exclusive choices on the separation method and the pair of possible keys

13

Figure 2 .1 : The engineering design process.
Design

Specifications

Implement
Decisions

Analyze
Description

Evaluate
Alternatives

Generate
Alternatives

Make
Decisions

	 DESIGN

No

	

CYC1

Success

Fail

Yes

14

for the current column . Decisions on these parameters determine the structure
(e .g. diameter, height, number of stages, etc) for the current separation unit s .
The structure of the artifact during each design cycle is captured by the design
description.

Design alternatives are processed in a sequence of design cycles (Fig. 2 .1) . In
the beginning a design cycle accepts as input and analyzes the design specifications
using the physical knowledge . The purpose of this analysis is to compute relevant
features of the design description such as the behavior it entails and/or to elaborate
on the design specifications and determine sets of parameters that are important
for the current design problem.

In the rest of the cycle, DIAS generates and evaluates design alternatives using
the physical and the design knowledge, and proposes and implements changes to
the current description using the design knowledge . At the end of the cycle if the
design description has changed, a new cycle starts with the current description and
the design specifications as inputs, otherwise the design cycle terminates . In the
later case, if the description does not satisfy the design specifications the process
exits with failure, otherwise it terminates succesfully.

A design method optimizes the generation and evaluation of design alterna-
tives . For example, the case-based design method optimizes the generation and
evaluation of alternatives through the re-use and adaptation of previous cases.
Evolutionary design is another design method similar to the case-based methodol-
ogy, that optimizes the generation of alternatives using a standard set of heuristics
and their evaluation using a series of evolutionary rules.

A design strategy is a domain-specific instance of a design method . For example,
one of the strategies in OUZO, the Nath & Motard strategy, is an instance of an
evolutionary design method . As section 2 .4 .3 explains in more detail, a design
strategy represents an optimal application of a design method on a specific type
of problem.

2 .3 Physical Knowledge

2 .3 .1 Representations

DIAS uses qualitative and numerical representations for capturing physical knowl-
edge in design . Qualitative representations provide an ontological framework for

'An example of a decision that is not considered a design alternative in our approach is the
choice of notation for describing components in design diagrams . This decision does not have an
impact on the structure of the artifact .

15

describing physical phenomena and represent the causal dependencies between its
parameters and the modeling assumptions used in the description of a physical
system. Numerical representations consist of systems of numerical relations (equa-
tions or inequalities) between the parameters of a system . This approach combines
the rich modeling language of qualitative formalisms with the accuracy offered by
numerical models.

2 .3 .2 Reasoning Methods

DIAS uses physical knowledge to generate design alternatives and determine their
behavior during the design cycle . It does this using a set of physical principles to
generate a set of possible designs and construct models for their behavior based on
numerical values for the system variables, descriptions for the structure of possi-
ble designs, sets of modeling assumptions and the results of the evaluation process
performed by the design heuristics . Qualitative representations support this pro-
cess using compositional modeling techniques [15] that are sensitive to changes
in all of these parameters . Three reasoning methods support the generation and
analysis of design alternatives in the physical knowledge component : qualitative
analysis, numerical model construction and numerical equation solving.

2 .3.2 .1 Qualitative Analysis

Qualitative analysis generates qualitative models for the design description and the
alternatives during each design cycle . It accepts as input parameters the design
description, the qualitative domain theory and a set of modeling assumptions and
computes the minimal sets of conditions under which a model fragment is active
(Fig . 2 .2) . The results of this step are used to activate qualitative model fragments
that are consistent with the input parameters.

This analysis corresponds to the first step of the qualitative analysis in SIM-
GEN [21] . OUZO demonstrates that this type of qualitative analysis is general
enough to support typical conceptual design tasks like the design of separation
systems that deal with either steady-state or macroscopic models for physical sys-
tems.

2 .3.2 .2 Numerical Model Construction

Numerical model construction creates numerical models for the design description
and the alternatives during each design cycle . During this process the numerical
relations in the physical knowledge are combined with the results of the qualitative

16

	

Figure 2 .2: Qualitative analysis flowchart.

Qualitative
Domain
Theory

Modeling
Assumptions

Instantiate Model
Fragments

z

Qualitative
Model

17

Figure 2 .3 : Numerical Model Construction flowchart.

Find the numerical relations
implied by the inputs

18

analysis and the results of the evaluation of the current design alternatives by the
heuristics 2 to activate a set of numerical models (Fig . 2 .3) . This method ensures
that these numerical models are consistent with all the analysis parameters and
the actions suggested by the heuristics . Furthermore, it allows the design knowl-
edge to decide on the type of analysis for each alternative . Typically in conceptual
design very approximate types of analysis are used in the beginning to screen the
alternatives . As the design evolves, the heuristics pick a set of promising candi-
dates which are combined with the results of the qualitative analysis to activate
more detailed numerical models during the design cycle.

In OUZO, this task is accomplished using the results of the qualitative analysis
and the current focus environment . The later is an ATMS focus environment [19]
that consists of the major design decisions taken by the decision primitives in Table
2 .3 (see section 2.4 .2 for a discussion of these primitives) . In OUZO these decisions
consist of the separation schemes for each column, along with predicates that de-
note which columns are being examined by the design system at the current stage.
For example, whenever the heuristic analysis decides on a particular separation
for a column with the assert-in-design primitive, the current focus environment is
updated to reflect this decision . As a result more detailed numerical models that
are now implied by the updated focus environment are activated, resulting in a
deeper level of analysis for the chosen separation.

2 .3 .2.3 Numerical Equation Solving

Numerical equation solving applies algebraic techniques and numerical analysis
procedures to solve numerical models . It accepts as inputs the results of the
numerical model construction process, a set of numerical values for some of the
design parameters, a set of rules for algebraic equation solving and numerical anal-
ysis procedures and tries to find numerical solutions for as many design parameters
as possible (Fig. 2 .4).

In OUZO, this task is accomplished by indexing the set of equations according to
the quantities they involve and then replacing these quantities in every equation
they occur with their numerical values as soon as the later are computed. Equation
solving continues as long as there are equations with only one unknown quantity
in them.

'Technically speaking the result of the heuristic analysis is the creation of an ATMS focus
environment that contains the design decisions that were taken by the heuristics (see chapter 5
and [19]) .

19

Figure 2 .4: Numerical Equation Solving flowchart.

Algebraic
Rules

Solve for as many unknown
parameters as possible

Numerical
Solutions

20

2 .4 Design Knowledge

Three types of representations express the design knowledge in DIAS:

1. Heuristics, i .e ., rules of thumb.

2. Strategies . Plans for optimizing the application of the heuristic rules.

3. Configuration Synthesis Rules . Rules for monitoring the design and produc-
ing the actual artifact descriptions.

A design interpreter transforms these representations into appropriate rules
and implements the actions suggested by the heuristics via a set of primitives.

The rest of this section describes these representations and the interpreter
commands in more detail.

2 .4 .1 Heuristics

Heuristics in conceptual design prune the search space. They apply criteria that
typically capture the interaction between the physical behavior of artifacts and the
economics associated with producing or operating an artifact . This means that
heuristic knowledge is grounded in the physical knowledge for the domain . DIAS
supports this grounding by providing qualitative and numerical models in which
the terms referenced by the heuristics are described . As a result, the representation
and use of heuristic knowledge are significantly facilitated.

For example, one of the heuristics for designing separation systems in chemical
engineering suggests that the least tight separation should be more preferable than
any other alternative for the current separation unit . One of the actual heuristic
rules (Fig . 2.5) for representing this heuristic in OUZO translates the least tight
criterion into differences between the relative volatilities of the design alternatives.
Because all of the terms in this rule are defined in the physical knowledge compo-
nent, the designer knows what their semantics are and at what level of detail the
system is described by them. For example, the designer is able to correctly deter-
mine how the quantity Alpha-LK-HK (the relative volatility between two mixture
components) is defined and what are the reference conditions (:reference) under
which it is measured, since this information is part of the physical knowledge com-
ponent . The designer is also able to trace the methods by which this quantity is
calculated by accessing the equations that are active in the numerical model.

Tables 2 .1 (taken from [45]) and 2 .2 (taken from [43]) contain some of the
heuristics used in OUZO for the design of separation systems . These tables are
shown again and analyzed in detail in chapters 3 and 5 .

21

Heuristic Rule
1 Remove components one by one as overhead products
2 Save the most difficult separation for last
3 Favor 50-50 splits
4 Sequence with the minumum total vapor flow
5 Make high recovery fractions last
6 Separate the most plentiful components first
7 Choose the cheapest as the next separator
8 Remove the thermally unstable and corrosive material early.
9 Disregard separations with very small relative volatility between

the keys.
10 Perform least tight separation first
11 Favor the smallest production set
12 Avoid separations using a mass separating agent (MSA)
13 Remove a MSA from one of the products in another, subsequent

separation process
14 A separation method using a MSA cannot be used to isolate

another MSA
15 Favor distillation
16 Separate first the components which might undergo undesirable reactions
17 Set split fractions of the key components to prespecified values
18 Avoid extreme operating conditions
19 Favor ambient operating pressure

Table 2 .1 : Major heuristics for separation system design.

22

(defHeuristic Difficulty-of-Separation-1

Class Perform-Least-Tight-Separation-First
Conditions ((Possible (Separation ?method (?l-k-1 ?h-k-1) ?column)) :Var ?fl

(Value-of (A (Alpha-LK-HK ?1-k-1 ?h-k-1 ?column :reference)) ?a-lk-hk-1 ?eq-1)
(Possible (Separation ?method (?l-k-2 ?h-k-2) ?column)) :Var ?f2

(Value-of (A (Alpha-LK-HK ?1-k-2 ?h-k-2 ?column :reference)) ?a-lk-hk-2 ?eq-2)
:Test (and (> ?a-lk-hk-1 ?a-lk-hk-2)

(> (- ?a-lk-hk-1 ?a-lk-hk-2) *alpha-difference*)))
Action ((prefer ?fl Over ?f2)))

IF there is a separation alternative (a) for the current column

AND the relative volatility between the keys in (a) in reference conditions is known
AND there is another separation alternative (b)
AND the relative volatility between the keys in (b) in reference conditions is known

AND there is a significant difference (> *alpha-difference*)
between the relative volatilities of (a) and (b)

THEN prefer the separation alternative with the largest value for the relative volatility.

Figure 2.5 : Perform least tight separation first . The actual heuristic in OUZO

and its interpretation. The terms preceded with a `?' correspond to variables.

Evolutionary Rule
1 Challenge Heuristic 11

2 Examine the neighboring structures if separations of similar

difficulty take place in them.

3 Challenge Heuristic 15

4 Examine neighbors to decide if the MSA removal should be delayed

5 Challenge Heuristic 10 if in the current design an easy separation

is followed by a very difficult one .

Table 2 .2 : Some evolutionary heuristics used in OUZO.

23

2 .4 .2 Representing Heuristics

There are three kinds of knowledge involved in the representation of the conditions

of heuristic rules ; modeling and design assumptions about the problem, structural

features of the design and numerical values for parameters in the design . All these

are grounded in the physical knowledge component . In addition to these kinds of

knowledge, languages for heuristics and design knowledge in general must contain

primitives that implement the actions suggested by these rules . In DIAS these

primitives are commands to the interpreter describing how to update the set of

design alternatives . We use thirteen primitives for capturing design actions based

on the following classification of heuristic rules:

1. Rejection rules prune the number of design alternatives by eliminating
solutions that do not meet certain criteria . Examples include heuristics 1 3 ,

8, 9, 12 and 14 in Table 2 .1.

2. Ordering rules establish preferences between various design choices. The
rule in Figure 2 .5 provides an example of an ordering heuristic . Other ex-

amples include heuristics 2, 3, 4, 5, 6, 10, 11, 15 and 16 in Table 2 .1.

3. Decision rules select a design alternative . Heuristics 7 and 13 in Table 2 .1
provide an example.

4. Analysis rules propose numerical values for some of the parameters of the

system in order to facilitate the analysis of proposed designs . Examples
include heuristics 17, 18 and 19 in Table 2 .1.

5. Evolutionary rules challenge the design decisions made by other heuristics.
Table 2 .2 provides an example for some of these rules . The number of the

heuristics that are challenged in this table refers to the row in which they
appear in Table 2 .1.

In general, some heuristics can be described either as rejection or ordering

rules . For example heuristic 1 can be modeled either as a rejection or an ordering

rule by the builder of the design knowledge base . When represented as a rejection

rule, it will eliminate from the analysis all the design choices that do not result

3It is not always clear from the natural language description of a heuristic that it corresponds
to a rejection rule. For example, the description for heuristic 1 does not contain any verbs like
`avoid' or `disregard' that make the rejection of certain design choices clear . However, by focusing
the attention of the designer on separations that result in single overhead products, it essentially
rejects all the other alternatives . A similar situation is true for heuristic 8 .

24

Table 2 .3: Primitives for design actions.

Heuristic Type Primitive Interpretation
Rejection

Ordering

Decision

Analysis

Evolutionary

reject

prefer

consult-user

assert-in-design

assume-in-cycle

assume-in-design

cover-specifications

propose-value

exists

invalidate-decision

examined-alternative

store-design

pop-design

Reject an alternative for the

current design cycle

Establishes an order of preference

between two alternatives

Ask the user to select between
two alternatives

Assert that an alternative holds

in the rest of design

Assume that an alternative

holds for the current design cycle

Assume that an alternative
holds in the rest of design

Indicate that all the design

specifications are satisfied

Assign a value to a parameter

Check whether an item is part of

the current design description

Do not consider an alternative
in the rest of design

Check to see if an alternative

has been already examined

Stores the current design description

Reinstates the most recent

design description

25

in single overhead products . When represented as an ordering rule, it will not

eliminate these choices, but it will indicate that these alternatives are less favor-

able. Analyzing the conditions under which each modeling choice makes more

sense (e.g. number of alternatives discarded, overall evaluation of the alternatives

that are eliminated and the ones that remain) can be a promising extension to

this work. The classification for the examples presented above corresponds to the

representations of these rules in OUZO.

Most of the heuristics in engineering design can be classified as belonging to

one of these heuristic types . For example, all of the heuristics for mechanical engi-

neering design in [73] are rejection rules, while the heuristics for civil engineering

design in [29] are a mix of rejection, ordering and decision rules.

Table 2 .3 contains the actual primitives that capture the actions of these five

kinds of heuristic rules . Chapter 5 presents the actual algorithms for each one of

these primitives in OUZO.

2 .4 .3 Strategies

Some of the actions proposed by the design heuristics may be in conflict with each

other. For example, in Table 2 .1 heuristics 1 and 10 can be contradictory in cases

where the least tight separation is not the one that results in a single distillate

product . Therefore it is necessary to create consistent subsets of heuristics or

sequence their application in ways that resolve possible conflicts during design.

For example, in separation system design we can create sets of heuristics in which

rules 1 and 10 do not coexist, or we can sequence their application so that rule 1

is always applied before rule 10 . The later means that we always pick the least

tight among all the separations that result in single distillate products . Design

strategies provide ways for organizing the application of heuristic knowledge along

these lines.

More specifically, the design strategies in DIAS are plans for sequencing the

execution of heuristic rules in ways that were found by the chemical engineering

research community to be capable of producing optimal designs . This organization

of design knowledge is general enough to support different design methods ranging

from pure heuristic to evolutionary strategies in OUZO.

Figure 2 .6 contains part of the description of a strategy for the design of sep-

aration systems in [43] .

26

"Evolutionary rule 1 questions the validity of the heuristic rule and is applied before any other
evolutionary rule to resolve the question of the product set definition . Evolutionary rules 2, 3, 4
and 5 are treated equally, but of course cannot be applied at the same time . Therefore, starting from

the feed stream forward, evolutionary rule 2 is applied next . If any modification is suggested by this
rule, it is adapted in the starting structure and a new structure is produced . The new structure or

the starting one, whichever is superior is evolved further by applying rule 2 to the portion of the
structure not checked by rule 2 in the earlier application . Evolutionary rule 3 is applied starting

from the feed stream forward, after no further structural modifications are suggested by rule 2 ."

Figure 2 .6 : An example of a design strategy description.

IF the steady-state design features for the column are active
AND the column has a partial condenser and a partial reboiler

AND the particular stages for these units have been defined
AND the value for the number of stages in the column is N

AND the current design description does not correspond to a column with N stages
THEN create a new design description for a column with a partial

condenser, a partial reboiler and N stages.

Figure 2 .7: Example of a configuration synthesis rule in OUZO.

2 .4 .4 Configuration Synthesis Rules

A significant part of the design knowledge in a domain relates to procedures for

creating the actual design descriptions . These descriptions range from flowsheets

in chemical engineering, to CAD drawings in mechanical engineering, to circuit

diagrams in electrical engineering and so on . There are two major characteristics

for the knowledge that supports the creation of these descriptions:

1. It is very procedural in nature.

2. It is largely domain-specific, as each engineering domain has developed its

own conventions for creating design documents.

In addition to these procedures, part of the design knowledge in a domain

monitors the state of the design, determining, for example, the conditions under

which the design process succeeds or fails.

DIAS uses a separate set of rules, the configuration synthesis rules, that cap-

ture the knowledge associated with producing design descriptions and monitoring

the state of the design process . This organization allows the builder of the de-

sign knowledge base to separate more general forms of knowledge like heuristics

that can apply to more than one classes of systems from more specific forms of

27

knowledge like configuration synthesis rules that deal with specific classes of de-
vices . Figure 2 .7 contains an example of the english interpretation of such a rule
in OUZO.

2 .5 Controlling Design

DIAS controls the design process by an algorithm that provides a general way for
orchestrating the use of various types of knowledge in design . It consists of three
steps (Fig . 2 .8):

2 .5 .1 Qualitatively analyze the current design description.

This step performs a subset of the qualitative analysis used in SIMGEN [21] . It
uses the current design description to instantiate a set of qualitative model frag-
ments that are consistent with it . Furthermore, it determines the set of conditions
under which each model fragment becomes active . Because qualitative analysis
is used in determining the behavior of the design description and in generating
design alternatives, this step is part of the Analyze-Description and Generate-
Alternatives steps of the design cycle in Figure 2.1.

2 .5 .2 Construct and solve the numerical models.

The numerical model construction (section 2.3 .2.2) and equation solving methods
(section 2.3 .2 .3) are applied at this point . Since numerical models are used in OUZO
to describe more accurately the behavior of the artifact and the design alternatives
created by the qualitative models this step corresponds to the Analyze-Description
and Generate-Alternatives steps of the design cycle as well.

2 .5 .3 Apply the design strategies and the configuration

synthesis rules.

During this step the heuristics choose design alternatives and the current design
description is updated accordingly. In particular, strategies and heuristics evaluate
alternatives and make decisions, while configuration synthesis rules implement
these decisions and monitor the state of design . This step corresponds to the

28

	

Figure 2 .8 : The controller algorithm in DIAS .

Fail

INoSuccess
A

Yes

Yes

Qualitative
Domain
Theory

Qualitative Analysis

Numerical
Models Construct & Solve

the Numerical Model

Heuristic Analysis

Strategies

Heuristics

Evaluate Alternatives

Make Decisions

Implement Decisions

29

Evaluate-Alternatives, Make-Decisions and Implement-Decisions steps in Figure

2 .1 .

Steps 2 and 3 are executed in an inner loop that ends when there are no more

design decisions taken. In this case, if the design description has been modified the

system goes back to Step 1 . The design process ends when the design description

remains unchanged during a cycle . In this case, if the design specifications are

satisfied the algorithm terminates with success, otherwise it exits with failure.

The loop between steps 2 and 3 does not correspond to a similar cycle in

Figure 2 .1 . Its purpose is to make implementations such as OUZO more efficient.

In particular, because qualitative analysis is computationally the most expensive

stage in the design cycle, OUZO tries to do as much of the analysis as possible using

the numerical models and the heuristics before resorting to qualitative analysis

during the Analyze-Description step in Figure 2 .1.

This controller is not tied to any particular heuristic or evolutionary design

method. OUZO applies this controller on two types of problems . The first one

deals with a heuristic method for binary distillation design, while the second one

supports the evolutionary design of separation systems for multicomponent mix-

tures.

2 .6 Where does DIAS apply?

Design is one of the major engineering activities . Consequently, much of engineer-

ing research is concerned with developing knowledge and methods that improve

the efficiency of design . In the engineering research literature, design is usually

described in terms of the physical knowledge involved in analyzing design alter-

natives, the list of heuristics for pruning the number of possible solutions and the

strategies for applying the heuristic knowledge.

For example, papers that describe heuristic or evolutionary design of separa-

tion systems in chemical engineering typically consist of a list of heuristics for

eliminating some of the design choices, along with strategies for sequencing the

application of these heuristics [54], [43], [45] . The authors of these papers assume

a shared corpus of physical knowledge for describing these systems, which they

refer to by listing the modeling assumptions they use in analysis.

Another example is the synthesis of structural mechanisms in mechanical en-

gineering. The design of mechanisms typically consists of four possible steps [73]:

1 . Determination of the degrees of freedom, the number of links and joints and

the complexity of the mechanism .

30

2. Enumeration of all possible graph topologies for a given combination of ver-

tices and edges.

3. Application of various rejection criteria based on the design requirements.

4. Sketching of mechanisms corresponding to the generated graphs.

Papers that describe this kind of design ([46]) usually present the physical knowl-

edge they use for performing the first two steps . A list of heuristics is given for

the third step . Finally, it is assumed that there is a shared procedural knowledge

for performing the sketching part . This procedural knowledge is captured in our

approach by the configuration synthesis rules in a domain.

DIAS provides a computational account of engineering design that points out

how informal descriptions for the design process can be transformed into compu-

tational models for performing the design task . This work does not propose either

a cognitive model for design or an environment for supporting design education,

although it seems possible that the DIAS framework is relevant to both problems.

Engineering design is not the only kind of design . There are other forms

of design (e .g., fashion design, musical composition and other forms of artistic

expression) that are performed and documented in different ways . For example,

a fashion designer relies more on aesthetics and therefore on psychological and

sociological knowledge about form and function, rather than on the qualitative

and analytical knowledge about physics or chemistry that guide the understanding

of an engineer . Consequently, descriptions of the design process in these domains

appear to be less systematic compared to engineering design, since they take into

account psychological and sociological processes that are highly idiosyncratic and

variable . This thesis does not provide a computational model of design in these

domains.

Furthermore, this model is inappropriate for routine or creative design . The

number of possible configurations in routine design is relatively small and there

are well-specified procedures for generating designs that satisfy particular sets of

specifications . Therefore, specialized representations that either enumerate all the

possible configurations or represent in advance all the possible design steps appear

to be more efficient than our approach for routine design.

At the other end of the spectrum, part of the knowledge used in creative

design problems is often transfered by analogy from other domains . Therefore,

computational models of creative design will probably need to work with physical

and design knowledge representations that support analogical reasoning (e .g. [16],

[14]) . This is not the case with our approach . However, we believe that general

representations of design knowledge, similar to the ones proposed in this thesis

31

(see section 3 .5.6), can form the basis for developing efficient sets of heuristics in
creative design.

2 .7 Advantages of this approach

Four main features make DIAS attractive:

2 .7 .1 DIAS grounds design knowledge in physical knowl-

edge

All of the terms in the heuristic rules are described as combinations of qualita-
tive and numerical model fragments in the physical knowledge component . In
addition, we describe a set of primitives for expressing design decisions made by
the heuristic rules . Therefore, design knowledge representations become easier to
write, understand and extend.

2 .7 .2 DIAS automates the interaction between physical and

design knowledge.

Physical knowledge generates and analyzes design alternatives using reasoning
methods that are sensitive to the design decisions taken during each design cycle.
Design knowledge on the other hand evaluates all these alternatives based on the
qualitative and numerical descriptions supplied by the physical knowledge compo-
nent and makes design decisions using a well-defined set of primitives . A controller
orchestrates the interaction between the different knowledge components . Conse-
quently, this approach automates the interaction between the synthesis and the
analysis phases in innovative design.

2 .7 .3 DIAS supports hierarchies of decisions in innovative

design.

Systematic approaches to design reduce the design problem to a hierarchy of deci-
sions that increase the efficiency of the process [13] . For example, the decomposi-

32

tion of process from equipment decisions in separation system design reduces sig-
nificantly the number of possible designs 4 . DIAS supports this hierarchical struc-
ture through the use of compositional modeling techniques that organize physical
knowledge based on these decisions and reasoning methods for the physical knowl-
edge that are sensitive to design decisions during each design cycle.

2 .7 .4 DIAS supports different design methods.

Design methods are specified as part of the design knowledge through a combina-
tion of strategies and heuristic rules . Furthermore, the algorithm for controlling
the design process is not tied to any particular method . As a result DIAS is flexible
enough to support different heuristic or evolutionary design methods.

2 .8 Relation to other work

2 .8 .1 Computer-Aided Design (CAD) Systems

The major operating assumption behind the CAD methodology is that the com-
puter provides a set of highly specialized support tools in order to help the user
during design [60] . Computer-aided design (CAD) programs are extensively used
in most engineering fields today. Figure 2 .9 taken from [60] shows an example of
an advanced CAD environment for chemical process design . In this program a
database management system is used to coordinate the information flow between
a set of specialized subroutines that deal with various design subtasks such as
equipment sizing, physical and chemical properties, numerical optimization rou-
tines, etc.

Although CAD programs make it possible to derive numerical solutions for
complex descriptions of artifacts, they rely exclusively on the human designer
to formulate the alternatives and coordinate the use of all the programs during
design . This happens because these systems do not possess either explicit models
of the design knowledge (e .g . heuristics, design strategies) for formulating and
evaluating design alternatives, or representations of physical knowledge that can
automate the analysis phase of design . This is not the case in our approach, where
the interaction between the synthesis and the analysis phases is fully automated.

'See section 3 .5 .7 .

33

Figure 2 .9 : Typical computer-aided design environment.

Drafting Optimization
Routines

Models of

Process Units

Physical and
Chemical

Properties

Equation-Solving

Routines

Sizing 8c

Costing

Data-Base
Management

System

Heat Exchanger
Rating 8c Design

Piping
Layout

Separation
Systems

USER

34

2 .8 .2 Expert Systems for Design

Expert systems are widely used in engineering design, mainly because they provide
a simple way of representing design heuristics as sets of if . . then rules [5], [59],
[33], [40], [73] . Most of these systems use some form of reasoning about uncer-
tainty to control the execution of these rules . In addition, they rely on specialized
numerical procedures for supporting the analysis phase in design . Figure 2 .10
adapted from [33] provides an example of a typical design expert system described
in [33] . This particular example supports the design of separation sequences in
chemical engineering . The system consists of a list of heuristic rules organized
into three classes according to their effects on the current design . Method rules
select a separation method, sequence rules arrange the separation units in a design
and evolutionary rules propose changes to the current flowsheet . The execution of
these rules is controlled by fuzzy logic methods . A list of mathematical routines
(e .g. linear programming methods) in the mathematical toolbox and a database
that contains physical properties for the various substances or data for separa-
tions that were calculated by the system in the past, provide the means by which
heuristic rules compute relevant parameters for each design alternative . The cur-
rent design description is kept in a blackboard data structure which is updated by
the heuristics.

Although expert systems can be efficient enough for complex innovative design
tasks (e.g . separation system design), they have certain drawbacks compared with
our approach . In particular, these systems contain no explicit physical knowl-
edge representations for grounding their heuristic rules . For example, an abstract
description of one of the heuristics in [33] states that:

`IF adjacent separation properties do not vary widely AND relative
quantities vary widely THEN separate at the component with the
largest quantity. '

In order to use this rule in design, it has to be translated into a more spe-
cific representation in which the separation properties whose variance is measured
are defined, the notion of `wide variance' is quantified and the parameters that
measure the relative quantities of the components are selected . In DIAS this pro-
cess is facilitated by the physical knowledge component which contains qualitative
and numerical descriptions for all the terms that will eventually be used in the
rule. Consequently, the builder of the design knowledge base can create a repre-
sentation for this rule based on these descriptions, instead of resorting to ad-hoc
representations as is the case with current expert systems . Furthermore, physical

35

Figure 2 .10 : Typical expert system for design.

t DatabaseMethod Heuristics

0

Sequencing Heuristics

0 Mathematical
Toolbox

0
Evolutionary Heuristics U

Blackboard

36

knowledge models provide a common reference to the rest of the community for
understanding and possibly extending the design knowledge in our approach.

Finally, the lack of explicit physical knowledge representations in expert sys-
tems makes their heuristics hardwired to specialized numerical procedures for cal-
culating relevant design parameters . For example, the mathematical toolbox in
Figure 2 .10 contains numerical methods that are called directly by the heuristic
rules . Typically, the workings of these procedures are opaque to the user and to
the rest of the system . Therefore, their interpretation depends largely on the in-
tuitions of the engineer . This severely limits efforts to understand or extend these
systems.

In contrast to the hardwired analysis methods in expert systems, the analysis
phase in DIAS consists of the construction of numerical models based on sets of
active qualitative model fragments . The activation of these models is controlled
and justified by explicit sets of modeling assumptions, the current structure of the
artifact and the results of the heuristic analysis . Consequently, the analysis phase
becomes more transparent, because the way models are formed and solved can
be described in terms of the contents of the physical knowledge component and
the current design decisions. This results in a more intuitive account of design
that captures how decisions taken during the synthesis phase have an impact on
the analysis of the artifact . Although we do not have an explanation system that
demonstrates this ability, we believe that such a capability would be easy to add by
tracing the justifications for the model fragments used during the analysis phase.

2 .8 .3 Case-Based Design Systems

Case-based design systems ([32], [26], [44]) contain a library of design cases that
are indexed based on features that are relevant to the design task (e .g. function,
cost, etc) . The system looks up in the library a set of cases that can potentially
match with the design specifications . The rest of the design procedure consists of
a series of adaptations performed by the system on the selected cases in order to
achieve a closer match between these and the user specifications.

Case-based design systems take advantage of the large number of design cases
that exist in many domains . An additional advantage is the similarity betweeen
the way they operate and the way engineers solve design problems by updating
already existing designs . There are two main challenges for case-based systems:

1 . Selecting the features under which each design case should be indexed (the
indexing problem [51]) . Recent work in this area [4] suggests that engi-
neering `themes' containing abstract knowledge common to large numbers

37

of design cases could form the basis for the indexing vocabulary in this case.
Other researchers have argued for functionally motivated vocabularies [28].
Despite some recent progress [23], both engineering themes and functional
representations are still relatively unexplored areas in AI research

2. Providing principled ways of adapting the retrieved cases to satisfy the design
specifications . Design adaptation is a complex process requiring detailed
knowledge of the physical principles and the design heuristics of a domain.
Therefore, an integration of this research with case-based methods is a viable
method of addressing this problem.

There is no direct comparison between case-based design systems and our ap-
proach. Case-based systems support a particular design methodology, while DIAS
is a computational framework for organizing the types of knowledge in design that
is independent of heuristic or evolutionary methodologies . For example, OUZO
contains a set of evolutionary strategies which are similar to case-based design
methods (see section 3.5 .5) . Furthermore, DIAS uses compositional modeling tech-
niques to address the problem of decomposing the design problem in hierarchies
of decisions that increase the efficieny of the process . The ways by which this
decomposition is achieved are independent of design method (see section 3.5 .7)

and have not been addressed in case-based design systems yet.
Most of the current implementations of case-based systems focus on design syn-

thesis [44], [32] . We believe that this research will be valuable to CBR researchers,
because it describes analysis methods that integrate qualitative and numerical
models in design . These methods can enhance the limited analysis capabilities of
existing CBR design systems.

2 .8 .4 Physical Principles Design Systems

Physical principles systems can be loosely defined as programs that concentrate
on integrating representations from mathematics, physics, and engineering in the
design process [34], [65] . This research can be classified as innovative design from
physical principles.

Until recently, most of the research in this area has concentrated on using
predominantly qualitative models for capturing the physical knowledge used in
design . The development of design knowledge representations and the integration
between physical and design models have not received considerable amount of
attention yet . This research tries to fill this gap .

38

Furthermore, most physical principles systems focus on creative design prob-

lems [69], [1] . Current creative design approaches have two main problems:

1. Most creative design problems generate a huge number of possible configu-

rations . Current design programs do not have effective ways of reducing the

computational complexity associated with searching this space.

2. No good criteria for evaluating the quality of the proposed designs have been

proposed yet.

While the search space for innovative design problems is comparably large,

innovative design systems do not suffer from the same problems, since there are

many heuristics that engineers use to choose between alternatives . Finding effi-

cient patterns of interaction between the design knowledge that is predominantly

heuristic and the physical knowledge that describes design artifacts is one of the

major challenges facing any innovative design system.

There is considerable interest from the process engineering community in ap-

plying AI techniques and in particular qualitative reasoning in a variety of prob-

lems including process synthesis, monitoring and diagnosis [60], [61], [62], [8], [6],

[39] . Most of the work in this area focuses on developing computational accounts

that allow the automatic construction of models for chemical processes at multiple

levels of detail . The integration of qualitative and numerical models with design

knowledge representations has not been the main focus of that research yet . We

believe that this thesis provides significant insights on how this integration is pos-

sible in process engineering.

Chapter 3

The Design of Separation

Systems in Chemical Engineering

39

40

3 .1 Introduction

Substances tend to mix together in intimate ways . Two examples are the solution
of salt with water and the various hydrocarbons in oil . This phenomenon is an
instance of the second law of thermodynamics, which requires all natural processes
to occur in ways that increase the entropy, or randomness of the universe . As
a result, the inverse process, that of the separation of mixtures of species into
products of different composition, can only take place through the creation of a
process or a device that uses energy to overcome this natural tendency.

Separation processes in chemical engineering are defined as operations which
transform a mixture of substances into two or more products which differ from
each other in composition [35].

Depending on the way by which the desired separation is achieved, there are
two main categories of separation processes [35]:

1. Rate-governed processes achieve separation via differences in transport rates
through some medium, under a driving force resulting from a gradient in
pressure, temperature, composition, electric potential, etc . Examples of
typical rate-governed separations include gaseous/sweep/thermal diffusion,
mass spectometry, electrophoresis, electrodialysis, reverse osmosis, etc.

2. Equilibrium processes achieve separation through the equilibration of two
immiscible phases which have different compositions at equilibrium . Two
phases of a mixture are in equilibrium with each other if the temperature,
pressure and chemical potentials for each component in the mixture are
assumed to be uniform in both phases, i .e. these variables have no spatial
or temporal gradients . Examples of typical equilibrium separations include
distillation, stripping, absorption, extraction, leaching, etc.

The program (OUZO) that implements the ideas in this thesis deals with the
design of equilibrium separations and in particular with the design of ordinary and
extractive distillation processes . The rest of this chapter describes the physical
principles underlying these operations. In addition, we present the various existing
methods for designing separation systems and talk about their computational cost.
Finally, we describe a set of general filtering strategies we developed for classifying
the heuristics used in separation system design . Readers who are familiar with
these phenomena may skip this chapter .

41

3.2 Distillation

Distillation is one of the most widely used separation processes in chemical engi-
neering . It involves the separation of the components of a mixture based upon
differences in their tendencies to evaporate at a given temperature . In a binary
(two-component) mixture, the component with the highest tendency to evaporate
is called the volatile component of the mixture . The other component is called the
non-volatile component of the mixture.

Distillation usually involves a series of stages in which vapor and liquid phases
come into contact and (ideally) achieve equilibrium . In general, the liquid and
vapor compositions for each component in the mixture are not the same in equi-
librium. In many cases the volatile component tends to concentrate in the vapor
phase, leaving the liquid richer in the non-volatile component . This provides the
basis for separation in distillation.

Figure 3 .1 depicts a typical 12-stage column for a continuous distillation pro-
cess . In this example, a binary mixture (feed) enters the column at stage 6.
Furthermore, there is a total condenser' at the top of the column and a par-
tial reboiler 2 at the bottom . In each stage liquid and vapor come into contact,
causing some of the liquid to evaporate and some of the vapor to condense . In
the column the liquid flows down due to the force of gravity, while the vapor flows
upward under the force generated by a slight pressure drop from stage to stage.
The vapor that reaches the top of the column is condensed in the total condenser
and part of the resulting liquid (reflux) is returned back to the tower, while the
rest of it is retrieved as the distillate product . An analogous situation occurs in the
partial reboiler where part of the liquid at the bottom of the column is retrieved
as the bottom product of the process and the rest of it is vaporized in the reboiler
and returned back to the tower. The net effect of the process is an increase in
the concentration of the volatile component in the vapor and of the non-volatile
component in the liquid.

The analysis used to describe distillation columns that accept as feed multi-
component mixtures is similar to the one used for binary distillation. In these
cases two of the components of the mixture with neighboring boiling points are
selected as the key components of the separation. Usually, the one with the lower
boiling point is called the light key while the other one is called the heavy key.
All the other components are called nonkeys . Under this description, distillation
causes most of the light key and all the more volatile nonkeys to appear in the

'A total condenser condenses all of its vapor input.
2A partial reboiler vaporizes part of its liquid input .

42

	

Figure 3 .1: A typical distillation column

]Food

Ra Su x

Condenser Unit

A

Stage 2

Stage 3

Stage 4

Stage 5

Stage 6

Stage 7

Stage S

Stage 9

Stags 10

Distillate;

Stags 1A

A

Stage 12

(Reboillor)
KEYS

	 Vapor Flow

Liquid Flow

stage 11 :	

C Dooms

43

Table 3.1 : Physical properties for multicomponent distillation input example.

Species

Normal Boiling

Point °C

Propane -42 .1

Isobutane -11 .7 — light key
n-Butane -0 .5 — heavy key
Isopentane 27 .8
n-Pentane 36 .1

distillate product, while most of the heavy key and all the less volatile nonkeys

end up in the bottoms. For example, if a distillation column accepts as input

the mixture shown in Table 3 .1 adapted from [54] and we specify Isobutane and

n-Butane as our light and heavy keys respectively, then we are going to end up

with a distillate product containing most of the Isobutane, all of the Propane and

some of the n-Butane . The bottom product will consist of most of the n-Butane,

some of the Isobutane and all of the Isopentane and n-Pentane.

3.3 Extractive Distillation

Extractive distillation involves the addition of a new component to a mixture in

order to facilitate the separation of the system by distillation [35] . The added

component modifies the equilibrium relations between the vapor and the liquid

phases in the mixture in a direction that favors the desired separation . Figure

3 .2 taken from [35] depicts a typical extractive distillation unit . This usually

involves two distillation columns . The first one is used to accomplish the desired

separation while the second one is used to recycle the added component . The

added component is usually refered to as the mass separating agent (MSA) or the

solvent . The need for recycling the solvent at a later stage dictates the use of a

solvent that is much less volatile than the original species . This facilitates the

separation of the MSA from the rest of the mixture in the second column.

44

Figure 3 .2: Extractive distillation unit for the separation of isobutane from
1-butene using furfural as the mass separating agent.

Isobutane

Condenser Unit 1
.

Condenser Unit 2.

Furfural

	

/

	

\

	

1-Butene

Isobutane
1-Butene

Makeup
Furfural

Extractive
Distillation
Tower

1R.cboilcn° 1

Furfural recycle

1R.cboilcn° 2

Solvent
Removal
Tower

45

3.4 Separation Properties of Substances

At the level of analysis we are using in OUZO, there are three major parameters that
describe the separation properties of substances in distillation : their equilibrium
ratios, their vapor pressures and their relative volatilities.

The equilibrium ratio of a substance A is defined as the ratio between the mole
fractions of A in two phases (gas and liquid in our case) at equilibrium conditions
[35] .

The vapor pressure for a substance at a specified temperature is the pressure
in which the liquid phase of the substance can exist in equilibrium contact with
its vapor [3].

Finally, the relative volatility between two substances A and B (a AB) is defined
as the ratio of their equilibrium ratios . In systems that obey Raoult's and Dalton's
laws, equilibrium ratios can be linked to their vapor pressures . Consequently, in
these systems the relative volatility is defined as the ratio of their vapor pressures.
Intuitively, the relative volatility of two substances A and B is a measure of the
difference in their tendencies to evaporate . A large value for aAB means that A
is much more volatile than B . The difficulty of separating two substances with
distillation is inversely proportional to their relative volatility.

3.5 Design of Separation Sequences in Chemical

Engineering

3 .5 .1 Overview of Process Synthesis

Process synthesis in Chemical Engineering is defined as [45]:

"an act of determining the optimal interconnection of processing units
as well as the optimal type and design of the units within a process
system."

Process synthesis is the initial and most creative part of process design . It is
also the part that is most crucial for the quality of the whole design procedure
[33] . What makes this area particularly interesting for AI research is the need for
integrating different types of knowledge in the process . These include knowledge
of the physical principles that describe chemical processes, along with the design
knowledge that is encapsulated in sets of heuristic rules and design strategies .

46

There are three important problems in process synthesis [42]:

1 . The Representation Problem consists of developing a representation of the
problem that is:

• Expressive . All the alternatives can be represented and reasoned about.

• Effective . The knowledge captured in the representation can guide the
system in solving design problems.

2. The Evaluation Problem consists of finding ways of efficiently evaluating
design alternatives.

3. The Strategy Problem is the development of strategies that optimize the
design process itself.

The following chapters describe a program that is able to deal with all these
problems in the context of separation system design.

Process synthesis research is usually classified according to the nature of the
problem it addresses . A common approach is to decompose the synthesis problem
into reaction path synthesis, heat exchanger network synthesis, separation system
synthesis, reactor network synthesis, entire flowsheet synthesis and control system
synthesis . OUZO focuses on the synthesis of separation systems and in particular on
the binary distillation design problem and on the synthesis of separation sequences
for multicomponent mixtures . Both problems are defined below.

3 .5 .2 The Binary Distillation Design Problem

The binary distillation design problem deals with the calculation of the number
of stages for achieving a desired separation in a binary distillation column, given
that the desired separation and the flow at some point in the column (usually the
reflux) are specified [35].

OUZO solves this problem using qualitative and numerical models of a binary
distillation column at steady-state, along with heuristics for locating the feed stage
and for detecting possible inconsistencies between the design specifications and the
results of the analysis phase .

47

3 .5 .3 Separation System Design for Multicomponent Mix-

tures

3 .5.3.1 Problem Definition

The synthesis of separation sequences is defined as follows [43]:

"Given a feed stream of known conditions (i .e., composition, flow rate,
temperature, pressure), synthesize systematically a process that can
isolate the desired (specified) products from the feed at minimum cost ."

There is a large number of possible designs associated with this problem . For a
mixture of N components to be separated into N pure component products using
Mseparation methods, the number of possible flowsheets is given by [64]:

R — [2(N —1)] ! MN-i
N!(N — 1)!

This equation is valid for sharp separators . A sharp separator splits a single feed
stream into two product streams . Each entering component in the feed exits in
only one product stream . The multicomponent mixture example in section 3 .2
(Table 3 .1) describes a sharp separation.

The version of the synthesis problem we concentrate on involves sharp sepa-
ration units . It also involves ideal columns, i .e. columns in which the liquid and
vapor phase in each stage are assumed to be in equilibrium . At its current stage,
this research covers only ordinary and extractive distillation methods.

Separation system synthesis has many industrial applications because separa-
tion processes are used in almost every chemical plant . The design problem can
be decomposed into two distinct subtasks [45]:

1. The Synthesis Task : Find the optimum sequence of separations and the
nature of each separator.

2. The Analysis Task : Find the optimum values for the design variables (sizes,
operating conditions) of each separator.

Searching for an optimal design usually involves the iterative execution of the
synthesis and analysis steps at varying levels of detail .

48

3 .5 .4 Design Methods

There are three major design methods for the design of separation systems [45]:

1. Heuristic methods which use rules-of-thumb derived from engineering ex-

perience and the insights in the physics and chemistry of the separation

methods.

2. Evolutionary methods which attempt to identify the best separation system

through a sequence of evolutionary improvements.

3. Algorithmic techniques which employ various algorithms developed in the

area of nonlinear mathematical programming. Algorithmic methods rely

explicitly on well-developed numerical methods that produce optimal design

solutions but are computationally inefficient and cumbersome to use in the

majority of cases.

Instances of both heuristic and evolutionary methods have been implemented

in OUZO . A heuristic strategy deals with the binary distillation design problem.

Evolutionary strategies are used in the design of separation sequences for multi-

component mixtures.

3 .5 .5 Evolutionary Methods

An evolutionary method [45] consists of the following steps:

1. Generate an initial separation sequence. Many of the heuristic methods for

developing separation sequences can be used at this stage in order to get a

sequence that is reasonably close to the optimal one.

2. Apply a set of evolutionary rules that modify the initial structure in ways

that are likely to lead to a better design.

Over the years a number of evolutionary strategies have been proposed [63],

[37], [38] . All of these approaches use overlapping subsets of nineteen major design

heuristics3 shown in Table 2 .1 taken from [45] for synthesizing the initial separation

sequence together with a set of evolutionary rules that differ between approaches.

Evolutionary methods are similar to case-based design methods . The main

difference between traditional case-based systems and these methods is the absence

'Chapter 5 describes these heuristics in detail .

49

of a case library in the later for coming up with an initial design . Instead they
use a set of general heuristics for creating a reasonably good initial case . These
heuristics have been abstracted from a large number of past designs, therefore
they correspond to ossified cases [51] . The adaptation of the initial case proceeds
in an analogous way with case-based systems via a set of evolutionary heuristics.

The design approach in this thesis can support evolutionary methods . As
an example two recent approaches [43], [54] have been implemented in OUZO . We
decided to focus on these strategies mainly because they are the most complex and
general evolutionary strategies in terms of the number of heuristic and evolutionary
rules and of the scope of the separation processes they support.

3 .5 .6 A Commonsense Interpretation of the General Sep-

aration Heuristics

This section presents a commonsense explanation of the heuristics in Table 2 .1 so
that readers without a chemical engineering background can understand more eas-
ily the implementation of these heuristics in OUZO (see chapter 5) . Given that the
purpose of a separation system is to isolate specific components from an input mix-
ture, one can represent the heuristics involved as instantiations of general filtering
strategies 4 . We developed the following eleven filtering strategies for describing
these heuristics:

3 .5.6.1 Preserve the purity of the product during the filtering process

Heuristic 1 is an instantiation of this rule . In distillation, for example, liquid flows
downward and vapor flows upward through the column . Because of the effects of
gravity, most of the contaminants tend to concentrate in the liquid phase, while
the vapor phase remains relatively pure . Therefore, overhead (distillate) products,
which result from the vapor phase at the top of a column, are more pure than the
bottom products, which result from the liquid phase at the bottom of a column.

4Thanks to Larry Birnbaum for suggesting filtering as the unifying idea for developing these
explanations .

50

3 .5 .6.2 Minimize the interference between the components during fil-
tering

Interference introduces additional noise in the input, therefore it results in a more
difficult filtering process . For example, in separation system design interference
means either undesirable reactions that take place during the process or thermally
unstable components . Consequently, heuristics 8 and 16 are attempts to prevent
substances in a mixture to associate during the separation process.

3 .5 .6.3 Avoid damaging the filters

Corrosive materials destroy the trays and the piping that are necessary to run a
separation unit . Therefore, according to heuristic 8 they should be removed from
the process as early as possible in order to localize possible tear only at the first
columns of a separation system.

3 .5 .6.4 Preserve the original specifications for the filtering process

For every process that violates the original design specifications (e .g. product
recovery, desired products) there has to be some other process at a later stage
that reinstates the initial specifications . For example, suppose that we want to
separate a mixture of four components A, B, C and D into a 3-component mixture
ABC and a single component D . . If instead of two mixtures, our final product
consists of three mixtures, mixture (1) containing A and mixture (2) containing
B and C and mixture (3) containing D, we have to design an extra process for
blending mixtures (1) and (2) in order to recover the desired 3-component mixture.
In short, violating the original specifications usually results in a more complicated
and, potentially, more expensive design.

Heuristics 11 and 17 are examples of this strategy.

3 .5 .6.5 Avoid extreme operating conditions in the filter

There are two major disadvantages with extreme operating conditions: (i) They
result in high energy requirements for the process and (ii) It is more expensive to
build a filter that can withstand extreme operating conditions (temperature and
pressure in the case of distillation) . Examples for this strategy include heuristics
18 and 19 .

51

3 .5.6.6 The fewer filters the better

Typically the cost of a filtering system increases with the number of components in
it . Therefore, processes that introduce more filters in a design should be avoided.
For example, extractive distillation processes in separation system design usually
involve two columns; one for introducing the mass separating agent (MSA) that
facilitates the desired separation and another one for removing the MSA from the
products . Because ordinary distillation processes involve only one column, they
usually result in cheaper flowsheets and therefore are prefered over extractive
distillation processes. Heuristics 15 and 12 are examples of this strategy.

3 .5.6.7 Prefer the filtering process with the smaller energy require-
ments

Filters use some form of energy to separate their input . The higher this energy
requirement is, the more expensive it is to run the filter . Research in separation
system design has found that columns in which the amounts of distillate and
bottoms products are almost the same have minimum heat requirements [43].
Furthermore, columns that operate close to ambient conditions require less energy
than the ones operating in extreme conditions . Heuristics 3, 18 and 19 capture
this line of reasoning.

3 .5.6.8 Base the filtering process on properties of the input for which
there is the maximum variance between the components

For example, distillation is based on the different tendency to evaporate between
the components of a mixture. The relative volatility provides a measure for this
tendency. The higher the relative volatility between two components, the easier it
is to separate them using distillation . Heuristics 9 and 10 instantiate this general
filtering rule in separation system design.

3 .5.6.9 Perform difficult filtering operations with the minimal amount
of input and the minimal number of components in the input

The cost of the filter increases with the amount of its input and the number of
components in it . More input results in greater operating and installation costs,
because the structure that is required to process the input becomes more compli-
cated . More components increase the noise in the input . Consequently, in sepa-
ration system design the most difficult separation should be done last (heuristic
2), since the input flow rates will be minimal in this case . In addition, separating

52

the more plentiful components first minimizes the amount of input to the rest of
the separation units, typically resulting in a cheaper design (heuristic 6) . In the
case of extractive distillation processes, the presence of an extra mass separating
agent increases the input flow rates downstream . Therefore, the MSA should be
removed as early as possible (heuristic 13) . Finally, the higher the number of
different components in the input, the more difficult it is to separate any combina-
tion of them . Consequently, high-recovery separations should be performed last,
because both the amounts and the number of components in the input is minimal
(heuristic 5).

3 .5 .6.10 If the filtering process introduces extra agents in the input,
they should be easily removed

Introducing extra agents in the input of a filter adds another level of complexity
in the design . For example, in separation system design extractive distillation
processes typically involve two distillation columns . The first one introduces the
mass separating agent (MSA) in the mixture, while the second one isolates the
MSA from it . In order to make the cost of this process appealing, the isolation of
the MSA in the second column should be an easy separation . Therefore, it should
not be the case that extractive distillation (a generally expensive process) has to
be used to isolate the MSA in the second column (heuristic 14).

3 .5 .6.11 Use the least expensive filter

It is not clear that the previous rules will always lead to the cheapest design. This
rule makes this design criterion explicit . Heuristics 7 is an instantiation of this
rule. Furthermore, heuristic 4 seems to be a very domain-specific instantiation
of this rule . Typically, the operating cost for a distillation column is directly
proportional to the amount of the distillate product . The distillate product is in
turn proportional to the vapor flow in the column . Therefore, columns with less
vapor flow usually result in cheaper designs.

3 .5 .7 The Cost of Adaptation in Evolutionary Strategies

The design of separation systems in chemical engineering provides a good example
of the computational costs associated with adaptation in evolutionary methods and
in case-based design in general . In particular, the cost of adaptation in this domain
increases with the number of levels at which design decisions have to be made
concurrently. For example, evolutionary methods can be decomposed into two

53

categories . The first one, known as retrofit design considers process decisions and
equipment decisions in parallel [27] . In separation systems, for example, retrofit
design considers both the actual process units (i .e. columns) and the separations
that take place in them (e .g . a binary mixture AB is separated into its individual
components A and B) during adaptation . This is not the case for the rest of
the evolutionary strategies in which process decisions are made first, followed by
equipment decisions . The later approach is known as grassroots design and in the
case of separation systems it supports a process by which a sequence of separation
tasks is constructed first, followed by the design of the equipment for each one of
them.

Because of these different decompositions of the design task, the upper limit
on the number of alternatives in separation system design is much higher for the
retrofit than for the grassroots approach . In particular, if S(N)5 is the number
of possible sequences for separating a N-component mixture into its individual
components in the grassroots case, the number of possible retrofit designs for
the same case assuming that we already use N-1 columns is (N-1)!S(N), while
the number of possible sequences with one spare column in addition to the N-
1 existing ones is NxN!S(N) [27] . Figure 3 .3 explains why this is true for the
separation of a 4-component mixture into its individual components . A, B, C and
D are the individual mixture components . The oval shapes represent distillation
columns . Part (a) of the figure indicates one possible sequence of separation tasks
in grassroots design (the A/BCD, BCD, C/D sequence) . For each such sequence
of 3 columns, there are 3! alternatives in the retrofit case corresponding to all the
possible permutations of the three existing columns. Parts (bl), (b2) and (b3)
of Figure 3.3 show three of the six alternatives that have to be examined in the
retrofit case . Furthermore, current analysis methods are tailored for grassroots
design, making the analysis in the retrofit case significantly harder.

This example indicates that although a particular design method (e .g . evolu-
tionary or case-based design) can help in reducing the amount of search for finding
an optimal design, an equally important parameter that improves performance is
the structuring of the design task in ways that allow decisions at different levels to
be taken independently. The later is independent of the choice of a design method
and it argues for a compositional modeling [15] style of analysis that allows the
construction of physical models that support the decision process at different lev-
els of abstraction (e .g. at the process or the equipment level in separation system
design) . Case-based design systems have little to offer here, since they focus on
the design method. Our approach on the other hand offers a broader account

5S(N) is given by equation 3 .1 .

54

Figure 3.3 : The difference in the number of alternatives in grassroots and retrofit
design .

B

	

C

A B C D
(a)

B C D

	

C D

	

D

B

	

C

A. B C D

B C D

	

C D

B C

A. B C D
(b2)

	B C D

	

C D

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

	

.

C

A. B C D
(b6)

C D

	

C D

55

for design that is able to support different design methods and a compositional

modeling approach for the analysis phase in design.

The evolutionary strategies currently implemented in OUZO support the grass-

roots design approach .

Chapter 4

Representing Physical Knowledge

in OUZO

56

57

4.1 Physical Knowledge and Physical Models

Central to all the reasoning styles in science or engineering is the creation of
representations that capture the understanding that engineers or scientists have
about physical phenomena . These representations comprise the physical knowledge
for a domain . Physical knowledge is organized around models, i .e . structured
descriptions of the phenomena of interest . Each model contains:

• The constraint relations between the parameters of the system . We refer to
these relations as the physical principles of a domain, since they provide the
basis for understanding physical phenomena . Examples of physical principles
include Newton's second law of motion, Ohm's Law, the relation between
the phases of a substance at equilibrium, etc.

• Sets of modeling assumptions under which the physical principles in a domain
are valid. These assumptions are used to construct simplified descriptions
of the phenomena of interest . Examples include bodies that move with
velocities much lower than the speed of light in the case of Newton's Law or
ideal resistors in the case of Ohm's Law, etc.

• Sets of relevant features for the phenomena of interest . These include the
introduction of quantities that measure important attributes of the system
we are examining (e.g . quantities that measure cost in the case of design)
along with methods for calculating them.

There are many ways in which models may vary from each other . Some of
these include the ontologies they use, their scope, the domain of applicability, their
accuracy and the resolution they offer [67].

The scope of a model refers to the range of phenomena it describes . Its domain
of applicability specifies the constraints and/or the parameter values under which
the model is valid . The accuracy of the model indicates how close are the model
predictions with the observed behavior.

In terms of ontologies, there are two main modeling approaches : process-
centered and device-centered ontologies . Process-centered ontologies [18] postulate
a set of processes as the agents of causation in the world . For example, the boiling
process is responsible for the conversion of water into steam in the kettle I forgot
on the stove while writing this piece s . Device-centered ontologies [10], [70] view
physical systems as networks of components, the behavior of which is specified

s Ooops!

58

by a set of internal laws . For example, a circuit can be modeled as a network of
electrical components (e .g., transistors, resistors, etc) which can be analyzed in
isolation using sets of equations that correspond to different operating regions or
states.

In terms of resolution there are two kinds of models : qualitative and numerical.

Numerical models contain systems of numerical relations (equations or inequali-
ties) between the parameters of a system . Qualitative models include qualitative
abstractions of the relations in a numerical model, the causal dependencies be-
tween its parameters and explicit representations of the modeling assumptions
used to describe a physical system.

The following sections describe a set of qualitative and numerical models for
separation processes . The scope of these models extends to ordinary distilla-
tion processes for binary mixtures along with ordinary and extractive distillation
columns for multicomponent mixtures.

The domain of applicability for our models includes ideal columns for binary
mixtures and sharp separation units for multicomponent mixtures.

In terms of accuracy, the models we are using provide approximate descriptions
for separation processes . These descriptions are used in conceptual design to
generate cost estimates for the design alternatives.

4.2 Qualitative Models

Qualitative models and reasoning techniques attempt to analyze the behavior of
physical systems without resorting to numerical computations . This is typically
done by partitioning the range of quantity values into a number of relevant subre-
gions . For example, mapping the values of quantities into their signs is a common
technique in this reasoning style.

OUZO investigates the use of process-centered qualitative models in capturing
the physical knowledge used in the design of separation systems. We use Qualita-
tive Process Theory (QPT) [18] as our modeling language . Appendix A provides
a brief review of QPT for readers not familiar with it . QPT is especially suitable
for modeling chemical processes, because its process-centered ontology is able to
capture the physical principles on which unit operations in Chemical Engineering
are based [6] .

59

4 .2 .1 Qualitative Analysis

There are two major styles of qualitative analysis : (i) qualitative simulation and
(ii) model construction . Qualitative simulation generates qualitative descriptions
for the behavior of a physical system . The Qualitative Process Engine (QPE)
[17] is an example of a system that is based on QPT and produces qualitative
simulations of physical systems.

Model construction generates models that are consistent with a domain model
and a scenario. The domain model contains qualitative descriptions of the do-
main's physics. The scenario contains a structural description of the system that
is analyzed (i .e . what objects exist and how they are related) along with the mod-
eling assumptions underlying the analysis . Model construction is usually a subset
of what a qualitative simulator does . SIMGEN [21] is an example of a system
that uses this kind of analysis . OUZO uses a subset of the qualitative analysis in
SIMGEN.

4.3 Binary Distillation Columns

4 .3 .1 Overview

The following sections provide a detailed description of the qualitative model for a
binary distillation column. The model we describe below serves two purposes . The
first one is to provide a way of creating simulators in SIMGEN for the dynamic
behavior of binary distillation columns . Section 4 .3 .2 describes the model compo-
nents that support this task . The second one is to provide the physical knowledge
that is necessary to solve the design problem for binary distillation columns [35].
The part of the model used in OUZO consists of the dynamic behavior component
(Section 4 .3.2) overlayed by the model fragments implementing the steady-state
analysis (Section 4 .3.3).

The qualitative domain theory consists of three main objects ; mixtures, stages
and column . In addition, there are two kinds of processes active ; material flows
and phase transition processes . At each object level there are a series of operations
taking place during design . These are:

• Operations at the Mixture Level.

1. Introduce quantities related to the pressure, temperature, bubble point
and dew point of the mixture .

60

(defPredicate Non-Negative-Quantity (defPredicate Positive-Quantity (defPredicate Negative-Quantity
(Quantity ?self)

	

(Quantity ?self)

	

(Quantity ?self)
(not (less-than (A ?self) ZERO)))

	

(greater-than (A ?self) ZERO))

	

(less-than (A ?self) ZERO))

Figure 4 .1: Predicates refering to quantities in the distillation model.

2 . Introduce quantities for the total mass of the mixture and its compo-
nents.

• Operations at the Stage Level.

1. Activate the gas and liquid flows between stages.

2. Enforce a set of modeling assumptions for each stage (e .g ., equilibrium
stages, negligible vapor holdup, constant molal overflow, etc).

3. Relate the mass of the gas and vapor at each stage to the capacity of
the stage.

4. Establish the hudraulic properties of the stage.

• Operations at the Column Level.

1. Establish operating conditions for the column (pressure, temperature).

2. Enforce the constant relative volatility assumption.

In the rest of the thesis, the words in emphasis refer to predicate names or
variables used in the figures.

4 .3 .2 The Dynamic Behavior of Binary Distillation Columns

Predicates . The defPredicate form in QPT specifies consequences of a single
antecedent predicate . The first argument to defPredicate is the predicate whose
consequences are being defined . The rest of the form includes a set of consequences
which should be believed when the predicate is believed . Figure 4 .1 defines some of
the predicates that relate to the quantities in the distillation model . For example,
the Positive-Quantity predicate indicates that a positive quantity is a quantity
with a positive amount . The variable ?self is a special variable in QPE that is
bound to the object of the model fragment it belongs to (in this case the object of
the defPredicate form) .

61

(defentity (Physob ?obj))

(defentity (Contained-Binary-Mixture (2-C-S (?substance) ?substance2) ?phase ?can))
(Physob (2-C-S (?substancel ?substance2) ?phase ?can))

(Quantity (Temperature (2-C-S (?substancel ?substance2) ?phase ?can)))
(Non-Negative-Quantity (Amount-of (2-C-S (?substancel ?substance2) ?phase ?can))))

(defentity (Contained-Binary-Liquid-Mixture (2-C-S (?substancel ?substance2) liquid ?can))

(Contained-Binary-Mixture (2-C-S (?substancel ?substance2) liquid ?can))
(Stage ?can)

(Non-Negative-Quantity (Amount-of-in ?substancel (2-C-S (?substancel ?substance2) liquid ?can)))
(Positive-Quantity

(TBubble (2-C-S (?substancel ?substance2) liquid ?can))))

(defentity (Contained-Binary-Gas-Mixture (2-C-S (?substancel ?substance2) gas ?can))

(Contained-Binary-Mixture (2-C-S (?substancel ?substance2) gas ?can))
(Stage ?can)

(Non-Negative-Quantity (Amount-of-in ?substancel (2-C-S (?substancel ?substance2) gas ?can)))
(Positive-Quantity (TDew (2-C-S (?substancel ?substance2) gas ?can))))

(defentity (Container ?can)

(Non-Negative-Quantity (Pressure ?can)))

(defentity (Stage ?can)
(Container ?can)
(Positive-Quantity (Beta ?can)))

(defentity (Distillation-Column ?column)

(Container ?column))

Figure 4.2 : The objects in the binary distllation model .

62

Objects . The model contains the following kinds of objects : physobs, con-
tainers, stages, distillation-columns and contained-mixtures (either in the vapor
or liquid phase) . Figure 4.2 provides the definitions for all the objects in the
qualitative model . A physob is the simplest kind of object in the domain theory.

In order to describe all the fluid pieces of stuff that are present in a column
we use the contained stuff ontology [11] . More specifically, a Contained-Binary-
Mixture is defined by the substances it is composed of, by the phase it is in and by
the container which holds it . This definition is similar to the one used for contained
stuffs in [12] . The following function denotes a contained-binary-mixture:

2-C-S : (componentl, component2) x phase x container —>
—> Contained-Binary-Mixture

Contained-Binary-Liquid-Mixtures and Contained-Binary-Gas-Mixtures are spe-
cializations of Contained-Binary-Mixtures . For each one of them we define the
quantity Amount-of-in for a component to correspond to the number of moles of
the component in the particular mixture and the Amount-of quantity to be the
total number of moles for both components in the mixture.

The quantity TBubble for a Contained-Binary-Liquid-Mixture corresponds to
the bubble point of the mixture . The bubble point is the temperature in which the
mixture begins to vaporize as its temperature is increased . An analogous quantity
for gas mixtures is the TDew quantity which corresponds to the dew point for the
mixture . This is the temperature at which the mixture starts condensing as its
temperature is decreased.

A stage object corresponds to a stage in the column and is a specialization of
a container. Defining each stage in a column to be a container allows us to talk
about the liquid or vapor in it using the contained stuff ontology . Associated with
each stage is a constant Beta which is the hydraulic time constant associated with
the liquid flow through this stage.

A distillation-column is also defined to be a type of container . Each stage
object in the model is defined to be Part-of a given column.

Object Views . Figure 4 .3 describes the views associated with binary mix-
tures in the model . When the Amount-of a given mixture is positive we say that
the Binary-Mixture view exists . As a result, a set of views corresponding to the
phase of the given mixture becomes active (Binary-Gas(Liquid)-Mixture) . When
a mixture exists we can talk about the mole fraction for each component in the
mixture . This quantity corresponds to the ratio of the moles of the specific com-
ponent over the total moles of the various components in the mixture . When a
liquid mixture exists we can talk about its Initial-Amount-of at each stage . This

63

(defview (Binary-Mixture ?mixture)

Individuals ((?mixture :Type Contained-Binary-Mixture
:Form (2-C-S (?substance) ?substance2) ?phase ?can)))

QuantityConditions ((greater-than (A (Amount-of ?mixture)) ZERO))
Relations ((Positive-Quantity (Mole-Fraction ?substancel ?mixture))

(Positive-Quantity (Mole-Fraction ?substance2 ?mixture))

(Qprop- (Mole-Fraction ?substance2 ?mixture) (Mole-Fraction ?substancel ?mixture))))

(defView (Binary-Gas-Mixture (2-C-S (?substance) ?substance2) gas ?stage))
Individuals ((?stage :type Stage)

(?mixture
:Conditions

;; ?mixture is an instance of the Binary-Mixture view.
((View-Instance Binary-Mixture) ?mixture)

;; This specific instance of the Binary-Mixture view has its mixture variable bound to
;; the 2-C-S function described below.

(?mixture MIXTURE (2-C-S (?substance) ?substance2) gas ?stage))
(More-Volatile ?substancel Than ?substance2)))

QuantityConditions ((Active ?mixture)))

(defView (Binary-Liquid-Mixture (2-C-S (?substance) ?substance2) liquid ?stage))
Individuals ((?stage :type Stage)

(?mixture

:Conditions
((View-Instance Binary-Mixture) ?mixture)

(?mixture MIXTURE (2-C-S (?substance) ?substance2) liquid ?stage))
(More-Volatile ?substancel Than ?substance2)))

QuantityConditions ((Active ?mixture))
Relations ((Positive-Quantity

(Initial-Amount-of (2-C-S (?substance) ?substance2) liquid ?stage)))))

Figure 4.3: Views associated with objects in the binary distillation model .

64

quantity allows us to specify initial conditions for the liquid mass at each stage in
binary column simulations.

The predicate Active in the view definitions holds whenever the predicate it
accepts as an argument holds . For example, in the case of the Binary-Gas-Mixture
view it is active when the view Binary-Mixture denoting a gas mixture is active.

Modeling Assumptions . Four major modeling assumptions are used to
simplify the qualitative description for the process (see Figs 4 .4, 4.5, 4 .6):

1. Negligible Vapor Holdup . We assume that the amount of vapor at each
stage (the vapor holdup for this stage) is zero. Consequently, at each stage
the holdup for the volatile component in the liquid is equal to the total
holdup for this component in the vapor and the liquid . The Negligible-
Vapor-Hold Up view (Fig . 4 .4) describes this relation. The negligible vapor
holdup assumption is enforced when the predicate (Consider (Negligible-
Vapor-HoldUp-in ?column)) is asserted in the scenario.

2. Constant-Molal Overflow. At each stage in the column the liquid and the
vapor phase come into contact, causing some of the liquid to evaporate
and some of the vapor to condense . If we assume that the molar heats
of vaporization 2 of the two components are the same, then for every mole
of vapor that condenses we have a mole of liquid that vaporizes . This as-
sumption together with the negligible vapor holdup assumption cause the
vapor flow rates to equalize throughout the column . The view Conditions-
for-Stage-Flows (Fig . 4 .5) asserts the consequences of the constant molal
overflow assumption for each stage in the column . The Constant-Molal-
Overflow assumption is enforced when the predicate (Consider (Constant-
Molal-Overflow-in ?column)) is asserted in the scenario.

3. Constant Relative Volatility . The relative volatility of a binary mixture
is relatively insensitive to changes in pressure, temperature and composi-
tion . Therefore, it is usually a good assumption to consider a constant
relative volatility throughout a binary distillation column . The Constant-
Relative- Volatility-Conditions perspective (Fig . 4 .6) describes the conditions
under which this assumption is valid . The view Constant-Relative- Volatility-
Consequences (Fig . 4 .6) asserts the consequences of this assumption in the
model by making the relative volatility between the mixture components

2The molar heat of vaporization for a component is the heat required to vaporize one mole of
this component .

65

;; Describes qualitatively the relation of the total holdup for the volatile component at each stage
;; to the sum of the amounts of this component in the liquid and the vapor mixtures at each stage.
(defView (Stage-Operating-Features ?stage (2-C-S (?substance) ?substance2) liquid ?stage))

Individuals ((?stage Type Stage
Conditions (not (Reboiler-Stage ?stage))

(not (Condenser-Stage ?stage)))
(?liquid

Conditions ((View-Instance Binary-Mixture) ?liquid)
(?liquid MIXTURE (2-C-S (?substance) ?substance2) liquid ?stage))

(More-Volatile ?substancel Than ?substance2))
(?vapor

Conditions ((View-Instance Binary-Mixture) ?vapor)
(?vapor MIXTURE (2-C-S (?substance) ?substance2) gas ?stage))))

QuantityConditions ((Active ?liquid) (Active ?vapor))
Relations ((Quantity (HoldUp-of-Material ?substancel ?stage))

(Q= (HoldUp-of-Material ?substancel ?stage)
(+ (Amount-of-in ?substancel (2-C-S (?substance) ?substance2) liquid ?stage))

(Amount-of-in ?substancel (2-C-S (?substance) ?substance2) gas ?stage))))))

;; Describes the approximations that the Negligible Vapor Hold Up assumption introduces at each stage . In

;; particular under this assumption the total holdup of the volatile component in the liquid is equal to the
;; total holdup for this component in the vapor and liquid phase at each stage . If this assumption was not

;; valid the holdup of the volatile component in the liquid at each stage would have been equal to the Amount-of-in
;; for this component at this stage and we would not have to create two separate quantities for this parameter.

(defView (Negligible-Vapor-HoldUp ?stage)
Individuals ((?column :Type Distillation-Column

:Conditions (Consider (Neglect Vapor-HoldUp-in ?column)))
(?stage Type Stage

Conditions (not (Reboiler-Stage ?stage))
(not (Condenser-Stage ?stage))

(Part-of ?column ?stage))
(?l-mix

Conditions ((View-Instance Binary-Mixture) ?1-mix)
(?l-mix MIXTURE (2-C-S (?substance) ?substance2) liquid ?stage)))

(?g-mix

Conditions ((View-Instance Binary-Mixture) ?g-mix)
(?g-mix MIXTURE (2-C-S (?substance) ?substance2) gas ?stage))))

QuantityConditions ((Active ?1-mix) (Active ?g-mix))
Relations ((Q= (HoldUp-of ?substancel (2-C-S (?substance) ?substance2) liquid ?stage))

(HoldUp-of-Material ?substancel ?stage))))

Figure 4.4 : View and perspective associated with the negligible vapor holdup

assumption .

66

;; It describes the consequences of assuming equilibrium between the vapor and liquid phase at each stage.
(defView (Binary-Vapor-Liquid-Equilibrium ?stage)

Individuals ((?column Type Distillation-Column)
(?stage Type Stage

Conditions (Part-of ?column ?stage)

(Consider (Equilibrium-Stage ?stage)))
(?vapor

Conditions ((View-Instance Binary-Mixture) ?vapor)
(?vapor MIXTURE (2-C-S (?substancel ?substance2) gas ?stage))

(More-Volatile ?substancel Than ?substance2))
(?liquid

Conditions ((View-Instance Binary-Mixture) ?liquid)
(?liquid MIXTURE (2-C-S (?substancel ?substance2) liquid ?stage))))

QuantityConditions ((Active ?vapor) (Active ?liquid))
Relations ((Quantity (Alpha (2-C-S (?substancel ?substance2) liquid ?stage)

(2-C-S (?substancel ?substance2) gas ?stage)))
(Qprop (Mole-Fraction ?substancel (2-C-S (?substancel ?substance2) gas ?stage))

(Alpha (2-C-S (?substancel ?substance2) liquid ?stage)
(2-C-S (?substancel ?substance2) gas ?stage)))

(Qprop (Mole-Fraction ?substancel (2-C-S (?substancel ?substance2) gas ?stage))
(Mole-Fraction ?substancel (2-C-S (?substancel ?substance2) liquid ?stage)))))

(defView (Conditions-for-Stage-Flows ?stage ?liquid)
Individuals ((?stage Type Stage

Conditions (not (Reboiler-Stage ?stage))
(not (Condenser-Stage ?stage)))

(?column Type Distillation-Column
Conditions (Part-of ?column ?stage))

(?liquid
Conditions ((View-Instance Binary-Mixture) ?liquid)

(?liquid MIXTURE (2-C-S (?substance) ?substance2) liquid ?stage))
(More-Volatile ?substancel Than ?substance2))

(?in-g-f Conditions ((Process-Instance Gas-Flow) ?in-g-f)
(?in-g-f DST ?stage))

(?out-g-f :Conditions ((Process-Instance Gas-Flow) ?out-g-f)
(?out-g-f SRC ?stage))

(?out-l-f :Conditions ((Process-Instance Liquid-Flow) ?out-l-f)

(?out-l-f SRC ?stage)))
Preconditions ((Consider (Constant-Molal-Overflow-in ?column))

(Consider (Neglect Vapor-HoldUp-in ?column)))
QuantityConditions ((Active ?in-g-f) (Active ?out-g-f) (Active ?liquid) (Active ?out-l-f))

Relations ((Q= (Flow-Rate ?out-g-f) (Flow-Rate ?in-g-f))
(Qprop (Flow-Rate ?out-l-f)

(Amount-of (2-C-S (?substance) ?substance2) liquid ?stage)))))

Figure 4 .5 : Views associated with the equilibrium stages and constant molal

overflow assumptions .

67

(defPerspective (Constant-Relative-Volatility-Conditions ?column)

Individuals ((?column
:Type Distillation-Column
:Conditions (Consider (Negligible-Pressure-Drop-in ?column))

(Consider (Negligible-Temperature-Drop-in ?column))
(Consider (Ideal-System ?substancel ?substance2 :in ?column))))

Relations ((Constant-Relative-Volatility ?substancel ?substance2 :in ?column)))

(defView (Constant-Relative-Volatility-Consequences
?column (2-C-S (?substancel ?substance2) liquid ?stage)

(2-C-S (?substancel ?substance2) gas ?stage))
Individuals ((?column :Type Distillation-Column)

(?stage :Type Stage
:Conditions (Part-of ?column ?stage)

(Consider (Equilibrium-Stage ?stage)))
(?vapor

:Conditions ((View-Instance Binary-Mixture) ?vapor)
(?vapor MIXTURE (2-C-S (?substancel ?substance2) gas ?stage))

(Constant-Relative-Volatility ?substancel ?substance2 :in ?column))
(?liquid

:Conditions ((View-Instance Binary-Mixture) ?liquid)
(?liquid MIXTURE (2-C-S (?substancel ?substance2) liquid ?stage))))

QuantityConditions ((Active ?vapor) (Active ?liquid))

Relations ((Quantity (Constant-Alpha ?column))
(Q= (Alpha (2-C-S (?substancel ?substance2) liquid ?stage)

(2-C-S (?substancel ?substance2) gas ?stage))
(Constant-Alpha ?column))))

Figure 4 .6 : View and perspective associated with the constant relative volatility

assumption .

68

at each stage (the quantity Alpha) equal to some constant (the quantity
Constant-Alpha).

4 . Equilibrium stages . We assume that each stage in the column is an equilib-
rium stage . This means that the vapor and liquid streams that leave each
stage are in equilibrium with each other . The view Binary- Vapor-Liquid-
Equilibrium (Fig . 4 .5) describes the relation between the mole fractions of
the more volatile component in the vapor and the liquid phase at equilib-
rium. The equilibrium stages assumption is introduced when the predicate
(Consider (Equilibrium-Stages-in ?column)) is asserted in the scenario.

The conditions under which these assumptions are valid are described in more
detail in [35], [22], [36], [24] . This set of idealizations is commonly used in describ-
ing the dynamic behavior of staged binary distillation columns for nearly ideal
systems operating at `medium' pressures . With these assumptions our column
model captures the effects that changes in the feed composition or in the liquid
and gas flow rates have in the behavior of the column . This model is not able to
capture the effects of changes in the temperature or the pressure under which the
column operates.

Constant molal overflow, constant relative volatility, equilibrium stages and
steady-state assumptions are standard simplifications used in solving the design
problem for binary columns [35] . These assumptions along with the negligible
vapor holdup are also typical assumptions made in simple models for the dynamic
behavior of binary columns [36] . All these assumptions are always in force for all
the tasks the model is used in (design & simulation).

Fluid mass flows . Figures 4 .7, 4 .8, 4 .9 and 4.10 contain the model fragments
described in this section . There are two kinds of fluid mass flows in a distillation
column, gas and liquid flows . We represent these flows in a simple general way
with the Gas-Flow and Liquid-Flow processes respectively.

Both flows transfer stuff from a source to a target container . In order for the
flow to occur, stuff has to exist in the source container and a gas or liquid path
must connect the two containers . Both processes can become active in two ways:

1. When a certain set of quantity conditions holds (e .g . a pressure drop between
the source and the target container in the case of gas flow) . These conditions
are described in the Gas(Liquid)-Flow-Conditions view (Figures 4 .7 and 4.9).

2. When the occurence of these process is explicitly asserted with the (Consider
(Gas(Liquid)-Flow-Between ?source-mixture ?target-mixture)) predicate in
the scenario .

69

;; Gas ,flow can be active either when there is a pressure drop between stages

(defView (Gas-Flow-Conditions ?src ?dst ?src-gas)
Individuals ((?src Type Container)

(?dst Type Container
Conditions (Gas-Path ?src ?dst))

(?src-gas Conditions ((View-Instance Binary-Mixture) ?src-gas)
(?src-gas MIXTURE (2-C-S (?substance) ?substance2) gas ?src))

(More-Volatile ?substancel Than ?substance2))
(?dst-gas Bind (2-C-S (?substance) ?substance2) gas ?dst)))

QuantityConditions ((Active ?src-gas)
(greater-than (A (Pressure ?src)) (A (Pressure ?dst))))

Relations
((Satisfied-Gas-Flow-Conditions-Between (2-C-S (?substance) ?substance2) gas ?src) ?dst-gas)))

. . or when we explicilty assert that it is active in the scenario.
(defPerspective (Gas-Flow-Assumption ?src ?dst ?src-gas)

Individuals ((?src Type Container)
(?dst Type Container

Conditions (Gas-Path ?src ?dst))
(?src-gas

:Conditions
((View-Instance Binary-Mixture) ?src-gas)

(?src-gas MIXTURE (2-C-S (?substance) ?substance2) gas ?src))
(More-Volatile ?substancel Than ?substance2)

(Consider (Gas-Flow-Between (2-C-S (?substance) ?substance2) gas ?src)
(2-C-S (?substance) ?substance2) gas ?dst))))

(?dst-gas Bind (2-C-S (?substance) ?substance2) gas ?dst)))

Relations
((Satisfied-Gas-Flow-Conditions-Between (2-C-S (?substance) ?substance2) gas ?src) ?dst-gas)))

(DefClosed-Predicate Satisfied-Gas-Flow-Conditions-Between)

Figure 4 .7 : View and perspective associated with gas flow .

70

(defProcess (Gas-Flow ?src ?dst ?src-gas ?dst-gas)

Individuals ((?src :Type Container)
(?dst :Type Container

:Conditions (Gas-Path ?src ?dst))
(?src-gas

:Conditions
((View-Instance Binary-Mixture) ?src-gas)

(?src-gas MIXTURE (2-C-S (?substancel ?substance2) gas ?src))
(More-Volatile ?substancel :Than ?substance2)

(Satisfied-Gas-Flow-Conditions-Between
(2-C-S (?substancel ?substance2) gas ?src)

(2-C-S (?substancel ?substance2) gas ?dst)))
(?dst-gas :Bind (2-C-S (?substancel ?substance2) gas ?dst)))

QuantityConditions ((Active ?src-gas))
Relations ((Introduces ?dst-gas)

(Contained-Binary-Gas-Mixture ?dst-gas)
(Positive-Quantity (Flow-Rate ?self))
(Quantity (Mass-Flow-of ?substancel

(2-C-S (?substancel ?substance2) gas ?src)
?self))

(Q= (Mass-Flow-of ?substancel
(2-C-S (?substancel ?substance2) gas ?src)

?self)
(* (Flow-Rate ?self)

(Mole-Fraction ?substancel (2-C-S (?substancel ?substance2) gas ?src)))))
Influences ((I+ (Amount-of ?dst-gas) (A (Flow-Rate ?self)))

(I- (Amount-of (2-C-S (?substancel ?substance2) gas ?src)) (A (Flow-Rate ?self)))
(I- (Amount-of-in ?substancel (2-C-S (?substancel ?substance2) gas ?src))

(A (Mass-Flow-of ?substancel

(2-C-S (?substancel ?substance2) gas ?src)
?self)))

(I+ (Amount-of-in ?substancel ?dst-gas)
(A (Mass-Flow-of ?substancel

(2-C-S (?substancel ?substance2) gas ?src)
?self)))))

Figure 4.8 : The gas flow process .

71

(defView (Liquid-Flow-Conditions ?src ?dst ?src-lqd)
Individuals ((?src Type Container)

(?dst Type Container
Conditions (Liquid-Path ?src ?dst))

(?src-lqd
:Conditions ((View-Instance Binary-Mixture) ?src-lqd)

(?src-lqd MIXTURE (2-C-S (?substance) ?substance2) liquid ?src))
(More-Volatile ?substancel Than ?substance2))

(?dst-lqd :Bind (2-C-S (?substance) ?substance2) liquid ?dst)))
QuantityConditions ((Active ?src-lqd)

(greater-than (A (Pressure ?src)) (A (Pressure ?dst))))
Relations

((Satisfied-Liquid-Flow-Conditions-Between
(2-C-S (?substance) ?substance2) liquid ?src) ?dst-lqd)))

(defPerspective (Liquid-Flow-Assumption ?src ?dst ?src-lqd)
Individuals ((?src Type Container)

(?dst Type Container
Conditions (Liquid-Path ?src ?dst))

(?src-lqd
:Conditions

((View-Instance Binary-Mixture) ?src-lqd)
(?src-lqd MIXTURE (2-C-S (?substance) ?substance2) liquid ?src))

(More-Volatile ?substancel Than ?substance2)
(Consider (Liquid-Flow-Between

(2-C-S (?substance) ?substance2) liquid ?src)
(2-C-S (?substance) ?substance2) liquid ?dst))))

(?dst-lqd :Bind (2-C-S (?substance) ?substance2) liquid ?dst)))

Relations
((Satisfied-Liquid-Flow-Conditions-Between

(2-C-S (?substance) ?substance2) liquid ?src) ?dst-lqd)))

(DefClosed-Predicate Satisfied-Liquid-Flow-Conditions-Between)

Figure 4 .9: View and perspective associated with liquid flow .

72

(defProcess (Liquid-Flow ?src ?dst ?src-lqd ?dst-lqd)
Individuals ((?src :Type Container)

(?dst :Type Container
:Conditions (Liquid-Path ?src ?dst))

(?src-lqd
:Conditions

((View-Instance Binary-Mixture) ?src-lqd)
(?src-lqd MIXTURE (2-C-S (?substancel ?substance2) liquid ?src))

(More-Volatile ?substancel :Than ?substance2)
(Satisfied-Liquid-Flow-Conditions-Between

(2-C-S (?substancel ?substance2) liquid ?src)
(2-C-S (?substancel ?substance2) liquid ?dst)))

(?dst-lqd :Bind (2-C-S (?substancel ?substance2) liquid ?dst)))
QuantityConditions ((Active ?src-lqd))

Relations ((Introduces ?dst-lqd)
(Contained-Binary-Liquid-Mixture ?dst-lqd)

(Positive-Quantity (Flow-Rate ?self))
(Positive-Quantity (Initial-Liquid-Flow-Rate ?self))
(Quantity (Mass-Flow-of ?substancel

(2-C-S (?substancel ?substance2) liquid ?src)
?self))

(Q= (Mass-Flow-of ?substancel
(2-C-S (?substancel ?substance2) liquid ?src)

?self)
(* (Flow-Rate ?self)

(Mole-Fraction
?substancel (2-C-S (?substancel ?substance2) liquid ?src)))))

Influences ((I+ (Amount-of ?dst-lqd) (A (Flow-Rate ?self)))
(I- (Amount-of (2-C-S (?substancel ?substance2) liquid ?src)) (A (Flow-Rate ?self)))
(I- (Amount-of-in ?substancel (2-C-S (?substancel ?substance2) liquid ?src))

(A (Mass-Flow-of ?substancel
(2-C-S (?substancel ?substance2) liquid ?src)

?self)))
(I+ (Amount-of-in ?substancel ?dst-lqd)

(A (Mass-Flow-of ?substancel
(2-C-S (?substancel ?substance2) liquid ?src)

?self)))))

Figure 4.10 : The liquid flow process .

73

Currently, flows are activated using the second option . There are two reasons
for this:

1. The liquid flows down the column due to gravity and not because of some
pressure difference between the stages . Simple column models such as this
one do not consider the effects of gravity in liquid flow.

2. As the definition of the Constant-Relative- Volatility view indicates (Fig. 4.6),
the constant relative volatility assumption is valid if there are no significant
pressure changes throughout the column. This is possible if the pressure
drop for the vapor at each stage is negligible . Asserting the existence of a
pressure drop between successive stages would activate the Gas-Flow process
but it would contradict the constant relative volatility assumption.

The Def Closed-Predicate predicate (Figs 4.9 and 4 .7) is a form of negation by
failure, causing the relation specified as its argument not to be believed unless it
is explicitly known to be true.

Each flow process introduces two quantities in its Relations field (Fig . 4.8).
The Flow-Rate quantity corresponds to the flow rate of the total mass for each
phase. The Mass-Flow-of quantity provides a way of refering to the flow rate for
each of the substances at each phase . The Introduces predicate in the relations
field for both processes declares its argument to be an individual which physically
exists.

There are two direct influences per flow process . The Amount-of quantity for
each phase is directly influenced by the flow rate . The Amount-of-in quantity for
each component is directly influenced by the mass flow for this component.

Normally, there are two gas and two liquid flows active for each stage (Fig.
4 .11) . Vapor is rising from the stage immediately below the current stage, vapor
is flowing from the current stage to the one immediately above it, liquid is flowing
in the current stage from the one immediately above it and finally liquid is flowing
from the current stage to the stage immediately below it.

Phase Transition Processes . Figures 4 .12, 4 .13, 4.14 and 4 .15 contain the
model fragments described in this section . The constant molal overflow assumption
allows us to ignore the condensation and vaporization phenomena for each stage
in the column. Under this assumption, the condensation rate for the vapor at each
stage is equal to the vaporization rate for the liquid . Consequently, the overall
vapor and liquid stuff at each stage (the total holdup for this stage) remains
unchanged, since the effects of condensation and vaporization cancel each other.
However, we still have to model the condensation process for the condenser at the

74

Figure 4 .11: Model fragments that decribe the physical activity between two
succesive stages in a column.

Contained Liquid Mixture (n)

	

Contained-Gas-Mixture (n)

Liquid Mixture (n) Gas Mixture (n)

0

	

0 0 O o o 0 0

o l o

	

o_ O

Stage n

Liquid Flow (n, n+l)

Liquid Mixture (n+1)

Contained Liquid Mixture (n+1)
	 A

Stage n+l Contained Gas Mixture (n+1)

o °

	

p 0 0

	

0 0

	

° ° 0

	

0 °

KEYS:

	

<Entity>

	

(<View>

A	 ► B

	

A

	

► B
(A Is an Individual of B)

	

(A is the physical instantiation of B)

75

(defView (Vaporization-Conditions ?can ?hf ?1-mix)
Individuals ((?can :Type Stage)

(?l-mix
:Conditions ((View-Instance Binary-Mixture) ?1-mix)

(?l-mix MIXTURE (2-C-S (?substancel ?substance2) liquid ?can))
(More-Volatile ?substancel Than ?substance2))

(?hf :Conditions ((Process-Instance Heat-Flow) ?hf)
(?hf DST ?can)))

QuantityConditions
((Active ?hf)

(Active ?1-mix)
(not (greater-than (A (TBubble (2-C-S (?substancel ?substance2) liquid ?can)))

(A (Temperature (2-C-S (?substancel ?substance2) liquid ?can))))))

Relations ((Satisfied-Vaporization-Conditions-For (2-C-S (?substancel ?substance2) liquid ?can))))

(defView (Vaporization-Assumption ?can ?1-mix)
Individuals ((?can :Type Container)

(?l-mix
:Conditions

((View-Instance Binary-Mixture) ?1-mix)
(?l-mix MIXTURE (2-C-S (?substance) ?substance2) liquid ?can))

(More-Volatile ?substancel Than ?substance2)
(Consider (Vaporize (2-C-S (?substance) ?substance2) liquid ?can)))))

Relations ((Satisfied-Vaporization-Conditions-For (2-C-S (?substance) ?substance2) liquid ?can))))

(defClosed-Predicate Satisfied-Vaporization-Conditions-For)

Figure 4 .12 : Views associated with the vaporization process in the binary distil-
lation model .

76

(defProcess (Vaporization ?1-mix ?g-mix ?can)
Individuals ((?can :Type Container)

(?l-mix
:Conditions ((View-Instance Binary-Mixture) ?1-mix)

(?l-mix MIXTURE (2-C-S (?substancel ?substance2) liquid ?can))
(More-Volatile ?substancel :Than ?substance2)

(Satisfied-Vaporization-Conditions-For
(2-C-S (?substancel ?substance2) liquid ?can)))

(?g-mix :Bind (2-C-S (?substancel ?substance2) gas ?can)))
QuantityConditions ((Active ?1-mix))

Relations ((Positive-Quantity (Vaporization-Rate ?self))
(Introduces ?g-mix)

(Contained-Binary-Mixture ?g-mix)
(Quantity (Vaporized-Mass-of

?substancel (2-C-S (?substancel ?substance2) liquid ?can) ?self))

(Q= (Vaporized-Mass-of
?substancel (2-C-S (?substancel ?substance2) liquid ?can) ?self)

(* (Vaporization-Rate ?self)
(Mole-Fraction ?substancel (2-C-S (?substancel ?substance2) gas ?can)))))

Influences ((I+ (Amount-of (2-C-S (?substancel ?substance2) gas ?can))
(A (Vaporization-Rate ?self)))

(I- (Amount-of (2-C-S (?substancel ?substance2) liquid ?can))
(A (Vaporization-Rate ?self)))

(I- (Amount-of-in ?substancel (2-C-S (?substancel ?substance2) liquid ?can))
(A (Vaporized-Mass-of

?substancel (2-C-S (?substancel ?substance2) liquid ?can) ?self)))

(I+ (Amount-of-in ?substancel (2-C-S (?substancel ?substance2) gas ?can))
(A (Vaporized-Mass-of

?substancel (2-C-S (?substancel ?substance2) liquid ?can) ?self)))))

Figure 4 .13: The vaporization process in the binary distillation model .

77

(defView (Condensation-Conditions ?can ?hf ?g-mix)
Individuals ((?can :Type Stage)

(?g-mix

:Conditions ((View-Instance Binary-Mixture) ?g-mix)
(?g-mix MIXTURE (2-C-S (?substancel ?substance2) gas ?can))

(More-Volatile ?substancel than ?substance2))
(?hf :Conditions ((Process-Instance Heat-Flow) ?hf)

(?hf SRC ?can)))
QuantityConditions

((Active ?g-mix)
(Active ?hf)

(not (less-than (A (Tdew (2-C-S (?substancel ?substance2) gas ?can)))
(A (Temperature (2-C-S (?substancel ?substance2) gas ?can))))))

Relations ((Satisfied-Condensation-Conditions-For (2-C-S (?substancel ?substance2) gas ?can))))

(defPerspective (Condensation-Assumption ?can ?g-mix)
Individuals ((?can :Type Container)

(?g-mix
:Conditions ((View-Instance Binary-Mixture) ?g-mix)

(?g-mix MIXTURE (2-C-S (?substance) ?substance2) gas ?can))
(More-Volatile ?substancel Than ?substance2)
(Consider (Condense (2-C-S (?substance) ?substance2) gas ?can)))))

Relations ((Satisfied-Condensation-Conditions-For (2-C-S (?substance) ?substance2) gas ?can))))

(defClosed-Predicate Satisfied-Condensation-Conditions-For)

Figure 4.14 : View and perspective associated with the condensation process in

the binary distillation model .

78

(defProcess (Condensation ?g-mix ?1-mix ?can)

Individuals ((?can :Type Container)
(?g-mix

:Conditions ((View-Instance Binary-Mixture) ?g-mix)
(?g-mix MIXTURE (2-C-S (?substancel ?substance2) gas ?can))

(More-Volatile ?substancel :than ?substance2)
(Satisfied-Condensation-Conditions-For

(2-C-S (?substancel ?substance2) gas ?can)))
(?l-mix :Bind (2-C-S (?substancel ?substance2) liquid ?can)))

QuantityConditions ((Active ?g-mix))
Relations ((Positive-Quantity (Condensation-Rate ?self))

(Introduces ?1-mix)
(Contained-Binary-Mixture ?1-mix)
(Quantity

(Condensed-Mass-of ?substancel (2-C-S (?substancel ?substance2) gas ?can) ?self))
(Q= (Condensed-Mass-of ?substancel (2-C-S (?substancel ?substance2) gas ?can) ?self)

(* (Condensation-Rate ?self)
(Mole-Fraction ?substancel (2-C-S (?substancel ?substance2) liquid ?can)))))

Influences ((I+ (Amount-of ?1-mix) (A (Condensation-Rate ?self)))
(I- (Amount-of (2-C-S (?substancel ?substance2) gas ?can))

(A (Condensation-Rate ?self)))
(I+ (Amount-of-in ?substancel (2-C-S (?substancel ?substance2) liquid ?can))

(A (Condensed-Mass-of
?substancel (2-C-S (?substancel ?substance2) gas ?can) ?self)))

(I- (Amount-of-in ?substancel (2-C-S (?substancel ?substance2) gas ?can))

(A (Condensed-Mass-of
?substancel (2-C-S (?substancel ?substance2) gas ?can) ?self)))))

Figure 4 .15 : The condensation process in the binary distillation model .

79

top of the column and the vaporization process for the reboiler at the bottom of
the column.

We describe only the vaporization process since the representations for the
two phase transition processes are symmetrical . Vaporization occurs when there
exists a binary liquid mixture in a container for which the predicate Satisfied-
Vaporization-Conditions-For holds 3 . In an analogous way with the flow processes,
this predicate holds either when a set of quantity conditions are active 4 or when
the occurence of vaporization is assumed in the scenario . Currently, both phase
transition processes are activated with the second option, since the numerical
model that we use ignores the heat exchange phenomena in the reboiler and the
condenser

When vaporization is active, it introduces a binary gas mixture in the container
(if one does not already exist) and it directly influences the amounts of the vapor
and liquid mixtures and the amount of the volatile component in each one of these
mixtures via a positive vaporization rate . We use a very simple general model
for vaporization which is consistent with the conservation of mass but ignores the
enthalpy changes in the vapor and the liquid associated with the process.

In an analogous way with the flow processes, the Vaporization process intro-
duces two quantities in its Relations field . The Vaporization-Rate refers to the
rate by which both components in the binary mixture evaporate . The Vaporized-
Mass-of quantity refers to the rate of evaporation of each individual component
in the mixture . In the Influences field for the process, the Amount-of quantity for
each phase is directly influenced by the Vaporization-Rate, while the Amount-of-in
quantity for each component in each phase is directly influenced by the Vaporized-
Mass-of quantity. A similar situation holds for the Condensation process.

Condenser, Reboiler & Feed Stage . Figure 4 .16 contains the processes
described in this section . There are two choices for the condenser in a distillation
column . It can either be a partial condenser condensing part of the vapor that
ends up at the top of the column or a total condenser in which all of the incoming
vapor is condensed into liquid . An analogous situation holds for the reboiler at the
bottom of the column . Depending on whether it vaporizes part or all of the liquid
that reaches the bottom of the column it can either be a partial or a total reboiler.
The predicates (Consider (Total(Partial)-Condenser(Reboiler) ?container)) in the
scenario specify the type of condenser (reboiler) for the column.

'See the definitions for the Vaporization-Conditions and the Vaporization-Assumption views in
Fig . 4 .12.

4E.g ., when the bubble point for the liquid mixture is not greater than its current temperature
and there is a heat flow process supplying heat to the container .

80

(defProcess (Continuous-Binary-Feed-Flow ?feed ?stage)
Individuals ((?feed

:Conditions
((View-Instance Binary-Mixture) ?feed)

(?feed MIXTURE (2-C-S (?substancel ?substance2) ?phase ?stage))
(Binary-Mixture-Feed-in-Stage (2-C-S (?substancel ?substance2) ?phase ?stage) ?stage)

(More-Volatile ?substancel :Than ?substance2))
(?stage :Type Stage))

QuantityConditions ((Active ?feed))
Relations

((Non-Negative-Quantity (Feed-Rate ?self))
(Positive-Quantity
(Feed-Composition ?substancel (2-C-S (?substancel ?substance2) ?phase ?stage)))

(Quantity (Feed-Amount-of ?substancel (2-C-S (?substancel ?substance2) ?phase ?stage) ?self))
(Q= (Feed-Amount-of ?substancel (2-C-S (?substancel ?substance2) ?phase ?stage) ?self)

(* (Feed-Composition ?substancel (2-C-S (?substancel ?substance2) ?phase ?stage))
(Feed-Rate ?self))))

Influences ((I+ (Amount-of (2-C-S (?substancel ?substance2) ?phase ?stage)) (A (Feed-Rate ?self)))
(I+ (Amount-of-in ?substancel (2-C-S (?substancel ?substance2) ?phase ?stage))

(A (Feed-Amount-of
?substancel (2-C-S (?substancel ?substance2) ?phase ?stage) ?self)))))

(defProcess (Continuous-Binary-Mixture-Product-Flow ?product ?stage)

Individuals ((?product
:Conditions

((View-Instance Binary-Mixture) ?product)
(?product MIXTURE (2-C-S (?substancel ?substance2) ?phase ?stage))

(More-Volatile ?substancel :Than ?substance2)
(Recover-Binary-Mixture-Product
(2-C-S (?substancel ?substance2) ?phase ?stage) ?stage))

(?stage :Type Stage))
QuantityConditions ((Active ?product))

Relations
((Non-Negative-Quantity (Product-Flow ?self))

(Quantity (Product-Amount-of ?substancel (2-C-S (?substancel ?substance2) ?phase ?stage) ?self))
(Qprop (Product-Amount-of ?substancel (2-C-S (?substancel ?substance2) ?phase ?stage) ?self)

(Mole-Fraction ?substancel (2-C-S (?substancel ?substance2) ?phase ?stage)))
(Qprop (Product-Amount-of ?substancel (2-C-S (?substancel ?substance2) ?phase ?stage) ?self)

(Product-Flow ?self)))

Influences ((I- (Amount-of (2-C-S (?substancel ?substance2) ?phase ?stage))
(A (Product-Flow ?self)))

(I- (Amount-of-in ?substancel (2-C-S (?substancel ?substance2) ?phase ?stage))
(A (Product-Amount-of

?substancel (2-C-S (?substancel ?substance2) ?phase ?stage) ?self)))))

Figure 4.16: Feed and product flow processes for the binary distillation model .

81

Usually there are two product streams coming out of a distillation tower . The
stream that we recover from the top is called the distillate . The stream at the
bottom of the tower is called the bottom product . A Continuous-Binary-Mixture-
Product-Flow process is associated with each product stream . Each product flow
is active when the mixture specified in the (Recover-Binary-Mixture-Product ?mix-
ture ?container) predicate exists.

The process description is analogous to the one used for describing fluid mass
flows with the difference that it does not take into account conservation of mass,
since we do not know the destination of the product . This information would
be available in more complicated process plant models containing sequences of
columns . In this case, views or perspectives would be used to relate the various
feed and product flows.

The predicates (Feed-Stage ?stage and (Binary-Mixture-Feed-in-Stage ?mix-
ture ?stage in the scenario specify the location and the type of the feed streams
entering the distillation process . For each feed stream we define a Continuous-
Binary-Feed-Flow process . The description for this process is analogous to the
product flow models . The quantity Feed-Composition inside the feed flow corre-
sponds to the mole fraction of the volatile component in the feed stream . The
Feed-Composition is usually different from the mole fraction of the volatile com-
ponent in the feed stage.

4 .3 .3 Steady-State Model of an Ideal Binary Distillation

Column

Most of the physical knowledge for binary distillation design describes the steady-
state operation of columns . Steady-state operating assumptions are common in
the early stages of chemical process design since they greatly simplify the numer-
ical models . In the case of qualitative models this means more constrained and
therefore more tractable models.

Steady-state analysis is enforced with the (Consider (Steady-State-in ?col-
umn)) predicate in the scenario . As a result, the Steady-State perspective (Fig.
4 .17) is activated pinning down the derivative of every quantity in the model to
zero. The Steady-State-Column-Design-Features view (Fig . 4 .18) introduces a set
of relevant features for binary column design . These include the specifications of
the input stream to the process (the Feed-Flow and Feed-Fraction quantities), the
number of stages in the column (then Num-of-Stages quantity), the reflux (i .e.
the flow rate of the distillate product that is recycled back to the column in order
to increase the efficiency of the process) and the desired recoveries for the dis-

82

(defPerspective (Steady-State ?column ?stage ?quant)
Individuals ((?column :Type Distillation-Column

:Conditions (Consider (Steady-State-in ?column)))

(?stage Type Stage
Conditions (Part-of ?column ?stage))

(?quant Type Quantity
Form (?quant-name . ?args)

Test (contained-in? ?stage ?args)))
Relations ((equal-to (D ?quant) ZERO)))

Figure 4 .17: Enforce the steady-state assumption.

tillation products . The Steady-State-Conditions-for-Feed-Stage view (Fig. 4 .19)
establishes a set of relations between the mole fractions of the input (feed) to the
process and the mole fractions of the distillate and bottom products . The Steady-
State-Conditions-for-Stage-Gas-Flows and Steady-State-Liquid-Flows views (Fig.
4 .20) relate the rates of the incoming and outgoing gas and liquid flows at each
stage in the column. In addition, the model contains a set of views that relate the
flow rates used in the reboiler and condenser parts of a column (see Figure 4 .21).

4.4 Separation Systems for Multicomponent Mix-

tures

4 .4 .1 Overview

This section describes in detail the qualitative model for multicomponent distilla-
tion columns . The model is used to compute cost estimates for possible flowsheets
during the conceptual design of separation systems . At this early stage of design,
these cost estimates are rough approximations for pruning the number of design
choices [13] . The model does not describe the dynamic behavior of columns for
multicomponent mixtures.

The qualitative domain theory consists of four objects ; separation systems (a
sequence of separation units (e .g . distillation columns)), columns, mixtures and
substances . The model computes the properties for each object in two sets of phys-
ical conditions (pressure and temperature) ; reference and operating conditions . At
each object level there are a series of operations taking place during design . These
are :

83

(defPerspective (Steady-State-Column-Design-Features
?column ?c-stage ?c-phase ?r-stage ?r-phase ?distillate-flow

?bproduct-flow ?substancel ?substance2)
Individuals ((?column :Type Distillation-Column

:Conditions (Consider (Steady-State-in ?column)))
(?distillate

:Type Contained-Binary-Mixture
:Form (2-C-S (?substancel ?substance2) ?c-phase ?c-stage)

:Conditions (More-Volatile ?substancel :Than ?substance2)
(Recover-Binary-Mixture-Product ?distillate ?c-stage)
(Condenser-Stage ?c-stage))

(?bproduct
:Type Contained-Binary-Mixture

:Form (2-C-S (?substancel ?substance2) ?r-phase ?r-stage)
:Conditions (Recover-Binary-Mixture-Product ?bproduct ?r-stage)

(Reboiler-Stage ?r-stage))
(?distillate-flow

:Conditions
((Process-Instance Continuous-Binary-Mixture-Product-Flow) ?distillate-flow)

(?distillate-flow STAGE ?c-stage)
(Active ?distillate-flow))

(?bproduct-flow
:Conditions

((Process-Instance Continuous-Binary-Mixture-Product-Flow) ?bproduct-flow)
(?bproduct-flow STAGE ?r-stage)

(Active ?bproduct-flow)))
Relations ((Non-Negative-Quantity (Feed-Flow ?column))

(Non-Negative-Quantity (Feed-Fraction ?substancel ?column))

(Non-Negative-Quantity (Num-of-Stages ?column))
(Non-Negative-Quantity (Reflux ?column))

(Non-Negative-Quantity (Fraction-Recovery ?substancel ?c-stage ?column))
(Non-Negative-Quantity (Fraction-Recovery ?substancel ?r-stage ?column))

(Qprop (Mole-Fraction ?substancel
(2-C-S (?substancel ?substance2) ?c-phase ?c-stage))

(Num-of-Stages ?column))
(Qprop- (Mole-Fraction ?substancel

(2-C-S (?substancel ?substance2) ?r-phase ?r-stage))

(Num-of-Stages ?column))
(Qprop (Product-Flow ?distillate-flow) (Feed-Flow ?column))

(Qprop (Product-Flow ?bproduct-flow) (Feed-Flow ?column))))

Figure 4 .18: A set of relevant features for binary distillation design .

84

(defView (Steady-State-Conditions-for-Feed-Stage
?column ?stage ?in-l-f ?out-l-f ?distillate-flow ?bproduct-flow ?feed-flow ?substancel

?substance2 ?phase ?c-phase ?bproduct-phase ?c-stage ?r-stage)
Individuals ((?column :Type Distillation-Column

:Conditions (Consider (Steady-State-in ?column)))

(?stage :Type Stage
:Conditions (Part-of ?column ?stage)

(Feed-Stage ?stage))
(?feed-flow

:Conditions
((Process-Instance Continuous-Binary-Feed-Flow) ?feed-flow)

(?feed-flow STAGE ?stage)
(Binary-Mixture-Feed-in-Stage

(2-C-S (?substancel ?substance2) ?phase ?stage) ?stage))
(?in-l-f :Conditions ((Process-Instance Liquid-Flow) ?in-l-f)

(?in-l-f DST ?stage))
(?out-l-f :Conditions ((Process-Instance Liquid-Flow) ?out-l-f)

(?out-l-f SRC ?stage))
(?distillate-flow

:Conditions
((Process-Instance Continuous-Binary-Mixture-Product-Flow) ?distillate-flow)
(?distillate-flow STAGE ?c-stage)

(Condenser-Stage ?c-stage)
(Recover-Binary-Mixture-Product

(2-C-S (?substancel ?substance2) ?c-phase ?c-stage) ?c-stage))
(?bproduct-flow

:Conditions
((Process-Instance Continuous-Binary-Mixture-Product-Flow) ?bproduct-flow)

(?bproduct-flow STAGE ?r-stage)
(Reboiler-Stage ?r-stage)

(Recover-Binary-Mixture-Product
(2-C-S (?substancel ?substance2) ?bproduct-phase ?r-stage) ?r-stage)))

QuantityConditions ((Active ?feed-flow) (Active ?in-l-f) (Active ?out-l-f)
(Active ?distillate-flow) (Active ?bproduct-flow))

Relations
((Qprop (Flow-Rate ?out-l-f) (Feed-Rate ?feed-flow))
(Qprop (Flow-Rate ?out-l-f) (Flow-Rate ?in-l-f))

(Qprop (Mole-Fraction ?substancel (2-C-S (?substancel ?substance2) ?c-phase ?c-stage))
(Feed-Composition ?substancel (2-C-S (?substancel ?substance2) ?phase ?stage)))

(Qprop (Mole-Fraction ?substancel (2-C-S (?substancel ?substance2) ?bproduct-phase ?r-stage))
(Feed-Composition ?substancel (2-C-S (?substancel ?substance2) ?phase ?stage)))

(Equal-to (A (Feed-Flow ?column))

	

(A (Feed-Rate ?feed-flow)))
(Equal-to (A

(A

(Feed-Fraction ?substancel

	

?column))

(Feed-Composition ?substancel

	

(2-C-S

	

(?substancel

	

?substance2)

	

?phase ?stage))))))

Figure 4 .19: The relations between the feed and product compositions under a

steady-state asssumption.

85

(defView (Steady-State-Conditions-for-Stage-Gas-Flows ?stage ?in-g-f ?out-g-f)

Individuals ((?column
:Type Distillation-Column

:Conditions (Part-of ?column ?stage)
(Consider (Constant-Molal-Overflow-in ?column))
(Consider (Neglect Vapor-HoldUp-in ?column))

(Consider (Steady-State-in ?column)))
(?stage :Type Stage

:Conditions (not (Feed-Stage ?stage)))
(?in-g-f :Conditions ((Process-Instance Gas-Flow) ?in-g-f)

(?in-g-f DST ?stage))
(?out-g-f :Conditions ((Process-Instance Gas-Flow) ?out-g-f)

(?out-g-f SRC ?stage)))
QuantityConditions ((Active ?in-g-f) (Active ?out-g-f))

Relations ((equal-to (A (Flow-Rate ?out-g-f)) (A (Flow-Rate ?in-g-f)))))

(defView (Steady-State-Liquid-Flows ?stage ?in-l-f ?out-l-f)
Individuals ((?column

:Type Distillation-Column
:Conditions (Part-of ?column ?stage)

(Consider (Steady-State-in ?column))
(Consider (Constant-Molal-Overflow-in ?column))

(Consider (Neglect Vapor-HoldUp-in ?column)))
(?stage :Type Stage

:Conditions (not (Feed-Stage ?stage)))

(?in-l-f :Conditions ((Process-Instance Liquid-Flow) ?in-l-f)
(?in-l-f DST ?stage))

(?out-l-f :Conditions ((Process-Instance Liquid-Flow) ?out-l-f)
(?out-l-f SRC ?stage)))

QuantityConditions ((Active ?in-l-f) (Active ?out-l-f))
Relations ((Equal-to (A (Flow-Rate ?out-l-f)) (A (Flow-Rate ?in-l-f)))))

Figure 4 .20 : The relation between incoming and outgoing gas and liquid flow

rates between successive stages in a column under steady-state conditions .

86

(defView (Total-Condenser-Steady-State-Conditions
?column ?stage ?1-mix ?g-mix ?product-flow ?reflux-flow ?in-g-f
(2-C-S (?substancel ?substance2) liquid ?stage)

(2-C-S (?substancel ?substance2) gas ?stage))
Individuals ((?stage :Type Stage

:Conditions (Condenser-Stage ?stage))
(?column :Type Distillation-Column

:Conditions
(Consider (Total-Condenser ?column))

(Part-of ?column ?stage)
(Consider (Steady-State-in ?column)))

(?l-mix
:Conditions ((View-Instance Binary-Mixture) ?1-mix)

(?l-mix MIXTURE (2-C-S (?substancel ?substance2) liquid ?stage)))
(?g-mix
:Conditions ((View-Instance Gas-Mixture) ?g-mix)

(?g-mix MIXTURE (2-C-S (?substancel ?substance2) gas ?stage)))
(?in-g-f :Conditions ((Process-Instance Gas-Flow) ?in-g-f)

(?in-g-f DST ?stage))
(?product-flow

:Conditions
((Process-Instance Continuous-Binary-Mixture-Product-Flow) ?product-flow)

(?product-flow STAGE ?stage))
(?reflux-flow

:Conditions ((Process-Instance Liquid-Flow) ?reflux-flow)
(?reflux-flow SRC ?stage)))

QuantityConditions ((Active ?1-mix) (Active ?g-mix) (Active ?in-g-f)
(Active ?product-flow) (Active ?reflux-flow))

Relations ((Equal-to (A (Mole-Fraction
?substancel (2-C-S (?substancel ?substance2) liquid ?stage)))

(A (Mole-Fraction
?substancel (2-C-S (?substancel ?substance2) gas ?stage))))

(Equal-to (A (Reflux ?column)) (A (Flow-Rate ?reflux-flow)))))

Figure 4.21 : The relation between incoming and outgoing gas and liquid flow
rates under steady-state conditions in a total condenser . Similar views describe

these relations in the case of a partial condenser and a partial or total reboiler .

87

(defentity (Substance ?substance)

(Positive-Quantity (Critical-Pressure ?substance))
(Non-Negative-Quantity (Alpha-1 ?substance))

(Non-Negative-Quantity (Alpha-2 ?substance))
(Non-Negative-Quantity (Alpha-3 ?substance))

(Positive-Quantity (Liquid-Volume-Constant ?substance))
(Quantity (K-Ideal-Reference-Temperature ?substance))

(Non-Negative-Quantity (Critical-Temperature ?substance)))

(defentity (Multicomponent-Mixture (M-C-S ?components ?phase ?stage))
(Quantity (Temperature (M-C-S ?components ?phase ?stage)))

(Quantity (Pressure (M-C-S ?components ?phase ?stage))))

(defentity (Distillation-Column ?column)
(Positive-Quantity (Column-Diameter ?column))
(Positive-Quantity (Column-Height ?column))

(Positive-Quantity (Reference-Temperature ?column))
(Positive-Quantity (Reference-Pressure ?column))

(Positive-Quantity (Operating-Pressure ?column))
(Positive-Quantity (Operating-Temperature ?column))

(Positive-Quantity (Installation-Cost ?column))
(Positive-Quantity (Operating-Reflux-Estimate ?column)))

(defentity (Environment ?env)

(Positive-Quantity (Atmospheric-Pressure ?env))
(Positive-Quantity (Gas-Constant ?env)))

(defentity (Separation-System ?system)
(Non-Negative-Quantity (Total-Cost ?system))

(Positive-Quantity (Reference-Temperature ?system))
(Positive-Quantity (Reference-Pressure ?system)))

Figure 4 .22 : Defining the objects in the multicomponent distillation model .

88

• Operations at the Substance Level.

1. Establish physical properties at reference and operating conditions (e .g.
equilibrium ratios, vapor pressures and specific parameters for comput-
ing them).

2. Introduce design features (e .g. product recovery).

• Operations at the Mixture Level.

1. Introduce relative volatilities at reference and operating conditions.

2. Establish feed condition properties (e .g . temperature, pressure and flow
rate).

• Operations at the Column Level.

1. Generate the separation alternatives.

2. Compute the distillate and bottom products for the design alternatives.

3. Introduce operating and design features (e .g. diameter, height, instal-
lation cost, reflux ratios, reference and operating conditions, product
flow rates, number of stages, etc).

4. Equate the operating conditions for the column to the feed operating
conditions.

• Operations at the Separation System Level.

1. Establish reference conditions and product specifications for the system.

2. Equate the reference conditions and the product specifications for the
first column to the system with those for the separation system.

Some of the model fragments below, use the numerical values for specific pa-
rameters in a separation system. The predicate Value-of provides the representa-
tion for these numerical values . Value-of takes three arguments : (i) the amount
or the derivative for some quantity (ii) the actual numerical value for it and (iii)
the name of the equation that produced the solution . For example,

(Value-of (A (TBoil water systeml :reference)) 100 .0 :Tboil-Calculation)

asserts that the boiling point for the water in systeml in reference conditions
(atmospheric pressure) is equal to 100°C . This value was calculated using the
:TBoil-Calculation equation .

89

4 .4 .2 Multicomponent Distillation

Objects . The model contains the following kinds of objects : substances, mul-
ticomponent mixtures, distillation-columns, separation-systems and environment.
Figure 4.22 provides the definitions for all the objects in the qualitative model.

The definition for a substance introduces a set of quantities that are indepen-
dent of pressure and temperature . The Critical-Pressure and Critical-Temperature
quantities indicate the conditions under which each substance reaches its critical
point . The critical point is a set of conditions under which all three phases for a
substance are present . The Alpha-1, Alpha-2 and Alpha-3 quantities correspond
to the Antoine equation coefficients [72] for the substance . This equation provides
a way of calculating the vapor pressure of a substance based on its critical pres-
sure and its temperature . The K-Ideal-Reference-Temperature for the substance
is a reference temperature used in the calculation of the equilibrium ratios for the
substance . The Liquid-Volume-Constant is a constant specific to each substance
that is used in the same calculation (see Figure B .1) . The equilibrium ratios are
used to compute relative volatilities.

We use the contained-stuff ontology to describe all the pieces of stuff in the
system. In an analogous way with the binary case, a multicomponent mixture is
defined by the substances it is composed of, by the phase it is in and by the con-
tainer which holds it . The following function denotes a multicomponent mixture:

M-C-S: components x phase x container -* Multicomponent-Mixture

There are two properties associated with a multicomponent mixture : its temper-
ature and its pressure.

A Separation-System object is an abstraction describing a number of intercon-
nected separation units (columns) that achieve a certain separation . The Total-
Cost quantity stands for a cost estimate for the separation system.

The definition for a Distillation-Column introduces a set of features that de-
scribe the structure of a column. These include its diameter, its height and the
minimum number of stages needed to achieve the separation that takes place in
the device . In addition, the Installation-Cost quantity represents the installation
cost for the column. Finally, the Operating-Reflux-Estimate quantity provides us
with an estimate for the ratio between the operating reflux ratio and the minimum
reflux ratio for a column. This is an important operating feature since it influences
the product recoveries and the diameter of the column for a given separation.

The analysis of separation system and column behavior is based on two sets of
conditions : the :reference and the :operating conditions . Each one of them corre-
sponds to a set of values for pressure and temperature . The :reference conditions

90

(defPerspective (Substance-Properties-Dependent-on-Pressure ?substance ?system)
Individuals ((?system :Type Separation-System

:Conditions

(Separation-System-Feed (M-C-S ?components ?phase ?stage) ?system))
(?substance :Type Substance

:Test (member ?substance ?components)))
Relations ((Quantity (TBoil ?substance ?system :reference))))

(defPerspective (Substance-Properties-Dependent-on-Temperature ?substance ?column)

Individuals
((?substance :Type Substance)

(?column :Conditions (Examine ?column)))
Relations ((Positive-Quantity (Molar-Volume ?substance ?column :reference))

(Positive-Quantity (NonPolar-Solubility ?substance ?column :reference))

(Positive-Quantity (Molar-Volume ?substance ?column :operating))
(Positive-Quantity (NonPolar-Solubility ?substance ?column :operating))))

(defPerspective (Polar-Solvent-Properties-Dependent-on-Temperature

?substance ?column)
Individuals

((?substance :Type Substance
:Conditions (Polar-Solvent ?substance))

(?column :Conditions (Examine ?column)))
Relations

((Positive-Quantity (Molar-Volume ?substance ?column :reference))
(Positive-Quantity (Molar-Volume ?substance ?column :operating))

(Positive-Quantity (NonPolar-Solubility ?substance ?column :reference))
(Positive-Quantity (NonPolar-Solubility ?substance ?column :operating))

(Positive-Quantity (Polar-Solubility ?substance ?column :reference))
(Positive-Quantity (Polar-Solubility ?substance ?column :operating))

(Non-Negative-Quantity (Vapor-Pressure ?substance ?column :operating))
(Non-Negative-Quantity (Vapor-Pressure ?substance ?column :reference))))

Figure 4 .23: Introducing substance properties that depend on pressure or tem-

perature.

are temperature and pressure values for which estimates for the physical prop-

erties we are interested in are available . The :operating conditions correspond

to the actual operating conditions in a column . The values for the quantities

Reference-Pressure and Reference-Temperature define the reference conditions for

a system. Each column in a system will have the same reference conditions . The

operating conditions for each column are defined by the Operating-Pressure and

the Operating-Temperature quantities.

The Environment object serves as a way of introducing into the model physical

constants such as the atmospheric pressure or the gas constant in the ideal gas

law .

Substance Properties . Figure 4.23 provides the definitions for the model
fragments described in this section . The Substance-Properties-Dependent-on-Pressure

91

(defPerspective (K-Ideal-Substance-Properties ?substance ?column)
Individuals
((?substance :Type Substance)

(?column :Type Distillation-Column
:Conditions (Examine ?column))

(?feed Type Multicomponent-Mixture
Form (M-C-S ?components ?phase ?f-stage)

Test (member ?substance ?components)))
Relations

((Positive-Quantity (Liquid-Molal-Volume ?substance ?column physical))
(Positive-Quantity (Liquid-Molal-Volume ?substance ?column reference))

(Positive-Quantity (Liquid-Molal-Volume ?substance ?column operating))))

Figure 4 .24 : Introducing the quantities for computing equilibrium ratios.

perspective introduces properties that depend on the pressure in which we study
a substance, like the boiling point of a substance under atmospheric conditions.

The Substance-Properties-Dependent-on-Temperature perspective introduces sub-
stance properties that depend on temperature . These properties along with the
ones introduced by the Polar-Solvent-Properties-Dependent-in-Temperature per-
spective are used to calculate the relative volatilites between the substances in an
extractive distillation unit . In particular, extractive distillation is based on the
addition of a polar solvent in a mixture that can change the relative volatilities
between the substances in the feed mixture . All the properties introduced by these
two perspectives are used in the Weimer and Prausnitz method [72] for calculating
the relative volatilities between the substances after the introduction of the polar
solvent in the mixture.

The K-Ideal-Substance-Properties perspective in Figure 4 .24 introduces a set of
quantities that are used to calculate equilibrium ratios (see Figure B .1) at reference
and operating conditions . The :physical operating condition is specific to this
perspective and it corresponds to the value of the K-Ideal-Reference-Temperature.

Separation Properties . Figure 4 .25 provides the definitions for the model
fragments describing general separation properties . The Separation-Properties-in-
Reference-Conditions and Separation-Properties-in-Feed-Conditions perspectives
introduce separation properties at reference and actual operating conditions (tem-
perature and pressure) for all the components of a mixture . The K- Value quantity
stands for the equilibrium ratio of a substance in a column under reference or
operating conditions . The quantity Alpha-LK-HK stands for the relative volatility
between two components of the mixture . It takes four arguments : (i, ii) the names
of the substances it refers to (iii) the column in which it is measured and (iv) the
conditions for which it is valid . Finally, the Vapor-Pressure quantity stands for

92

(defPerspective (Separation-Properties-in-Reference-Conditions ?substance ?reference ?column ?feed)

Individuals
((?column :Type Distillation-Column

:Conditions (Examine ?column))
(?feed :Type Multicomponent-Mixture

:Form (M-C-S ?components ?phase ?feed-stage)

:Conditions (Column-Feed ?feed ?column))
(?reference :Type Substance

:Test (and (member ?reference ?components)
(highest-boiling-point? ?reference ?components)))

(?substance :Type Substance
:Test (member ?substance ?components)))

Relations
((Positive-Quantity (K-Value ?substance ?column :reference))

(Consider (Reference-Component ?reference ?feed))
(Non-Negative-Quantity (Vapor-Pressure ?substance ?column :reference))

(Positive-Quantity (Alpha-LK-HK ?substance ?reference ?column :reference))))

(defPerspective (Separation-Properties-in-Feed-Conditions ?feed ?column ?substance)
Individuals

((?column :Type Distillation-Column
:Conditions (Examine ?column))

(?feed :Type Multicomponent-Mixture

:Form (M-C-S ?components ?phase ?feed-stage)
:Conditions (Column-Feed ?feed ?column))

(?substance :Type Substance
:Test (member ?substance ?components)))

Relations
((Positive-Quantity (K-Value ?substance ?column :operating))

(Non-Negative-Quantity (Vapor-Pressure ?substance ?column :operating))))

Figure 4.25 : Introducing separation properties for each substance .

93

the vapor pressure of a substance in a given column under a set of conditions . The
physical significance of these three parameters is described in section 3.4 above.

The highest-boiling-point? procedure determines whether the substance in its
first argument has the highest boiling point among the list of substances in its sec-
ond argument under reference conditions . It is used in the Separation-Properties-
in-Reference-Conditions perspective to establish the reference component on which
all of the calculations of the relative volatilities between the substances of a mix-
ture are based. According to this perspective the reference component is selected
to be the heaviest (i .e . least volatile) of all the components in the mixture.

Separation System Properties . Figures 4 .26 and 4 .27 show the model frag-
ments that introduce relevant properties for separation systems . The Separation-
System-&-Column-Feed-Properties and Separation-System-Feed-Properties perspec-
tives introduce the properties of interest for the input mixture to a separation sys-
tem and its first column. These include its pressure, its temperature and the total
feed flow rate for the mixture . Furthermore, it defines a set of analogous properties
for the first column in the separation system and equates their amounts with the
ones defined for the separation system . Finally, the operating conditions for the
column are defined to be equal to the feed conditions . This is an assumption on
which the method for calculating the cost estimates is based . The first column of
a separation system is specified using the First-Column predicate in the current
scenario . The Examine predicate in the Individuals field of these perspectives pro-
vides a way for the design system to focus its qualitative analysis to the columns
specified using it.

For each component in the feed mixture of a separation system the Separation-
System-Input perspective defines its feed flow rate . In addition, the total feed
flow rate is defined to be monotonically increasing in the feed flow rate for each
component.

The Separation-System-Output perspective defines the product recoveries for
all the desired products of the system (i .e . the Product-Specification quantity).

Finally, the Column-Feed perspective (Fig . 4 .27) defines the feed flow rates for
the input components to the first column of a separation system and equates their
amounts to those of the separation system.

Distillate and Bottom Product Features . Figures 4 .28, 4 .29, 4 .30, 4 .31,
4 .32, 4.33, 4 .34 and 4 .35 provide the definitions for the model fragments that
compute the products for possible separations . In the case of ordinary distillation
processes, the Column-Distillate-Output perspective (Fig . 4 .28) selects a set of
possible pairs of light and heavy keys for the column that is currently examined and
determines which of the desired products end up at the distillate product under this

94

(defPerspective (Separation-System-&-Column-Feed-Properties ?system ?column ?feed)
Individuals ((?system :Type Separation-System)

(?column :Type Distillation-Column

:Conditions (Examine ?column)
(First-Column ?system ?column))

(?feed :Type Multicomponent-Mixture
:Form (M-C-S ?components ?phase ?container)

:Conditions (Separation-System-Feed ?feed ?system)
(Column-Feed ?feed ?column)))

Relations
((Positive-Quantity (Feed-Temperature ?feed ?column))

(Non-Negative-Quantity (Feed-Pressure ?feed ?column))
(Non-Negative-Quantity (Total-Feed-Flow ?feed ?column))

(Equal-to (A (Operating-Pressure ?column)) (A (Feed-Pressure ?feed ?column)))
(Equal-to (A (Operating-Temperature ?column)) (A (Feed-Temperature ?feed ?column)))

(Equal-to (A (Feed-Temperature ?feed ?column)) (A (Feed-Temperature ?feed ?system)))
(Equal-to (A (Feed-Pressure ?feed ?column)) (A (Feed-Pressure ?feed ?system)))

(Equal-to (A (Total-Feed-Flow ?feed ?column)) (A (Total-Feed-Flow ?feed ?system)))))

(defPerspective (Separation-System-Feed-Properties ?system ?feed)
Individuals
((?system :Type Separation-System)

(?feed :Type Multicomponent-Mixture
:Form (M-C-S ?components ?phase ?container)

:Conditions (Separation-System-Feed ?feed ?system)))
Relations ((Positive-Quantity (Feed-Temperature ?feed ?system))

(Non-Negative-Quantity (Feed-Pressure ?feed ?system))
(Non-Negative-Quantity (Total-Feed-Flow ?feed ?system))))

(defPerspective (Separation-System-Input ?system ?feed ?component)

Individuals ((?system :Type Separation-System)
(?feed :Type Multicomponent-Mixture

:Form (M-C-S ?components ?phase ?container)

:Conditions (Separation-System-Feed ?feed ?system))
(?component :Type Substance

:Test (member ?component ?components)))
Relations ((Non-Negative-Quantity (Feed-Flow ?component ?feed ?system))

(Qprop (Total-Feed-Flow ?feed ?system) (Feed-Flow ?component ?feed ?system))))

(defPerspective (Separation-System-Output ?system ?products)
Individuals ((?system :Type Separation-System)

(?products :Conditions (Desired-Products ?products ?system)))
Relations ((Non-Negative-Quantity (Product-Specification ?products ?system))))

Figure 4 .26: Introducing general separation system properties .

95

(defPerspective (Column-Feed ?system ?column ?feed ?component)
Individuals ((?column :Type Distillation-Column

:Conditions (First-Column ?system ?column))

(?feed Type Multicomponent-Mixture
Form (M-C-S ?components ?phase ?container)

Conditions (Examine ?column)
(Column-Feed ?feed ?column))

(?component :Type Substance
:Test (member ?component ?components)))

Relations ((Non-Negative-Quantity (Feed-Flow ?component ?feed ?column))
(Equal-to (A (Feed-Flow ?component ?feed ?column))

(A (Feed-Flow ?component ?feed ?system)))))

Figure 4.27: Introducing the properties for the input mixture to the first column
of a separation system.

set of keys . The possible pairs of keys are any substances with neighboring boiling
points The distillate products are all the components of the mixture that are more
volatile than the light key. The relations field for this perspective defines the flow
rate for each component in the distillate product and a quantity describing the
desired recovery for this component under the current separation scheme (Product-
Recovery) . In addition, it asserts that the flow rate for any of the components in
the distillate product is proportional to the feed flow rate for this component.
Finally, the perspective asserts that the total distillate product flow rate for the
column is proportional to the flow rate for each of the components in the distillate
product.

Given a set of substances and a pressure the procedure neighboring-boiling-
points? in the Column-Distillate-Output perspective determines whether the sub-
stances specified in its first and second arguments have neighboring boiling points.
The procedure less-volatile? determines whether its first argument has a lower
boiling point than its second argument at the pressure conditions specified in its
third argument.

A set of analogous properties are defined in the Column-Bottom-Output per-
spective (Fig . 4 .29) . This perspective determines which of the desired products
end up at the bottom product of a column under different selections of keys . The
bottom product consists of all the components of the mixture that are less volatile
than the heavy key. The product recoveries and the flow rates for the bottom
product components along with their relationships with the feed flows of the com-
ponents and the total bottoms flow rate for the column are defined in an analogous
way with the Column-Distillate-Output perspective .

96

(defPerspective (Column-Distillate-Output ?column ?product ?feed ?light-key ?heavy-key ?products)

Individuals
((?column :Type Distillation-Column

:Conditions (Examine ?column)
(Consider (Sharp-Separation-For ?column))

(Desired-Products ?products ?column)
(Value-of (A (Reference-Pressure ?column ?pressure ?eqn))

(?feed :Type Multicomponent-Mixture
:Form (M-C-S ?components ?phase ?container)

:Test (subsetp ?products ?components)
:Conditions (Column-Feed ?feed ?column))

(?light-key :Type Substance
:Test (and (member ?light-key ?components)

(non-polar? ?light-key)
(check-scenario ?column ?light-key 'distillation)))

(?heavy-key :Type Substance

:Test (and (member ?heavy-key ?components)
(not (eql ?heavy-key ?light-key))

(neighboring-boiling-points?
?heavy-key ?light-key ?pressure ?components)))

(?product :Type Substance
:Test (and (member ?product ?products)

(or (eql ?product ?heavy-key)
(less-volatile? ?light-key ?product ?pressure)))))

Relations
((Non-Negative-Quantity

(Distillate-Component-Flow-Rate ?product ?column (?light-key ?heavy-key)))
(Non-Negative-Quantity (Product-Recovery ?product ?column (?light-key ?heavy-key)))

(Qprop (Total-Distillate-Flow-Rate ?column (?light-key ?heavy-key))
(Distillate-Component-Flow-Rate ?product ?column (?light-key ?heavy-key)))

(Qprop (Distillate-Component-Flow-Rate ?product ?column (?light-key ?heavy-key))

(Feed-Flow ?product ?feed ?column))))))

Figure 4.28: Determining the distillate product components for an ordinary

distillation column .

97

(defPerspective (Column-Bottom-Output ?column ?product ?feed ?light-key ?heavy-key ?products)

Individuals
((?column :Type Distillation-Column

:Conditions (Examine ?column)
(Consider (Sharp-Separation-For ?column))
(Desired-Products ?products ?column)

(Value-of (A (Reference-Pressure ?column)) ?pressure ?eqn))
(?feed :Type Multicomponent-Mixture

:Form (M-C-S ?components ?phase ?container)
:Test (subsetp ?products ?components)

:Conditions (Column-Feed ?feed ?column))
(?light-key :Type Substance

:Test (and (member ?light-key ?components)
(non-polar? ?light-key)

(check-scenario ?column ?light-key 'distillation)))
(?heavy-key :Type Substance

:Test (and (member ?heavy-key ?components)
(not (eql ?heavy-key ?light-key))

(neighboring-boiling-points?
?heavy-key ?light-key ?pressure ?components)))

(?product :Type Substance
:Test (and (member ?product ?products)

(or (eql ?product ?light-key)
(less-volatile? ?product ?heavy-key ?pressure)))))

Relations

((Non-Negative-Quantity (Bottom-Component-Flow-Rate ?product ?column (?light-key ?heavy-key)))
(Non-Negative-Quantity (Product-Recovery ?product ?column (?light-key ?heavy-key)))

(Qprop (Total-Bottom-Flow-Rate ?column (?light-key ?heavy-key))
(Bottom-Component-Flow-Rate ?product ?column (?light-key ?heavy-key)))

(Qprop (Bottom-Component-Flow-Rate ?product ?column (?light-key ?heavy-key))
(Feed-Flow ?product ?feed ?column))))

Figure 4.29: Determining the bottom product components for an ordinary dis-

tillation column .

98

Finally, the Distillate-Bottom-Key-Rates perspective (Fig . 4 .30) determines
the distillate and bottoms flow rates for all the possible keys . For every possible
selection of keys the separation between them is not perfect . Small amounts of
the light key end up in the bottom product while small amounts of the heavy key
end up as distillate . In the numerical model the flow rates for these components
are determined by the desired product recoveries for the keys . This is why this
perspective tries to find in which set of desired products each one of the keys
belongs . This information is used by the numerical equations to determine the
desired product recoveries and the distillate and the bottoms flow rates for the
keys.

The non-polar? procedure in the perspective definitions returns true if the
substance it takes as an argument is not a polar solvent . The procedure check-
scenario takes three arguments : (i) a particular column (ii) the light key for the
current separation (iii) the type of the current separation . It returns true if the
design heuristics have already decided for a separation with the same light key and
the same type as the current one . This is a way of pruning the number of possible
model fragments that get instantiated in cases where the evolutionary heuristics
have decided on a particular separation in advance.

In the case of extractive distillation processes, the Extractive-Column-Distillate-
Output perspective (Fig . 4 .31) determines the distillate product components for
the process . The Extractive-Column-Bottom-Output perspective (Fig . 4 .32) deter-
mines the bottoms product components for the process and finally the Extractive-
Distillate-Bottom-Key-Rates perspective (Fig . 4 .33) defines the flow rates for the
keys in the distillate and bottom products . All of these model fragments are de-
fined in an analogous way with the ones described for the ordinary distillation
case. The only difference is that they require an additional object in their Individ-
uals field for the polar solvent in the extractive distillation process . This solvent is
specified as the argument to the Polar-Solvent predicate . The predicate Attracts
denotes the substance that associates with the polar solvent in extractive distil-
lation . This substance leaves the column in the bottom product of an extractive
distillation tower.

Once the heuristic analysis has proposed a separation for the current column a
set of perspectives is activated that compares the products for this separation with
the desired ones . The Unobtained-Column-Products (Fig . 4.34) and Extractive-
Distillation- Unobtained-Products (Fig . 4 .35) perspectives determine which of the
desired products were not obtained using the current separation scheme . The
Missing-Products predicate indicates the desired products that were not recovered
in the separation . It takes four arguments : (i) the missing products (ii) the current

99

(defPerspective (Distillate-Bottom-Key-Rates ?column ?feed ?h-k ?l-k ?products-1 ?products-2)

Individuals
((?column :Type Distillation-Column

:Conditions (Examine ?column)
(Consider (Sharp-Separation-For ?column))

(Value-of (A (Reference-Pressure ?column)) ?pressure ?eqn))
(?products-1 :Conditions (Desired-Products ?products-1 ?column))

(?products-2 :Conditions (Desired-Products ?products-2 ?column))
(?feed Type Multicomponent-Mixture

Form (M-C-S ?components ?phase ?container)
Test (and (subsetp ?products-1 ?components)

(subsetp ?products-2 ?components)
(not (intersection ?products-1 ?products-2)))

Conditions (Column-Feed ?feed ?column))
(?l-k Type Substance

Test (and (member ?l-k ?products-1)

(non-polar? ?1-k)
(check-scenario ?column ?l-k 'distillation)))

(?h-k Type Substance
Test (and (member ?h-k ?products-2)

(not (eql ?h-k ?1-k))
(neighboring-boiling-points? ?h-k ?l-k ?pressure ?components))))

Relations
((Non-Negative-Quantity (Distillate-Component-Flow-Rate ?h-k ?column (?l-k ?h-k)))

(Non-Negative-Quantity (Bottom-Component-Flow-Rate ?l-k ?column (?l-k ?h-k)))
(Non-Negative-Quantity (Bottom-Component-Flow-Rate ?h-k ?column (?l-k ?h-k)))
(Non-Negative-Quantity (Distillate-Component-Flow-Rate ?l-k ?column (?l-k ?h-k)))

(Qprop (Distillate-Component-Flow-Rate ?l-k ?column (?l-k ?h-k)) (Feed-Flow ?l-k ?feed ?column))
(Qprop (Bottom-Component-Flow-Rate ?h-k ?column (?l-k ?h-k)) (Feed-Flow ?h-k ?feed ?column))

(Qprop (Distillate-Component-Flow-Rate ?h-k ?column (?l-k ?h-k)) (Feed-Flow ?h-k ?feed ?column))
(Qprop (Bottom-Component-Flow-Rate ?l-k ?column (?l-k ?h-k)) (Feed-Flow ?l-k ?feed ?column))))

Figure 4 .30: Describing the distillate and bottom flow rates for the keys .

100

(defPerspective (Extractive-Column-Distillate-Output

?column ?product ?feed ?light-key ?heavy-key ?products ?p-s)
Individuals

((?column :Type Distillation-Column
:Conditions (Examine ?column)

(Consider (Sharp-Separation-For ?column))

(Desired-Products ?products ?column)
(Value-of (A (Reference-Pressure ?column)) ?pressure ?eqn))

(?feed :Type Multicomponent-Mixture
:Form (M-C-S ?components ?phase ?container)

:Test (subsetp ?products ?components)
:Conditions (Column-Feed ?feed ?column))

(?light-key :Type Substance
:Test (and (member ?light-key ?components)

(non-polar? ?light-key)
(check-scenario ?column ?light-key 'extractive-distillation)))

(?heavy-key
:Type Substance

:Test (and (member ?heavy-key ?components)
(not (eql ?heavy-key ?light-key))

(neighboring-boiling-points? ?light-key ?heavy-key ?pressure ?components)))
(?p-s :Type Substance

:Conditions (Polar-Solvent ?p-s)
(Attracts ?p-s ?heavy-key))

(?product :Type Substance

:Test (and (member ?product ?products)
(or (eql ?product ?light-key)

(less-volatile? ?heavy-key ?product ?pressure)))))
Relations

((Non-Negative-Quantity (Product-Recovery ?product ?column (?light-key ?heavy-key)))
(Non-Negative-Quantity

(Extractive-Distillate-Component-Flow-Rate ?product ?column (?light-key ?heavy-key) ?p-s))))

Figure 4 .31: Determining the distillate product components in the extractive
distillation case . The ?p-s variable stands for the polar solvent used in extractive

distillation .

101

(defPerspective (Extractive-Column-Bottom-Output
?column ?product ?feed ?light-key ?heavy-key ?products ?p-s)

Individuals
((?column :Type Distillation-Column

:Conditions (Examine ?column)
(Consider (Sharp-Separation-For ?column))
(Desired-Products ?products ?column)

(Value-of (A (Reference-Pressure ?column)) ?pressure ?eqn))
(?feed :Type Multicomponent-Mixture

:Form (M-C-S ?components ?phase ?container)
:Test (subsetp ?products ?components)

:Conditions (Column-Feed ?feed ?column))
(?light-key :Type Substance

:Test (and (member ?light-key ?components)
(non-polar? ?light-key)

(check-scenario ?column ?light-key 'extractive-distillation)))
(?heavy-key

:Type Substance
:Test (and (member ?heavy-key ?components)

(not (eql ?heavy-key ?light-key))
(neighboring-boiling-points? ?light-key ?heavy-key ?pressure ?components)))

(?p-s :Type Substance
:Conditions (Polar-Solvent ?p-s)

(Attracts ?p-s ?heavy-key))
(?product :Type Substance

:Test (and (member ?product ?products)

(not (eql ?product ?light-key))
(or (eql ?product ?heavy-key)

(less-volatile? ?product ?light-key ?pressure)))))
Relations

((Non-Negative-Quantity (Product-Recovery ?product ?column (?light-key ?heavy-key)))
(Non-Negative-Quantity

(Extractive-Bottom-Component-Flow-Rate ?product ?column (?light-key ?heavy-key) ?p-s))))

Figure 4.32 : Determining the bottom product components in the extractive
distillation case .

102

(defPerspective (Extractive-Distillate-Bottom-Key-Rates
?column ?feed ?h-k ?l-k ?products-1 ?products-2 ?p-s)

Individuals ((?column :Type Distillation-Column
:Conditions (Examine ?column)

(Consider (Sharp-Separation-For ?column))
(Value-of (A (Reference-Pressure ?column)) ?pressure ?eqn))

(?products-1 :Conditions (Desired-Products ?products-1 ?column))
(?products-2 :Conditions (Desired-Products ?products-2 ?column))

(?feed Type Multicomponent-Mixture
Form (M-C-S ?components ?phase ?container)

Test (and (subsetp ?products-1 ?components)
(subsetp ?products-2 ?components)

(not (equal ?products-1 ?products-2)))
Conditions (Column-Feed ?feed ?column))

(?l-k Type Substance

Test (and (member ?l-k ?products-1)
(check-scenario ?column ?l-k 'extractive-distillation)

(heavier? ?l-k ?products-1 ?pressure)))
(?h-k Type Substance

Test (and (member ?h-k ?products-2)
(not (eql ?h-k ?1-k))

(neighboring-boiling-points? ?l-k ?h-k ?pressure ?components)))
(?p-s Type Substance

Conditions (Polar-Solvent ?p-s)
(Attracts ?p-s ?h-k)))

Relations ((Non-Negative-Quantity

(Extractive-Distillate-Component-Flow-Rate ?h-k ?column (?l-k ?h-k) ?p-s))
(Non-Negative-Quantity

(Extractive-Bottom-Component-Flow-Rate ?l-k ?column (?l-k ?h-k) ?p-s))))

Figure 4.33 : Determining the key flow rates in the extractive distillation case .

103

(defView (Unobtained-Column-Products ?desired-products ?column)

Individuals
((?column Type Distillation-Column

Conditions (Examine ?column)
(Column-Feed (M-C-S ?components ?phase ?stage) ?column)

(Value-of (A (Reference-Pressure ?column)) ?ref-prey ?a-eqn))
(?products :Conditions (Column-Products ?products (?l-k ?h-k) ?column))

(?l-k Type Substance
Test (and (member ?l-k ?components)

(non-polar? ?1-k)
(check-scenario ?column ?l-k 'distillation)))

(?h-k Type Substance
Test (and (member ?h-k ?components)

(not (eql ?h-k ?1-k))

(neighboring-boiling-points? ?h-k ?l-k ?ref-prey ?components)))
(?desired-products Test (and (subsetp ?desired-products ?products)

(not (subsetp ?products ?desired-products)))
Conditions (Desired-Products ?desired-products ?column)))

Preconditions ((Consider (Possible (Separation distillation (?l-k ?h-k) ?column))))
Relations ((Missing-Products ?desired-products ?products (?l-k ?h-k) ?column)))

Figure 4 .34 : Computing the unobtained column products for distillation.

(defView (Extractive-Distillation-Unobtained-Products ?products ?desired-products ?p-s ?column)

Individuals
((?column

	

Type Distillation-Column

Conditions

	

(Examine ?column))
(?products

	

:Conditions

	

(Column-Products

	

?products

	

(?l-k ?h-k)

	

?column))

(?desired-products

	

Test

	

(and

	

(subsetp ?desired-products

	

?products)
(not

	

(subsetp ?products

	

?desired-products)))

Conditions

	

(Desired-Products

	

?desired-products ?column))
(?p-s

	

Type Substance

Conditions

	

(Polar-Solvent

	

?p-s)
(Attracts

	

?p-s

	

?h-k)))
Preconditions

((Consider

	

(Possible

	

(Separation extractive-distillation (?l-k ?h-k) ?column))))
Relations

	

((Missing-Products ?desired-products

	

?products (?l-k ?h-k) ?column)))

Figure 4 .35 : Computing the unobtained products for extractive distillation.

104

(defPerspective (Distillation-Features-in-Reference-Conditions
distillation ?column ?heavy-key ?light-key ?ref-pres ?feed ?op-pres ?ref-temp)

Individuals
((?column

:Type Distillation-Column
:Conditions (Examine ?column)

(Consider (Sharp-Separation-for ?column))
(Value-of (A (Reference-Temperature ?column)) ?ref-temp ?ref-t-eqn)

(Value-of (A (Reference-Pressure ?column)) ?ref-pres ?eqn))
(?feed :Type MultiComponent-Mixture

:Form (M-C-S ?components ?phase ?container)
:Conditions (Column-Feed ?feed ?column))

(?op-pres :Conditions (Value-of (A (Operating-Pressure ?column)) ?op-pres ?op-eqn))
(?light-key :Type Substance

:Test (and (member ?light-key ?components)
(non-polar? ?light-key)
(check-scenario ?column ?light-key 'distillation)))

(?heavy-key
:Type Substance

:Test (and (member ?heavy-key ?components)
(not (eql ?heavy-key ?light-key))

(not (associates-with? ?light-key ?heavy-key))
(neighboring-boiling-points? ?heavy-key ?light-key ?ref-pres ?components))))

Relations
((Positive-Quantity (Alpha-LK-HK ?light-key ?heavy-key ?column :reference))

(Quantity (CDS distillation ?column (?light-key ?heavy-key) :reference))
(Non-Negative-Quantity
(Total-Distillate-Flow-Rate ?column (?light-key ?heavy-key)))

(Non-Negative-Quantity
(Total-Bottom-Flow-Rate ?column (?light-key ?heavy-key)))

(Reference-Conditions ?column (Pressure ?ref-pres) (Temp ?ref-temp))
(Propose

(Possible (Separation distillation (?light-key ?heavy-key) ?column)))))

Figure 4 .36: Introducing ordinary distillation features at reference conditions .

105

(defPerspective (Distillation-Features-in-Reference-Conditions

extractive-distillation ?column ?h-k ?l-k ?p-s ?temp ?feed ?ref-pres)
Individuals

((?column :Type Distillation-Column
:Conditions (Examine ?column)

(Value-of (A (Reference-Temperature ?system)) ?temp ?temp-eqn)
(Value-of (A (Reference-Pressure ?system)) ?ref-pres ?eqO))

(Consider (Sharp-Separation-for ?column)))
(?feed Type MultiComponent-Mixture

Form (M-C-S ?components ?phase ?container)
Conditions (Column-Feed ?feed ?column))

(?l-k Type Substance
Test (member ?l-k ?components))

(?h-k Type Substance
Test (and (member ?h-k ?components)

(not (eql ?h-k ?1-k))
(neighboring-boiling-points? ?l-k ?h-k ?ref-pres ?components)))

(?p-s Type Substance
Test (and (not (eql ?l-k ?p-s))

(or (equal ?p-s ?h-k)

(associates-with? ?p-s ?1-k)
(associates-with? ?p-s ?h-k)))

Conditions (Polar-Solvent ?p-s)))
Relations

((Positive-Quantity (Extractive-Alpha-LK-HK ?l-k ?h-k ?p-s ?column :reference))
(Positive-Quantity (Energy-of-Interaction ?h-k ?p-s ?column :reference))

(Positive-Quantity (Energy-of-Interaction ?l-k ?p-s ?column :reference))
(Positive-Quantity (Selectivity ?l-k ?h-k ?p-s ?column :reference))

(Positive-Quantity (Infinite-Activity-Coefficient ?l-k ?p-s ?column :reference))
(Positive-Quantity (Infinite-Activity-Coefficient ?h-k ?p-s ?column :reference))
(Quantity (CDS extractive-distillation ?column (?l-k ?h-k) :reference))

(Non-Negative-Quantity (Total-Extractive-Distillate-Flow-Rate ?column (?l-k ?h-k ?p-s)))
(Non-Negative-Quantity (Total-Extractive-Bottom-Flow-Rate ?column (?l-k ?h-k ?p-s)))

;;; It is assumed to be .9 because of Infinite-Activity-Coefcients

(Consider (Polar-Solvent-Concentration ?p-s ?column .9))

(Positive-Quantity (Extractive-Component-Feed-Flow ?p-s ?feed ?column))
(Positive-Quantity (Total-Extractive-Feed-Flow ?p-s ?feed ?column))

(Reference-Conditions ?column (Pressure ?ref-pres) (Temp ?ref-temp))
(Propose (Possible (Separation extractive-distillation (?l-k ?h-k) ?column)))))

Figure 4 .37 : Introducing extractive distillation features at reference conditions .

106

column products of which the missing products are a subset (iii, iv) the separation
scheme (the keys and the column) under which (i) and (ii) hold.

Distillation Features in Reference Conditions . Figures 4.36 and 4.37
provide the definitions for the model fragments in this section . There are two
Distillation-Features-in-Reference-Conditions perspectives that cover ordinary (Fig.
4 .36) and extractive (Fig . 4 .37) distillation processes. The model fragment for the
ordinary distillation determines the possible keys for the separations . It then in-
stantiates a set of quantities including the Alpha-LK-HK parameter that measures
the relative volatility between the heavy and the light key under reference condi-
tions, the coefficient of the difficulty of a separation (CDS) that gives a numerical
estimate for the difficulty of a separation and the total distillate and bottom prod-
uct flow rates for the separation . Finally, it introduces a predicate establishing
the reference conditions for the column (Reference-Conditions) and a predicate
(Propose (Possible (Separation distillation (?light-key ?heavy-key ?column))) that
represents the ordinary distillation alternatives for the current column.

The procedure associates-with? in the perspective definition looks for possible
attraction between the molecules of the two substances specified in its arguments.
If there is an attraction then we are dealing with an extractive distillation process.

The perspective for the extractive distillation process determines the possible
keys for the separation . It then instantiates a set of analogous parameters with the
ones described for the ordinary distillation case (Extractive-Alpha-LK-HK, CDS,
Total-Extractive-Distillate-Flow-Rate and Total-Extra-Bottom-Flow-Rate) . In ad-
dition, it introduces a set of quantities specific to the extractive distillation case.
These include the energies of interaction and the infinite activity coefficients for
the two keys along with the selectivity between them . All these are quantities
that are used in the Weimer-Prausnitz method [72] for calculating the relative
volatilities between substances, in the presence of a polar solvent in the mixture
for the reference temperature specified for the column . Finally, the quantities
that describe the feed flow rate of the polar solvent in the process (Extractive-
Component-Feed-Flow), the total feed flow rate for the process that takes into
account the presence of the polar solvent (Total-Extractive-Feed-Flow) and an as-
sumption concerning the proposed concentration for the polar solvent in the feed
mixture (Polar-Solvent-Concentration) are asserted . In an analogous way with the
ordinary distillation case, this perspective introduces a predicate (Propose (Pos-
sible (Separation extractive-distillation (?l-k ?h-k) ?column))) that represents the
extractive distillation alternatives for the current column.

Distillation Features in Actual Conditions . Figures 4 .38 and 4 .39 provide
the definitions for the model fragments in this section . There are two Distillation-
Features-in-Actual-Conditions perspectives that cover ordinary and extractive dis-

107

(defView (Distillation-Features-in-Actual-Conditions

distillation ?column ?heavy-key ?light-key ?pressure ?feed ?op-temp)
Individuals

((?column :Type Distillation-Column
:Conditions (Examine ?column)

(First-Column ?system ?column)
(Value-of (A (Reference-Pressure ?system)) ?ref-pres ?eqn-O)

(Consider (Sharp-Separation-for ?column)))
(?feed Type Multicomponent-Mixture

Form (M-C-S ?components ?phase ?stage)
Conditions (Column-Feed ?feed ?column))

(?pressure :Conditions (Value-of (A (Operating-Pressure ?column)) ?pressure ?pres-eqn))
(?op-temp :Conditions (Value-of (A (Operating-Temperature ?column)) ?op-temp ?temp-eqn))

(?light-key :Type Substance
:Test (and (member ?light-key ?components)

(non-polar? ?light-key)

(check-scenario ?column ?light-key 'distillation)))
(?heavy-key

:Type Substance
:Test (and (not (eql ?light-key ?heavy-key))

(member ?heavy-key ?components)
(neighboring-boiling-points? ?heavy-key ?light-key ?ref-pres ?components))))

Preconditions ((Consider (Possible (Separation distillation (?light-key ?heavy-key) ?column))))
Relations ((Non-Negative-Quantity (Min-Reflux-Ratio (?light-key ?heavy-key) ?column))

(Positive-Quantity (Alpha-LK-HK ?light-key ?heavy-key ?column :operating))
(Positive-Quantity (Min-#-of-Stages ?column (?light-key ?heavy-key))
(Positive-Quantity (Average-Vapor-Velocity ?column (?light-key ?heavy-key)))

(Positive-Quantity (Reflux-Ratio (?light-key ?heavy-key) ?column))
(Positive-Quantity (Phi ?components ?column))

(Actual-Conditions
?column distillation (Pressure ?pressure) (Temp ?op-temp) (?light-key ?heavy-key)))))

Figure 4 .38 : Introducing ordinary distillation features in actual conditions.

108

(defView (Distillation-Features-in-Actual-Conditions

extractive-distillation?column ?l-k ?h-k ?p-s ?pres ?temp ?feed)
Individuals ((?column :Type Distillation-Column

:Conditions (Examine ?column))
(?feed Type Multicomponent-Mixture

Form (M-C-S ?components ?phase ?f-stage)
Conditions (Column-Feed ?feed ?column))

(?pres Conditions (Value-of (A (Operating-Pressure ?column)) ?pres ?pres-eqn))
(?temp Conditions (Value-of (A (Operating-Temperature ?column)) ?temp ?temp-eqn))

(?l-k Type Substance
:Test (and (member ?l-k ?components)

(non-polar? ?1-k)
(check-scenario ?column ?l-k 'extractive-distillation)))

(?h-k Type Substance
Test (and (not (eql ?l-k ?h-k)) (member ?h-k ?components)))

(?p-s Type Substance
Test (and (not (eql ?l-k ?p-s))

(or (associates-with? ?p-s ?1-k)

(associates-with? ?p-s ?h-k)))
Conditions (Polar-Solvent ?p-s)))

Preconditions ((Consider (Possible (Separation extractive-distillation (?l-k ?h-k) ?column))))
Relations ((Positive-Quantity (Extractive-Alpha-LK-HK ?l-k ?h-k ?p-s ?column :operating))

(Positive-Quantity (Energy-of-Interaction ?h-k ?p-s ?column :operating))
(Positive-Quantity (Energy-of-Interaction ?l-k ?p-s ?column :operating))

(Positive-Quantity (Selectivity ?l-k ?h-k ?p-s ?column :operating))
(Positive-Quantity (Infinite-Activity-Coefficient ?l-k ?p-s ?column :operating))

(Positive-Quantity (Infinite-Activity-Coefficient ?h-k ?p-s ?column :operating))
(Positive-Quantity (Min-Reflux-Ratio (?l-k ?h-k) ?p-s ?column))
(Positive-Quantity (Extractive-Min-#-of-Stages ?column (?l-k ?h-k) ?p-s))

(Positive-Quantity (Average-Vapor-Velocity ?column (?l-k ?h-k)))
(Positive-Quantity (Reflux-Ratio (?l-k ?h-k) ?column))

(Positive-Quantity (Extractive-Phi ?p-s ?components ?column))
(Actual-Conditions

?column extractive-distillation (Pressure ?pressure) (Temp ?op-temp) (?l-k ?h-k))
(Mass-Separating-Agent ?p-s ?column)))

Figure 4 .39: Introducing extractive distillation features in actual conditions .

109

tillation. The Individuals for these perspectives calculate the possible keys for the
separation . As chapter 5 explains in detail, the heuristic analysis determines when
the preconditions for these perspectives hold . Consequently, the features in their
relations fields hold only for separations that are considered promising by the
design heuristics.

The relations field for the ordinary distillation perspective introduces a num-
ber of quantities that describe the separation in more detail . These include the
minimum and the actual reflux ratios for the column under each separation (Min-
Reflux-Ratio and Reflux-Ratio respectively), the relative volatilities for the possible
keys at operating conditions, the Phi quantity which is a special-purpose quantity
used in the Underwood method [54] for calculating minimum reflux ratios and
the minimum number of stages for each alternative . These quantities are used
in the numerical model to compute structural features for the column such as its
diameter and height . These features along with the average vapor velocity and
the reflux ratio are used to calculate cost estimates for the column . Furthermore,
the Actual-Conditions predicate establishes the actual operating conditions for the
particular separation in the column.

The description for the extractive distillation perspective is analogous to the
one presented above . In addition, there is a set of quanitities that describe proper-
ties special to the extractive distillation process . These are the same with the ones
described for the Distillation-Features-in-Reference-Conditions perspective, except
that they correspond to actual operating conditions . The Mass-Separating-Agent
predicate establishes the particular solvent for the extractive distillation in the
column.

Applying the multicomponent separation model . The model serves two
main functions:

• It supplies the design knowledge component with appropriate qualitative and
numerical descriptions for the design alternatives.

• It guides the creation of appropriate numerical models that describe the
separation alternatives.

With regards to the first purpose, the model computes the possible combina-
tions of keys that comprise the separation alternatives 5 under the sharp separation
assumption . For each one of these the model determines its distillate and bottom
products . In addition, a set of separation properties for the diffficulty of each
separation and for computing cost estimates are instantiated . These include a set

5The selection of key combinations is explained in section 3 .2 above .

110

of physical properties for the substances that take part in the separation (like the
vapor pressures and the equilibrium ratios for calculating the relative volatilities
between the keys for each separation), the input and output flow rates for each
alternative, some parameters that are specific to the extractive distillation pro-
cess (e .g. parameters that describe the energy of interaction and the solubility
of various substances), certain design parameters (such as the coefficient of the
difficulty of separation) and finally structural and operational features for each
possible separation (e.g. reflux ratios, column height and diameter, number of
stages, installation cost for the column, etc .).

The qualitative and the numerical models in the physical knowledge along with
the heuristic rules in the design knowledge are translated into rules that are fed
into an assumption-based truth maintenance system (ATMS) [9] . A rule engine
(ATMoSphere) [17] provides the interface to the ATMS . The heuristic analysis uses
the design knowledge to construct focus environments [19] that determine the set
of `promising' separation alternatives at each design step . These environments
are combined with the instantiated qualitative model fragments to determine the
actual numerical models at each point in the design process.

4.5 Numerical models

Representation . In the case of binary mixtures, the numerical models consist of
a set of equations that describe the dynamic and steady-state behavior of binary
columns . In the case of multicomponent mixtures, the numerical models are based
on the Fenske-Underwood-Gilliland short-cut method for designing distillation and
extractive distillation units [13].

Figure 4.40 provides an example of the representation for each one of the
equations in the system . Each defEquation form consists of four parts:

1. The Name part provides a name for the equation . This name is stored
along with any solutions obtained using this equation in order to support
debugging and explanation tasks in the future.

2. The Conditions part refers to a set of model fragments in the qualitative
domain theory that have to be implied by the current focus environment for
the equation to hold . For example the Distillation-Features-in-Reference-
Conditions predicate in Figure 4 .40 refers to the name of the perspective
defined in Figure 4 .36 .

111

(defEquation
Relative-Volatility-Calculation-with-Vapor-Pressures ; ; The Name part
;; The Conditions part

((Distillation-Features-in-Reference-Conditions
distillation ?column ?h-k ?l-k ?pressure (M-C-S ?components ?phase ?stage) ?op-prey ?ref-temp)
:Test (null (dsn : :polar-solvent-in? ?components))

;; The Quantities part
((Alpha-LK-HK ?l-k ?h-k ?pressure ?components)

(Vapor-Pressure ?l-k ?column :reference)
(Vapor-Pressure ?h-k ?column :reference)

;; The Numerical-Form part
(_ (A (Alpha-LK-HK ?l-k ?h-k ?column :reference))

(/ (A (Vapor-Pressure ?l-k ?column :reference)) (A (Vapor-Pressure ?h-k ?column :reference))))

Figure 4 .40: Calculating the relative volatility for two possible keys in the refer-
ence conditions specified by the design system.

3. The Quantities field contains al the quantities that are mentioned in the
actual numerical form for the equation . The system tries to solve an equation
when it is active and when there are solutions for all but one of the quantities
in this field.

4. The Numerical-Form field contains the actual numerical form for the equa-
tion.

Dynamic Behavior of Binary Columns . The conservation of mass prin-
ciple is used to describe the mass flow between the stages of a binary column.
Consequently, there are two differential equations for the total holdup of material
(THM) (liquid and vapor) and the total holdup for the volatile component (THV)
at each stage 6 . If V is the vapor flow throughout the column, Ln is the flow rate
of the liquid leaving stage n, Ln+l is the flow rate of the liquid coming from stage
n+l, xn and xn+l are the mole fractions for the volatile component in the liquid
mixture at stages n and n+l respectively and finally yn and Yn_l are the mole
fractions for the volatile component in the vapor at stages n and n-1 respectively
then:

dTHV (n))

dTHM(n))
(4 .1)Ln+l

	

Ln—

	

—dt

dt
= Ln+lxn+1 — Ln xn + Vyn_1 — V yn (4 .2)

'We make the assumption that if stage n is the current stage then stage n+1 is directly above
it and stage n-1 is directly below it.

112

In the qualitative model we do not have to write an explicit equation for the
conservation of mass principle at each stage in the column . The fact that each flow
process model takes into consideration the conservation of mass allows the qualita-
tive analysis to construct the equations (4 .1) and (4 .2) for each stage by summing
up the direct influences for the Amount-of and the Amount-of-in quantities.

Let THML(n) be the total holdup for the liquid and THMLV(n) be the total
holdup for the volatile component in the liquid at stage n . Because we assumed
that we have negligible vapor holdup at each stage the following relations will also
hold :

THML(n) THM(n) and THMLV(n) THV(n)

The qualitative equivalents for the last two equations are included in the Negligible-
Vapor-HoldUp view (Fig . 4 .4) for each stage.

For each stage in the column there is a vapor-liquid equilibrium relation be-
tween the mole fractions of the volatile component in the two phases . If a is the
relative volatility between the two mixture components then:

axn
yn— 1+(a—1)xn

The qualitative equivalent of this relationship is described in the Binary-Vapor-
Liquid-Equilibrium view (Fig . 4 .5) for each stage.

Finally, there is an equation that represents the time delay that occurs when
liquid is flowing through a stage . The equation has the following form:

Ln — Ln
+ THML(n) — THML(n)

	

(4 .4)

In the qualitative model the quantity Beta represents the hydraulic time constant
3, the Initial-Amount-of quantity is the initial liquid holdup for each stage and
corresponds to the THML(n) constant while the Initial-Liquid-Flow-Rate quan-
tity is the initial flow rate of the liquid leaving each stage and corresponds to the
Ln constant.

Stedy-State Behavior of Binary Columns . An analytical version of the
McCabe-Thiele method [35] is used to capture the steady-state behavior of a binary
column. This model is based on the one described above for the dynamic behavior
of a column. The main differences are that the derivatives in (4 .2) and (4.1) are
zero and (4 .4) is not used since the liquid flow rate does not change with time.

In addition to the equations based on the McCabe-Thiele method, the system
uses equations that provide estimates for some of the design parameters . Fig-
ure 4.41 gives an example of an approximation equation (the def-First-Guess-Eqn

(4 .3)

113

(def-First-Guess-Eqn Gilland-Fenske-Equation

	

; ; The name of the equation
(Num-of-Stages ?column)

	

; ; The quantity it estimates
;; The activation conditions
((Steady-State-Column-Design-Features ?column ?c-stage ?c-phase ?r-stage ?r-phase ?distillate-flow

?bproduct-flow ?substancel ?substance2)

;; The quantities that take part in the equation
((Mole-Fraction ?substancel (2-C-S (?substance) ?substance2) ?c-phase ?c-stage))

(Mole-Fraction ?substancel (2-C-S (?substance) ?substance2) ?r-phase ?r-stage))
(Constant-Alpha ?column))

;; The numerical form for the equation
(_ (A (Num-of-Stages ?column))

(* 2 . (/ (log (* (/ (A (Mole-Fraction ?substancel
(2-C-S (?substance) ?substance2) ?c-phase ?c-stage)))

(- 1 . (A (Mole-Fraction

?substancel
(2-C-S (?substance) ?substance2) ?c-phase ?c-stage)))))

(/ (- 1 . (A (Mole-Fraction
?substancel

(2-C-S (?substance) ?substance2) ?r-phase ?r-stage))))
(A (Mole-Fraction

?substancel
(2-C-S (?substance) ?substance2) ?r-phase ?r-stage))))))

(log (A (Constant-Alpha ?column)))))))

(def-First-Guess-Parameter (Num-of-Stages ?column) ;; The parameter predicate
;; The conditions under which the parameter representation is valid.
((Steady-State-Column-Design-Features ?column ?c-stage ?c-phase ?r-stage ?r-phase ?distillate-flow

?bproduct-flow ?substancel ?substance2)

;; The unit step for changing the parameter if the estimate is not accurate . The particular entry in this form instructs the system
;; to change by one the number of stages in a column when updating an estimate . The direction of change (increase or
;; decrease) is determined by the design program.
1)

Figure 4 .41: Estimating the number of stages in a binary column.

form) . It consists of the same fields as the defEquation form with the addition of
a slot indicating the quantity it is estimating. The approximation equations are
indexed under these quantities . They are used by the system in underconstrained
problems when the program is not able to solve for all of the unknown parameters
using just the design specifications.

The def-First-Guess-Parameter form (Fig . 4 .41) is defined for each parameter
estimated in an approximation equation . It contains the predicate for the param-
eter, the conditions under which it holds and a number or a procedure indicating
a method for updating the value for the parameter in case the initial estimate is
not accurate.

Multicomponent Columns . The analysis of multicomponent columns is
based on a simplified version of the Fenske-Underwood-Gilliland method [54] for
multicomponent distillation. The major steps are :

114

1. Specify the splits for all the components . Since we assume that we have sharp
separation units, all the nonkey components end up in one of the products.
The splits for the keys are assumed to be equal to their desired recoveries in
the separation products.

2. Determine the column pressure, the condenser type and the phase of the
feed . For simplicity, we assume that all the columns operate at the same
pressure, we use partial condensers and the feed for every column is in the
liquid phase.

3. Calculate the minimum theoretical stages for the desired separation . This
is done using a version of the Gilliland-Fenske equation for multicomponent
mixtures [13].

4. Calculate the minimum reflux ratio . The Underwood equation [54] provides
a good approximation for this calculation.

Most of these calculations require the relative volatilities between the separa-
tion keys and the distillate and product flow rates for the separation scheme . The
relative volatilities are computed using a set of equations that calculate physi-
cal properties and separation characteristics for various pressure and temperature
conditions . Appendix B .1 describes the numerical models for this case.

Finally, the cost estimates for each of the multicomponent columns are gener-
ated based on part of the method presented in [49] . Appendix B .2 describes the
numerical models for this case.

Although the results we get from this simplified method are not very accurate,
they allow us to create flowsheets similar to the ones generated by more accurate
versions of the method.

4.6 Model Testing

The model for the dynamic behavior of binary columns was tested in SIMGEN.
The particular example was a 20-stage binary distillation column . The machine
used was an IBM RS/6000, Model 320, with 64MB of RAM running Lucid Com-
mon Lisp . Table 4 .1 summarizes some of the statistics for the compilation of the
simulator for the distillation model in SIMGEN .

115

Table 4.1 : Statistics for the performance of SIMGEN in the distillation model.

Total Run Time for Qualitative Analysis 1 hr 21 mins

Total Run Time for Code Generation 1 min 48 .57 sec

Number of Quantities in the Model 599

Number of active Processes 46
Number of instantiated Views 258

The simulator produced by SIMGEN was tested against a handwritten numer-

ical simulator similar to the one described in [36] for the simulation of an ideal

binary distillation column 7 . Both simulators produced the same results.

All the models for the binary columns were used in a system for solving the

design problem for binary distillation [35] . The multicomponent model was used

in a program for the evolutionary design of multicomponent separation systems.

Results for both applications are presented in chapter 6.

4.7 Discussion

There are two criteria for evaluating whether a set of representations for the phys-

ical knowledge in a domain can be succesfully used in design:

1. Expressiveness . The representations should be able to generate and represent

the design alternatives.

2. Effectiveness . The knowledge captured in the representations should be able

to guide the system in solving design problems.

Physical knowledge representations that are not expressive do not allow the

design knowledge to explore the design space systematically . As a result, the sys-

tem misses interesting designs . Physical knowledge representations that are not

effective are not able to meet certain time and space constraints imposed by the

7The only difference between our handwritten numerical simulator and the one used in [36] is
that the later assumes that the vapor flow rate and the reflux rate in the column are controlled
with two PI controllers.

116

hardware or the designer for generating possible designs . Although design is usu-
ally not performed in real-time (as opposed to monitoring for example), the need
for effectiveness is justified in terms of the large number of possible solutions for
each problem. Creating succinct representations that contain information relevant
to the design knowledge is the major task of the physical knowledge component.

The models we presented above satisfy both criteria . In terms of expressiveness,
the physical knowledge automatically generates qualitative and numerical models
for alternatives that are consistent with the modeling assumptions specified in
design . In addition, these models introduce properties (e .g., cost estimates, relative
volatility measures) that are relevant to the design knowledge.

In terms of effectiveness, there is significant interaction between the physical
and design knowledge in determining the type of analysis for each alternative.
For example, in the case of multicomponent mixtures every alternative is initially
analyzed at an abstract level by activating model fragments like the perspectives
in Figures 4 .36 and 4 .37 . The results of this analysis are used by the design
knowledge to identify a set of `promising' designs . When these are determined,
the design knowledge constructs focus environments that activate more detailed
models for the remaining alternatives (e.g . the views in Figure 4 .39 and their
associated numerical models).

Furthermore, the physical knowledge contains information that guides the pro-
gram through the selection of different design alternatives . For example, in the
binary distillation case the relation between the number of stages in the column
and the recovery of the volatile component in the distillate (Figure 4 .18) guides
the system in increasing the number of stages whenever the recovery of the volatile
component is below the design specifications for the current column.

In both cases the effectiveness of the analysis phase in design is improved
through the explicit representation of the causal relations between the design pa-
rameters in the binary model and the ability to dynamically construct models at
varying levels of detail in the multicomponent case .

Chapter 5

Representing Design Knowledge

in OUZO

117

118

5 .1 Introduction

Design is the process of creating a description of an artifact that satisfies a set

of functional specifications . The term design knowledge refers to a corpus of

knowledge that describes the ways design is performed in a domain . This research

focuses on computational models of design knowledge . OUZO contains three kinds

of design knowledge:

1. Heuristics, i .e ., rules of thumb.

2. Strategies . Plans for optimizing the application of the heuristic rules.

3. Configuration Synthesis Rules . Rules for producing the actual artifact de-

scriptions and monitoring the state of design.

In the following sections we describe the interpreter in OUZO that transforms

these knowledge types into appropriate rules and implements the actions suggested

by the heuristic rules via a set of primitives . In addition, we describe and discuss

the design knowledge models for separation system design that are implemented

in OUZO.

5 .1 .1 Heuristics

Figure 5.1 provides an example of the form used to represent the heuristic rules

in the system. Each defHeuristic form consists of four fields:

• The Name field provides a way for assigning a name to a heuristic rule.

(defHeuristic Ordinary-vs-Extractive-Distillation ;; The Name field

:Class Favor-Distillation
;; The predicates in the Conditions slot are the antecedents of an ATMoSphere rule.

:Conditions ((Possible (Separation extractive-distillation ?keysl ?column)) :Var ?fl
(Possible (Separation distillation ?keys2 ?column)) :Var ?f2)

;; The action slot is essentially the body of the ATMoSphere rule.

:Action ((prefer ?f2 Over ?fl)))

Figure 5 .1 : Typical heuristic form . This particular heuristic favors ordinary over

extractive distillation for any column .

119

• The :Class field contains the name of the heuristic class in which the rule
belongs . Classes provide a convenient way of grouping heuristics according to
the physical principles they are based on, or by the general design heuristics
they instantiate . They are used by the strategies to retrieve the heuristic
rules they contain.

• The :Conditions field contains a set of conditions that must hold for the rule
to fire.

• The :Action field contains the body of the heuristic rule.

Heuristic rules along with the rest of the design knowledge are implemented
as rules that are fed into an assumption-based truth maintenance system (ATMS)
[9] . A rule engine (ATMoSphere) [17] provides the interface to the ATMS . All
of the heuristics are translated into ATMoSphere rules . The conventions used in
ATMoSphere are explained in [20] . When necessary we use LISP to create new
assertions.

5 .1 .2 The Interpreter Primitives

The design interpreter in OUZO contains thirteen primitives for implementing the
actions suggested by the heuristic rules . These primitives are commands to the in-
terpreter describing how to update the set of design choices . This section describes
their syntax and implementation.

1 . Prefer . Establish an order of preference between two design alternatives.

• Syntax : (Prefer ?x :Over ?y :Rank ?z), where ?x and ?y are predicates
and ?z is a number.

• Implementation : Justifies the predicate (Prefer ?x :From ?y ?z) in
terms of ?x and ?y in the ATMS . The rank typically represents the
importance of the heuristic that establishes the preference . The inter-
pretation of this number depends on the design strategy.

2. Propose-Value . Assigns a numerical value to a parameter.

• Syntax : (Propose-Value ?quant ?val), where ?quant is a parameter
and ?val is a numerical value.

• Implementation : Asserts the predicate (Value-of (A ?quant) ?val :Pro-
pose) in the ATMS .

120

3 . Assert-in-Design . Asserts that an alternative holds for the rest of design.

• Syntax : (Assert-in-Design ?a), where ?a is a predicate.

• Implementation : Inserts the predicate (assertq ?a) in the *scenario*
list which contains the current design description and updates the focus
environment.

4 . Assume-in-Design . Assumes that an alternative holds for the rest of de-
sign .

• Syntax : (Assume-in-Design ?a), where ?a is a predicate.

• Implementation : Inserts the predicate (assume ?a) in the *scenario*
list and updates the focus environment.

5 . Invalidate-Decision . Do not consider the design alternative specified in
its argument for the rest of the design process . It is used to retract design
decisions made using the assert-in-design primitive.

• Syntax : (Invalidate-Decision ?x), where ?x is a predicate.

• Implementation : Asserts in *scenario* the predicate (No-Good ?x)
which precludes the design heuristics from considering ?x for the rest
of the design process and removes ?x from the design description.

6 . Assume-in-Cycle. Assume that a design decision holds for the current
design cycle.

• Syntax : (Assume-in-Cycle ?x), where ?x is a predicate.

• Implementation : Assumes ?x in the ATMS and includes it in the
current focus environment.

7 . Cover-Specifications . Indicate that all the design specifications are satis-
fied .

• Syntax : (Cover-Specifications).

• Implementation : Set the *design-success* variable to true.

8 . Reject . Rejects a design alternative or a parameter estimate from further
consideration during the current design cycle . It is used to reject assumptions
made using the assume-in-cycle primitive.

• Syntax : (Reject ?x), where ?x is a predicate .

121

• Implementation : Make ?x a nogood node in the ATMS and removes
it from the current focus environment.

9 . Consult-User . Asks the user to select between alternatives.

• Syntax : (Consult-User ?al ?a2), where ?al and ?a2 are predicates.

• Implementation : It asks the user to select between ?al and ?a2 and
then it follows the same procedure with the assert-in-design primitive
for the chosen alternative.

10 . Examined-Alternative . Returns true if an alternative has been already
examined by the program.

• Syntax : (Examined-Alternative ?x), where ?x is a predicate.

• Implementation : Checks whether ?x is a member in the *alternatives-
checked* list which contains all the designs examined by the system so
far. If it is not, it inserts ?x in this list.

11 . Exists . Returns true if its argument is part of the current design description.

• Syntax : (Exists ?x), where ?x is a predicate.

• Implementation : Checks whether ?x is a member of the *scenario*
list.

12 . Store-Design . Stores the current design description.

• Syntax : (Store-Design)

• Implementation : Pushes the contents of the *scenario* variable to the
previous-designs list.

13 . Pop-Design . Reinstates the most recently stored design description.

• Syntax : (Pop-Design)

• Implementation : Pops the *previous-designs* list.

These primitives are used in conjunction with two standard ATMS primitives;
assume which assumes a node in the ATMS and assert which asserts a node in the
ATMS .

122

(defHeuristic Heuristic-0
Class Separation-Alternatives-Representation.
Conditions ((Propose (Possible (Separation distillation (?l-k ?h-k) ?column))))

Action ((assume '(Possible (Separation distillation (,?l-k ,?h-k) ,?column)))))

IF an ordinary distillation process has been proposed by the qualitative domain theory
THEN assume this separation as a possible separation during the heuristic analysis.

Figure 5 .2 : Feed the ordinary distillation alternatives in the heuristic analysis.

5 .1 .3 The Heuristic Library

The heuristic library in OUZO contains heuristics for the design of separation sys-
tems for multicomponent mixtures along with heuristics for binary distillation
design.

Designers for multicomponent separation systems use a set of nineteen general
heuristics to construct an initial separation flowsheet (see Table 5 .1 taken from
[45]) . In addition to these heuristics, evolutionary design methods use their own
sets of heuristics for refining the initial structure . The heuristic library in OUZO
contains fourteen general heuristics along with nine evolutionary heuristic rules
for multicomponent separation systems . Furthermore, this library contains ten
heuristics for the binary distillation design problem.

The rest of the section describes the representations for these rules . Each one
of the figures below, contains the actual encoding for a heuristic along with a piece
of text summarizing its content .

123

Heuristic Rule
1 Remove components one by one as overhead products <
2 Save the most difficult separation for last <
3 Favor 50-50 splits <
4 Sequence with the minumum total vapor flow
5 Make high recovery fractions last
6 Separate the most plentiful components first <
7 Choose the cheapest as the next separator
8 Remove the thermally unstable and corrosive material early.
9 Disregard separations with very small relative volatility between

the keys . <
10 Perform least-tight separation first <
11 Favor the smallest production set <
12 Avoid separations using a mass separating agent (MSA) . <
13 Remove a MSA from one of the products in another, subsequent

separation process <
14 A separation method using a MSA cannot be used to isolate

another MSA <
15 Favor distillation <
16 Separate first the components which might undergo undesirable reactions
17 Set split fractions of the key components to prespecified values <
18 Avoid extreme operating conditions <
19 Favor ambient operating pressure —

Table 5 .1 : The major heuristic rules for establishing the initial separation struc-
ture. The arrows indicate the rules supported by the Nath & Motard and the
Seader & Westerberg evolutionary strategies.

124

(defHeuristic Order-Choices
Class Order-Choices
Conditions ((Possible (Separation ?method ?keys ?column)) :Var ?fl

:Test (most-preferable? ?method ?keys ?column))
Action ((assert-in-design

'(Consider (Possible (Separation ,?method ,?keys ,?column))))))

IF there exists a viable separation alternative (a) for the current column
AND there is no other alternative designated as more preferable than (a)

THEN assert (a) as the separation taking place in the column

Figure 5 .3 : Determine the separation for the current column.

5 .1 .3.1 Separation Systems for Multicomponent Mixtures

Represent the separation alternatives

Represent the ordinary distillation alternatives . This rule provides the
interface between the qualitative domain theory and the design heuristics (Fig.
5 .2) . In particular, the predicates in the Conditions part of the rule represent all
the possible ordinary distillation schemes that were computed using the qualitative
domain theory. They are introduced by the Approximate-Distillation-Features
perspectives in Figures 4.36 and 4 .37 . The Action part of the rule constructs
the representations for the alternative separation schemes that are going to be
evaluated by the rest of the heuristics . In both strategies extractive distillation
alternatives are introduced as needed by the rest of the heuristic rules.

Decide on the separation task

Determine the separation for the current column . This rule (Figure
5 .3) is used to inform the rest of the design system that the heuristic analysis
has decided on the separation scheme that is going to take place in the current
column. The most-preferable? procedure examines the partial order established
by the prefer primitive to find whether the current alternative is the best .

125

(defHeuristic Product-Set-Selection
Class Favor-Smallest-Production-Set
Conditions ((Column-Feed (M-C-S ?components ?phase ?feed-stage) ?column)

(Reference-Conditions ?column (Pressure ?pressure) (Temp ?t))
(Possible (Separation ?method (?l-k ?h-k) ?column)) :Var ?fl

:Test (null (desired-products? ?l-k ?h-k ?components ?column ?pressure))
(Possible (Separation ?method (?l-k-1 ?h-k-1) ?column)) :Var ?f2

:Test (desired-products? ?1-k-1 ?h-k-1 ?components ?column ?pressure))
Action ((reject ?fl)))

IF the components of the feed for the current column are known

AND the value of the reference pressure for the current column is given
AND there is one separation alternative (a)
AND neither the distillate nor the bottoms products for (a) are equal

to any of the desired products for the column in reference conditions
AND there is another separation alternative (b)

AND either the distillate or the bottoms products for (b) are equal
to some of the desired products for the column in reference conditions

THEN reject (a) as a possible separation alternative.

Figure 5 .4 : The heuristic rule that favors the smallest production set.

General Design Heuristics (Table 5 .1)

In the list below, each heuristic class is indexed using the name and the number
under which it is presented in Table 5 .1.

Favor the smallest production set (11) . The rule is presented in Figure
5 .4 . It rejects any separation which does not generate any of the desired products,
provided that there is at least one possible separation scheme that does . The
procedure desired-products? in Figure 5 .4 takes three arguments . The first two
specify the light and heavy keys for a separation . The third one is a list of the
substances that are fed to the column while the fourth is the reference pressure
on which the product calculations are based . The procedure returns true, if any
of the products of the separation scheme it examines, belongs to the set of desired
products in the design specifications.

Avoid extreme operating conditions (18) . Figure 5 .5 describes the rep-
resentation for this rule for both ordinary and extractive distillation cases . The
Operating-Reflux-Estimate quantity provides us with an estimate for the ratio
between the operating reflux flow rate and the minimum reflux flow rate for a
column . This is an important operating feature since it influences the product
recoveries and the diameter of the column for a given separation . This quantity is
introduced by the Distillation-Column entity in the qualitative model (Fig . 4.22) .

126

(defHeuristic Operating-Reflux-Estimate
Class Avoid-Extreme-Operating-Conditions
Conditions ((Quantity (Operating-Reflux-Estimate ?column)))

Action ((propose-value '(A (Operating-Reflux-Estimate ,?column)) 1 .3)))

IF the ratio between the operating reflux rate and the minimum reflux rate for a column
has been introduced

THEN define its value to be 1 .3.

Figure 5 .5 : Avoid extreme operating conditions in the column.

The particular numerical value for the estimate (1 .3) is part of the Nath & Motard
method [43].

Disregard separations with very small relative volatilities between
the keys (9) . A small relative volatility between the key components in distilla-
tion means that there is no significant difference between the evaporation rates for
these components at various temperature and pressure conditions . Consequently,
distillation is an expensive process for separating these components due to the
large number of stages that are necessary. Figure 5 .6 presents the implementation
of this rule for the reference conditions in a column . The Alpha-LK-HK quan-
tity in both figures stands for the relative volatility between the key components
in a separation scheme. The heuristics in Figure 5 .6 reject any possible separa-
tion scheme with relative volatility between the keys less than the minimum value
defined in heuristic Estimate-Min-Relative-Volatility.

Favor distillation (15) . The form in Figure 5 .8 is used to capture this
heuristic rule. For every column it suggests ordinary to extractive distillation as a
more promising alternative . Extractive distillation processes increase the number
of columns in a separation system since the mass separating agent they use has to
be recycled in separate columns . This is why ordinary distillation is prefered in
general.

Avoid separations using a mass separating agent (MSA) (12) . In
addition to favoring distillation processes the heuristic rule in Figure 5.8 gives a
low priority to extractive distillation operations.

Perform least-tight separation first (10) . Different methods provide dif-
ferent interpretations for this heuristic rule, since what is a tight separation de-
pends on the criteria used . Figure 5 .9 presents the interpretation of this rule in
the Nath & Motard strategy. In this case a numerical formula that combines a

127

;; This heuristic is used in the Seader €? Westerberg method too.
(defHeuristic Estimate-Min-Relative-Volatility
Class Disregard-Small-Relative-Volatilities

Conditions ((Distillation-Column ?column))
Action ((assume '(Consider (Min-Relative-Volatility ,?column ,*min-volatility*)))))

IF there exists a distillation column

THEN assume that the minimum relative volatility for the column is equal to *min-volatility*.

(defHeuristic Separation-Feasibility-in-Atm-Conditions-1
Class Disregard-Small-Relative-Volatilities

Conditions ((Possible (Separation distillation (?light-key ?heavy-key) ?column)) :Var ?fl
(Column-Feed (M-C-S ?components ?phase ?stage) ?column)
(Value-of (A (Alpha-LK-HK ?light-key ?heavy-key ?column :reference)) ?alpha ?eq-1)

(Consider (Min-Relative-Volatility ?column ?alpha-min))
Test (and (> ?alpha-min ?alpha) (associates-with? ?p-s ?light-key)))

Action
((reject ?fl)

(when (exists '(Value-of (A (Extractive-Alpha-LK-HK ,?heavy-key ,?light-key . ?rl)) . ?r2))
(assume '(Possible (Separation extractive-distillation (,?heavy-key ,?light-key) ,?column))))))

(defHeuristic Separation-Feasibility-in-Atm-Conditions-2

Class Disregard-Small-Relative-Volatilities
Conditions ((Possible (Separation distillation (?light-key ?heavy-key) ?column)) :Var ?fl

(Column-Feed (M-C-S ?components ?phase ?stage) ?column)
(Value-of (A (Alpha-LK-HK ?light-key ?heavy-key ?column :reference)) ?alpha ?eq-1)

(Consider (Min-Relative-Volatility ?column ?alpha-min))
Test (and (> ?alpha-min ?alpha) (associates-with? ?p-s ?heavy-key)))

Action
((reject ?fl)

(when (exists '(Value-of (A (Extractive-Alpha-LK-HK ,?light-key ,?heavy-key . ?rl)) . ?r2)))

(assume '(Possible (Separation extractive-distillation (,?light-key ,?heavy-key) ,?column)))))

IF there is a possible separation alternative for the current column
AND the value for the relative volatility between the key components under reference conditions

is less than the minimum relative volatility assumed for the column
AND a polar solvent can associate either with the light or the heavy keys

THEN reject the current separation alternative and pursue extractive distillation alternatives

(defHeuristic Extractive-Separation-Feasibility-in-Reference-Conditions
Class Disregard-Small-Relative-Volatilities
Conditions ((Possible (Separation extractive-distillation (?l-k ?h-k) ?column)) :Var ?fl

(First-Column ?system ?column)
(Value-of (A (Extractive-Alpha-LK-HK ?l-k ?h-k ?polar-solvent ?column :reference))

?alpha ?eq-1)
(Consider (Min-Relative-Volatility ?column ?alpha-min))

Test (> ?alpha-min ?alpha))
Action ((reject ?fl)))

IF there is an extractive distillation alternative for the current column

AND and the relative volatility between the keys in reference conditions is less than
the minimum relative volatility for the current column

THEN reject the extractive distillation alternative.

Figure 5 .6 : Disregard separations with very small relative volatility between the

keys . The rules presented correspond to reference conditions for the column . There
is an analogous set of rules for the actual operating conditions for the column .

128

(defHeuristic Difficulty-of-Separation-1
Class Perform-Least-Tight-Separation-First
Conditions ((Possible (Separation ?method (?l-k-1 ?h-k-1) ?column)) Var ?fl

(Value-of (A (Alpha-LK-HK ?1-k-1 ?h-k-1 ?column reference)) ?a-lk-hk-1 ?eq-1)
(Possible (Separation ?method (?l-k-2 ?h-k-2) ?column)) Var ?f2

(Value-of (A (Alpha-LK-HK ?1-k-2 ?h-k-2 ?column reference)) ?a-lk-hk-2 ?eq-2)
Test (and (> ?a-lk-hk-1 ?a-lk-hk-2)

(> (- ?a-lk-hk-1 ?a-lk-hk-2) *alpha-difference*)))
Action ((prefer ?fl Over ?f2)))

IF there is a separation alternative (a) for the current column

AND the relative volatility between the keys in (a) in reference conditions is known
AND there is another separation alternative (b)
AND the relative volatility between the keys in (b) in reference conditions is known

AND there is a significant difference (> *alpha-difference*)
between the relative volatilities of (a) and (b)

THEN prefer the separation alternative with the largest value for the relative volatility.

(defHeuristic Difficulty-of-Separation-2
Class Perform-Least-Tight-Separation-First

Conditions ((Possible (Separation ?method (?l-k-1 ?h-k-1) ?column)) Var ?fl
(Value-of (A (Alpha-LK-HK ?1-k-1 ?h-k-1 ?column reference)) ?a-lk-hk-1 ?eq-1)

(Possible (Separation ?method (?l-k-2 ?h-k-2) ?column)) Var ?f2
(Value-of (A (Alpha-LK-HK ?1-k-2 ?h-k-2 ?column reference)) ?a-lk-hk-2 ?eq-2)

Test (and (> ?a-lk-hk-1 ?a-lk-hk-2)
(<_ (- ?a-lk-hk-1 ?a-lk-hk-2) *alpha-difference*)))

Action ((consult-user ?fl ?f2)))

IF there is a separation alternative (a) for the current column
AND the relative volatility between the keys in (a) in reference conditions is known

AND there is another separation alternative (b)
AND the relative volatility between the keys in (b) in reference conditions is known
AND there is not a significant difference (< *alpha-difference*) between the

relative volatilities of (a) and (b)
THEN let the user decide which alternative is more preferable.

(defHeuristic Ordinary-vs-Extractive-Distillation

Class Perform-Least-Tight-Separation-First
Conditions ((Consider (Evolutionary-Strategy-For ?s Seader-&-Westerberg))

(Column-Feed (M-C-S ?components ?phase ?stage) ?column)
(Possible (Separation distillation (?lk-1 ?hk-1) ?column)) :Var ?fl
(Value-of (A (Alpha-LK-HK ?lk-1 ?hk-1 ?column :reference)) ?a-1 ?eq-1)

Test (> ?a-1 2 .0)
(Possible (Separation extractive-distillation (?lk-2 ?hk-2) ?column)) :Var ?f2)

((prefer ?fl Over ?f2)))

IF the Seader & Westerberg strategy is used
AND the feed to the current column ?column is known

AND there is an ordinary distillation alternative (a) with relative volatility betwwen the keys
greater than 2 under reference conditions

AND there is an extractive distillation alternative (b)
THEN mark (a) as better than (b).

Figure 5 .7 : The forms in the figure combine representations for three heuris-
tics : (i) Disregard separations with small relative volatility between the keys (ii)
Perform least-tight separation first and (iii) Save the most difficult separation for
last .

129

(defHeuristic Ordinary-vs-Extractive-Distillation
Class Favor-Distillation
Conditions ((Possible (Separation extractive-distillation ?keys-1 ?column)) :var ?fl

(Possible (Separation distillation ?keys-2 ?column)) :var ?f2)
Action ((prefer ?f2 Over ?fl)))

IF there is an extractive distillation alternative for the current column

AND there is an ordinary distillation alternative for the current column
THEN prefer the ordinary distillation alternative.

Figure 5 .8 : Two heuristic rules are represented by the form in the figure : (i)
Favor distillation (ii) Avoid separations using a mass separating agent (MSA).

set of criteria l for the tightness of a separation scheme is used [43] . The formula
calculates what is called the coefficient of the difficulty of a separation (CDS) for a
separation scheme . The lower the CDS value for an alternative the more promising
this appears to be.

The Seader & Westerberg method uses the relative volatility between the key
components as a measure of the tightness of a separation scheme . The heuristics in
Figure 5 .7 order the separation alternatives according to the values of the relative
volatility between the key components. Separation schemes with higher relative
volatilities are considered more promising.

Save the most difficult separation for last (2) . Difficult means tight,
therefore the heuristics based on the CDS function (Fig . 5 .9) along with the ones
using the relative volatility between the keys (Fig . 5.7), schedule the more difficult
separations towards the end of the separation system.

A separation method using a MSA cannot be used to isolate another
MSA (14) . In other words the solvent selected for the extractive distillation
should be easily separated from the products of the process . Otherwise the number
of columns in the separation system will increase with a subsequent increase in the
cost of the system. Figure 5.10 contains the representation for this heuristic rule.
The form (No-Good (Possible (Separation))) in the figure represents possible
separation alternatives that were already examined in some previous design cycle.

'The set of criteria include [43] : (i) Favor separations with large relative volatilities between
the keys (ii) Favor balanced columns (i .e . columns in which the flow rates for the distillate and the
bottoms products are approximately the same) (iii) Favor sloppy splits for the keys (i .e . separations
that do not require high recoveries for the keys) (iv) Favor separations with low distillate product
flow rate .

130

(defHeuristic Compare-CDS
Class Perform-Least-Tight-Separation-First

Conditions ((Consider (Evolutionary-Strategy-For ?system Nath-&-Motard))
(Possible (Separation ?method (?l-k-1 ?h-k-1) ?column)) var ?fl

(Value-of (A (CDS ?method ?column (?l-k-1 ?h-k-1) reference)) ?cds-1 ?eqn-1)
(Possible (Separation ?method (?l-k-2 ?h-k-2) ?column)) var ?f2

(Value-of (A (CDS ?method ?column (?l-k-2 ?h-k-2) reference)) ?cds-2 ?eqn-2)
Test (and (< ?cds-1 ?cds-2) (> ?cds-1 0 .0)))

Action ((prefer ?fl Over ?f2)))

IF the Nath 8c Motard evolutionary strategy is used

AND there exists a separation alternative (a)
AND the CDS value for (a) is known

AND there is another separation alternative (b) with the same separation method as (a)
AND the CDS value for (b) is known

AND both CDS functions are positive
AND the CDS value for (a) is less than the CDS value for (b)

THEN prefer separation alternative (a)

(defHeuristic Reject-Negative-CDS
Class Perform-Least-Tight-Separation-First

Conditions ((Consider (Evolutionary-Strategy-For ?system Nath-&-Motard))
(Possible (Separation ?method (?l-k-1 ?h-k-1) ?column)) var ?fl

(Value-of (A (CDS ?method ?column (?l-k-1 ?h-k-1) reference)) ?cds-1 ?eqn-1)
Test (< ?cds-1 0 .0)
(Column-Feed (M-C-S ?components ?phase ?stage) ?column)

(Value-of (A (Alpha-LK-HK ?1-k-1 ?h-k-1 ?column :reference)) ?alpha . ?y)
Test (< ?alpha *max-alpha*))

Action ((reject ?fl)))

IF the Nath 8c Motard evolutionary strategy is used
AND there is a possible separation alternative

AND the coefficient of the difficulty of the separation for this alternative is negative
AND the relative volatility between the keys in this separation scheme is less than *max-alpha*

THEN unless there is a good reason to reject a simple distillation process by which the polar
solvent is isolated reject the extractive distillation scheme as an alternative.

Figure 5 .9 : Perform least tight separation first . Usually a good reason for re-

jecting a simple distillation process in the second heuristic rule is the activation of
evolutionary heuristics that challenge the separations proposed by this heuristic .

131

(defHeuristic MSA-Agent-Isolation
Class MSA-Agent-Isolation
Conditions ((Polar-Solvent ?p-s)

(Column-Feed (M-C-S ?components ?phase ?stage) ?column)
:Test (member ?p-s ?components)

(Possible (Separation extractive-distillation ?keys ?column)) :Var ?fl)
Action ((when (not (exists '(No-Good (Possible (Separation distillation (?x ,?p-s) ,?column)))))

(reject ?fl))))

IF there is a polar solvent which is part of the feed for the current column
AND an extractive distillation process is an alternative for the current column

THEN unless there is a good reason to reject a simple distillation process by which the polar
solvent is isolated reject the extractive distillation scheme as an alternative.

Figure 5 .10 : A separation method using a MSA cannot be used to isolate another
MSA.

It is asserted by the evolutionary heuristics whenever they conclude that a design
choice should not be duplicated for a particular column in a new design.

Remove a MSA from one of the products in another, subsequent
separation process (13) . This heuristic ensures that one of the alternatives
explored after an extractive distillation column is a column in which the mass sep-
arating agent is removed and recycled . Figure 5.11 contains the representation for
this heuristic . The two heuristics implement different design policies . The Reject-
non-MSA-Removal-Splits rule eliminates from the rest of the analysis separations
that do not isolate the MSA . The Favor-MSA-Removal rule gives a low priority
to these splits.

Favor 50-50 splits (3) . When the amounts of the distillate and bottom
products can be made approximately the same we have a 50-50 split . This heuristic
is taken into consideration during the construction of the CDS function (Figure
5 .9) .

Set split fractions of the key components to prespecified values (17).
This rule provides specifications for the operating conditions for a given sepa-
ration scheme. Figure 5 .12 describes the representation for this heuristic . The
Product-Specification quantity represents the desired recovery for a product of
the separation system . The Product-Recovery quantity is the actual recovery
used in the column that belongs to this separation system . This rule equates the
two.

Remove components one by one as overhead products (1) . The sepa-
ration system that results from a repeated application of this heuristic is called the

132

(defHeuristic Reject-non-MSA-Removal-Splits
Class Remove-MSA-From-Products-in-Subsequent-Operation

Conditions ((Mass-Separating-Agent ?p-s ?prev-column)
(Connects-to ?prev-column ?system)

(First-Column ?system ?column)
(Column-Feed (M-C-S ?components ?phase ?stage) ?column)

Test (member ?p-s ?components)
(Possible (Separation ?method (?l-k ?h-k) ?column)) :Var ?fl
Test (not (polar-solvent ?h-k)))

Action ((reject ?fl)))

IF a mass separating agent was used in some previous column
AND the previous column is connected to a separation system

AND the separation system is connected to the current column
AND the current column takes a multicomponent mixture as feed

AND the mass separating agent is one of the components of the feed
AND a possible separation scheme is proposed for the current column

AND the heavy key is not a polar solvent in this scheme
THEN reject this separation scheme.

(defHeuristic Favor-MSA-Removal
Class Remove-MSA-From-Products-in-Subsequent-Operation

Conditions ((Mass-Separating-Agent ?p-s ?prev-column)
(Connects-to ?prev-column ?system)

(First-Column ?system ?column)
(Column-Feed (M-C-S ?components ?phase ?f-stage) ?column)

Test (member ?p-s ?components)
(Possible (Separation distillation (?substance ?p-s) ?column)) :Var ?fl

(Possible (Separation distillation (?lk ?hk) ?column)) :Var ?f2
Test (not (eql ?hk ?p-s)))

Action
(unless (exists (No-Good (Possible (Separation distillation (?substance ?p-s) ?column))))

(prefer ?fl Over ?f2)))

IF a mass separating agent was used in some previous column
AND the previous column is connected to a separation system

AND the separation system is connected to the current column
AND the current column takes a multicomponent mixture as feed
AND the mass separating agent is one of the components of the feed

AND there is a separation alternative (a) in which the mass separating agent is the heavy key
AND there is a separation alternative (b) in which the mass separating agent

is not the heavy key
THEN unless there is some good reason for rejecting (a), prefer (a) over (b).

Figure 5 .11 : Remove a MSA from one of the products in another, subsequent

separation process . A good reason for rejecting the separation proposed by the

second rule is the activation of evolutionary heuristics that challenge this rule .

133

(defHeuristic Key-Split-Fractions
Class Set-Split-Fractions-to-Specified-Values
Conditions ((First-Column ?system ?column)

(Quantity (Product-Recovery ?product ?column (?l-k ?h-k)))
Test (member ?product '(,?l-k ,?h-k))

(Value-of (A (Product-Specification ?product ?system)) ?spec . ?x))
Action ((propose-value '(A (Product-Recovery ,?product ,?column (,?l-k ,?h-k)))) ?spec))

IF a column is part of a separation system

AND there exists a quantity that describes the recovery of a product in this column
AND the above product is one of the keys

AND the value for the desired product specification for this key in the separation
system is known

THEN set the value of the product recovery for the key in the column to the value of the
product specification for this key in the separation system.

Figure 5 .12 : Set split fractions of the key components to prespecified values.

(defHeuristic Favor-Directed-Sequences
Class Remove-Components-as-Overhead-Products

Conditions ((Column-Feed (M-C-S ?components ?feed ?stage) ?column)
(Reference-Conditions ?column (Pressure ?ref-prey) (Temp ?t))

(Possible (Separation ?method (?l-k ?h-k) ?column)) :Var ?fl
Test (only-overhead-product? ?l-k ?l-k ?h-k ?components ?ref-prey)

(Possible (Separation ?method-1 (?l-k-1 ?h-k-1) ?column)) :Var ?f2
Test (null (only-overhead-product? ?1-k-1 ?1-k-1 ?h-k-1 ?components ?ref-prey)))

Action ((reject ?f2)))

IF we know the feed to the current column
AND we know the value for its reference pressure
AND there is a separation alternative (a)

AND the distillate product for (a) consists on only the light key
AND there is another separation alternative (b)

A ND (b) has a mixture of components as its distillate product
THEN reject alternative (b)

Figure 5 .13: Remove components one by one as overhead products .

134

(defHeuristic Set-Operating-Pressure
Class Favor-Ambient-Operating-Pressure
Conditions ((Consider (Possible (Separation ?method (?l-k ?h-k) ?column)))

(Value-of (A (Atmospheric-Pressure ?env)) ?atm-pres . ?eq)
(Quantity (Operating-Pressure ?column)))

Action ((propose-value '(A (Operating-Pressure ,?column)) ?atm-pres)))

IF the heuristic analysis has decided on a particular separation for the current column
AND the value of the atmospheric pressure for it is known

AND the quantity describing the operating pressure for the column has been introduced
THEN set the value for the operating pressure for the current column to the atmospheric pressure

Figure 5 .14 : Favor ambient operating pressure.

direct sequence. This sequence is widely applied in practice since in the absense of
more efficient heuristics it usually results in a relatively good design . Figure 5 .13
contains the representation for this rule.

Favor ambient operating pressure (19) . When developing an initial sepa-
ration flowsheet a good approximation to use is to consider the operating pressure
for each separation unit to be close to the atmospheric pressure . Figure 5 .14
contains the representation for this heuristic.

Separate the most plentiful components first (6) . In cases where the
relative volatilities between the components are almost the same but their molar
percentage in the feed varies widely it is a good strategy to remove the most
plentiful components first . Figure 5 .15 contains the description for this rule.

Evolutionary Heuristics in the Nath & Motard method

Table 5 .2 taken from [43] describes the evolutionary heuristics used in the Nath
& Motard design strategy . In the following we describe the representations for each
one of these rules.

Challenge Heuristic 112 . Sometimes in order to favor the smallest prod-
uct set the designer is forced to introduce extractive distillation columns in the
sequence. This heuristic (Fig. 5 .16) explores other possiblities by splitting the
product set that made the use of extractive distillation necessary in the initial
separation sequence.

Examine the neighboring structures if they involve separations of
similar difficulty. The problem with the criteria for describing the difficulty of

2This is the row in which the heuristic rule that is being challenged appears in Table 5 .1

135

(defHeuristic Separate-Most-Plentiful-Components-First

Class Separate-Most-Plentiful-Components-First
Conditions ((Value-of

(A (Feed-Flow ?eleml (M-C-S ?components ?phase ?f-stage) ?column)) ?f-flow-1 ?eq-1)
(Value-of
(A (Feed-Flow ?elem2 (M-C-S ?components ?phase ?f-stage) ?column)) ?f-flow-2 ?eq-2)

Test (and (not (eql ?eleml ?elem2)) (> ?f-flow-1 ?f-flow-2))
(Value-of (A (Alpha-LK-HK ?eleml ?h-k ?column :reference)) ?alpha-1 ?eq-3)

(Value-of (A (Alpha-LK-HK ?elem2 ?h-k ?column :reference)) ?alpha-2 ?eq-4)
Test (or (< (/ ?alpha-1 ?alpha-2) *min-volatility-ratio*)

(< (/ ?alpha-2 ?alpha-1) *min-volatility-ratio*))
(Possible (Separation ?method ?keys-1 ?column)) :Var ?fl

Test (member ?eleml ?keys-1)
(Possible (Separation ?method ?keys-2 ?column)) :Var ?f2

Test (member ?elem2 ?keys-2))
Action ((prefer ?fl Over ?f2)))

IF the feed flow rate for ?eleml is greater than the flow rate for ?elem2 in the same column

AND and their relative volatilities are almost the same
AND there is a separation method (a) with ?eleml as one of its keys
AND there is a separation method (b) with ?elem2 as one of its keys

THEN prefer (a) over (b).

Figure 5 .15 : Separate the most plentiful component first.

Evolutionary Rule
1 Challenge Heuristic 11

2 Examine the neighboring structures if separations of similar

difficulty take place in them.

3 Challenge Heuristic 15

4 Examine neighbors to decide if the MSA removal should be delayed

5 Challenge Heuristic 10 if in the current design an easy separation

is followed by a very difficult one .

Table 5 .2 : The evolutionary rules for the Nath & Motard design method.

136

(defHeuristic Split-Product-Set

Class Challenge-Heuristic-11
Conditions ((Consider (Design-Complete ?system ?total-cost)) :Var ?f0

Test (original-product-set? ?system)
(First-Column ?system ?first-column)
(Consider (Possible (Separation extractive-distillation (?l-k ?h-k) ?column)))

(Desired-Products ?products ?column)
Test (and (> (length ?products) 1)

(not (product-split-for ?products)))
(Column-Products ?products ?keys ?next-column)

(Connects-to ?column ?extr-system)
(First-Column ?extr-system ?next-column)

(Value-of (A (Product-Specification ?products ?system)) ?recovery ?eqn-name)
Test (setq alternative-product-set (find-alternative-products ?products)))

Action ((assert-in-design
'(Establish-New-Product-Set ,alternative-product-set ,?products ,?recovery ,?system))

(assert '(Evolve-Design-From ,?first-column))))

IF a design for the separation problem has been found with the original product set
AND the first column in this design is ?first-column

AND there is an extractive distillation process taking place in some column

	

?column in the
design

AND the desired product sets for ?column is ?products
AND ?products has more than one components
AND ?products is not the result of some product split from the original design problem

AND ?products was actually one of the products for the extractive distillation group of columns
AND the desired product recovery for ?products is known

THEN (i) Find a separation scheme with key components belonging to the ?products list and
with the highest relative volatility of all the alternatives

(ii) Reformulate the design problem to include the product set
for the new separation scheme instead of the old one

(iii) Start the design process from scratch.

Figure 5 .16 : Challenge Heuristic 11 .

137

(defHeuristic Challenge-CDS-Accuracy

Class Examine-Close-Estimates
Conditions ((Consider (Design-Complete ?system ?total-cost)) :Var ?fO

(Consider (Possible (Separation ?method (?l-k-1 ?h-k-1) ?column))) :Var ?fl

(Connects-to ?column ?next-system)
(First-Column ?next-system ?next-column)

(Consider (Possible (Separation ?method (?l-k-2 ?h-k-2) ?next-column)))
(Value-of (A (CDS ?method ?column (?l-k-1 ?h-k-1) :reference)) ?cds-1 ?eqn-1)

(Value-of (A (CDS ?method ?next-column (?l-k-2 ?h-k-2) :reference)) ?cds-2 ?eqn-2)
:Test (and (< (abs (- ?cds-1 ?cds-2)) *min-cds-difference*)

(downstream-from-evolution ?column 2)))
Action

((unless (examined-alternative
'((,?method (,?l-k-1 ,?h-k-1)) (,?method (,?l-k-2 ,?h-k-2))))

(invalidate-decision '(Possible (Separation ,?method (,?l-k-1 ,?h-k-1) ,?column)))
(assume-in-cycle '(Evolve-Design-From ,?column ,?fO ,?fl))

(assert-in-design '(Evolution-Point ,?column 2))
(assert-in-design

'(Consider (Possible (Separation ,?method (,?l-k-2 ,?h-k-2) ,?column)))))))

IF a design for the separation problem has been found
AND a separation method (a) is used in column ?column
AND ?column is connected to ?nett-column

AND a separation method (b) is used in column ?nett-column
AND the difference between the CDS values between the two methods

is less than *min-cds-difference*
AND ?column is downstream from the latest evolution point

THEN retain the old design description up to the ?column intact and try to evolve the rest of it
assuming that separation method (b) is used in ?column.

Figure 5 .17: Examine the neighboring structures if the values of the approxima-

tions used to describe their difficulty are close to each other .

138

a separation is that they are not able to provide accurate estimates for design
alternatives that are almost equivalent . This heuristic tries to account for the
reduced accuracy in those cases . One of these criteria is the coefficient of the
difficulty of separation (CDS) that we mentioned above . The rule in Figure 5.17

looks for separation schemes in neighboring columns with very close CDS values.
It then tries to evolve an alternative design in which the second separation scheme
takes place in the first column.

The procedure downstream-from-evolution returns true when the current col-
umn is downstream from every point in the design description in which adaptation
was perfromed by a heuristic with the same or greater scheduling order than the
current one . The predicate Evolution-Point in Figure 5 .17 indicates these points
in the design description using the name of the column from which the adap-
tation started and the scheduling order of the heuristic rule that suggested the
adaptation.

Challenge heuristic 15 . Distillation is not always the cheapest alternative,
especially when there exists an extractive distillation process with relative volatil-
ities between the keys that are much higher than the ones in the ordinary case.
This heuristic (Fig . 5.18) tries to explore alternatives based on this criterion.

Examine neighbors to decide if the MSA removal should be delayed.
Sometimes it is not cost-effective to remove the mass separating agent as soon as
possible. A typical example of that is the case of two extractive distillation process
units 4 in sequence that use the same MSA . Removing the MSA before the second
unit is obviously something the designer should avoid since he/she will have to
use it again in the next unit . Figure 5 .19 describes the representation for this
heuristic.

Challenge Heuristic 10 . Performing the least tight separation first does not
guarantee that we are going to get an optimal design . Sometimes the least tight
separation is followed by a very difficult one . In this case it might be cheaper to
perform two successive separations of similar difficulty . The heuristic in Figure
5 .20 looks for such cases and if it finds one it schedules the difficult separation first.
Difficulty is measured using the relative volatility between the key components in
a separation scheme.

Evolutionary Heuristics in the Seader & Westerberg method

4Each one of these units consists of two columns, one in which the extractive distillation process
takes place and the next one in which the MSA is removed .

139

(defHeuristic Ordinary-vs-Extractive-Splits
Class Challenge-Heuristic-15
Conditions ((Consider (Design-Complete ?system ?total-cost)) :Var ?f0

(Evolve ?system)
(First-Column ?system ?column)

(Consider (Possible (Separation distillation (?l-k ?h-k) ?column))) :Var ?fl
(Column-Feed (M-C-S ?components ?phase ?stage) ?column)

(Value-of
(A (Extractive-Alpha-LK-HK ?l-k ?h-k ?p-s ?column ?conditions)) ?extract-alpha ?eq-1)

(Value-of (A (Alpha-LK-HK ?l-k ?h-k ?column ?conditions)) ?alpha ?eq-2)
:Test (and (>_ ?extract-alpha (expt ?alpha 1 .95))

(downstream-from-evolution ?column 3)))
Action ((assume-in-cycle '(Evolve-Design-From ,?column ,?f0 ,?fl))

(assert-in-design '(Evolution-Point ,?column 3))

(assert-in-design
'(Consider (Possible (Separation extractive-distillation (,?l-k ,?h-k) ,?column))))))

IF a design for the separation problem has been found

AND ?column belongs to a separation system we are trying to evolve
AND the feed components for column are known

AND the separation scheme used in ?column is known
AND the feed components, the relative volatility between the keys in the extractive

distillation case and the relative volatility between the same keys in the ordinary
distillation case are known under the same conditions

AND the value for the relative volatility in the extractive case is greater or equal of some
power of the relative volatility in the ordinary case3

AND ?column is downstream from the latest evolution point
THEN retain the old design description up to the ?column intact and try to evolve the rest of it

assuming that an extractive distillation between the same keys takes place in ?column.

(defHeuristic Search-for-Competitive-Extractive-vs-Ordinary-Splits
Class Challenge-Heuristic-15
Conditions ((Consider (Design-Complete ?initial-system ?total-cost))

(Evolve ?system)
(First-Column ?system ?column)

(Consider (Possible (Separation distillation (?l-k ?h-k) ?column)))
(Column-Feed (M-C-S ?components ?phase ?stage) ?column)

(Value-of
(A (Extractive-Alpha-LK-HK ?l-k ?h-k ?p-s ?column ?conditions)) ?extract-alpha ?eq-1)

(Value-of (A (Alpha-LK-HK ?l-k ?h-k ?column ?conditions)) ?alpha ?eq-2)
:Test (< ?extract-alpha (expt ?alpha 1 .95))
(Connects-to ?column ?new-sep-system))

Action (unless (exists '(Destroy (Connections-to ,?column)))
(assert '(Evolve ,?new-sep-system))))

IF a design for the separation problem has been found

AND ?column belongs to a separation system we are trying to evolve
AND the feed components for column are known

AND the separation scheme used in ?column is known
AND the feed components, the relative volatility between the keys in the extractive

distillation case and the relative volatility between the same keys in the ordinary
distillation case are known under the same conditions

AND the value for the relative volatility in the extractive case is less than some
power of the relative volatility in the ordinary case

AND ?column connects to a separation system ?new-sep-system
THEN unless you have been instructed to remove the part of the design containing ?column

try to evolve the part of the design that contains ?new-sep-system

Figure 5 .18: Challenge Heuristic 15 .

140

(defHeuristic Delay-MSA-Removal
Class Delay-MSA-Removal

Conditions ((Consider (Design-Complete ?system ?total-cost)) :Var ?fO
(Mass-Separating-Agent ?p-s ?column-1)

(Column-Products (?p-s) ?keys ?column-2)
(Consider (Possible (Separation distillation (?l-k ?p-s) ?column-2)))

:Var ?fl
(Mass-Separating-Agent ?p-s ?column-3)

:Test (and (not (equal ?column-1 ?column-2))
(not (equal ?column-1 ?column-3))

(not (equal ?column-2 ?column-3))
(in-order? '(,?column-1 ,?column-2 ,?column-3))
(downstream-from-evolution ?column-2 4)))

Action ((invalidate-decision '(Possible (Separation distillation (,?l-k ,?p-s) ,?column-2)))
(assume-in-design '(Focus ,?column-2))

(assert-in-design '(Evolution-Point ,?column-2 4))
(assume-in-cycle '(Evolve-Design-From ,?column-2 ,?fO ,?fl))))

IF a design for the separation problem has been found

AND a mass separating agent ?p-s has been used in some column ?column-1
AND ?p-s belongs to the products of some column ?column-2

AND ?column-2 was used to separate ?p-s from the rest of the substances
AND the same mass separating agent ?p-s has been used in some column ?column-3

AND ?column-1, ?column-2 and ?column-3 are connected in that order
AND ?column-2 is downstream from the latest evolution point

THEN do not remove ?p-s from ?column-2 and try to evolve the part of the design
that contains ?column-2.

Figure 5 .19: Examine neighbors to decide if the MSA removal should be delayed .

141

(defHeuristic Move-Difficult-Split-One-Step-Earlier
Class Challenge-Heuristic-10

Conditions

	

((Consider

	

(Design-Complete ?system ?total-cost))

	

:Var ?fO
(Consider

	

(Possible

	

(Separation distillation

	

(?lkl ?hkl)

	

?columnl)))

Var ?fl
(Connects-to ?columnl ?system2)
(First-Column ?system2 ?column2)

(Consider
(Value-of

(Possible

	

(Separation distillation

	

(?lk2 ?hk2)

	

?column2)))
(A (Alpha-LK-HK ?lkl ?hkl ?columnl

	

?conditions))

	

?alphal

	

. ?r2)

(Value-of (A (Alpha-LK-HK ?lk2 ?hk2 ?column2 ?conditions))

	

?alpha2

	

. ?r4)
Test

	

(and (> (abs

	

(- ?alphal

	

?alpha2))

	

lower-alpha-difference)
(< (abs

	

(- ?alphal

	

?alpha2))

	

upper-alpha-difference))
(Value-of (A (Installation-Cost ?columnl

	

(?lkl ?hkl)))

	

?cost-1

	

?c-eq-1)

(Value-of (A (Installation-Cost ?column2

	

(?lk2 ?hk2)))

	

?cost-2 ?c-eq-2)
Test (< ?cost-1 ?cost-2))

Action

((unless (examined-alternative
'((distillation (,?lkl ,?hk1)) (distillation (,?lk2 ,?hk2))))

(invalidate-decision '(Possible (Separation distillation (,?l-k ,?p-s) ,?columnl)))
(assert-in-design '(Evolution-Point ,?columnl 5))

(assume-in-cycle '(Evolve-Design-From ,?columnl ,?fO ,?fl))
(assert-in-design

'(Consider (Possible (Separation distillation (,?lk2 ,?hk2) ,?columnl)))))))

IF a design for the separation problem has been found

AND an ordinary distillation process takes place in ?columnl
AND ?columnl is connected to ?columnl

AND an ordinary distillation process takes place in ?columnl
AND and the difference between the relative volatilities between the keys in the two cases

is between *lower-alpha-difference* and *upper-alpha-difference*
AND the separation in ?columnl is cheaper than the one in ?columnl

THEN if you have not already considered that as an alternative
apply the separation scheme for ?columnl to ?columnl.

Figure 5 .20: Challenge Heuristic 10.

142

(defHeuristic Create-All-Possible-Interchanges
Class Create-All-Possible-Interchanges
Conditions

((Consider (Possible (Separation ?methodl (?l-k-1 ?h-k-1) ?columnl))) :Var ?f1
(Connects-to ?columnl ?systeml)

(First-Column ?systeml ?column2)
(Consider (Possible (Separation ?method2 (?l-k-2 ?h-k-2) ?column2))) :Var ?f2)

Action ((assume-in-cycle '(Exchange ,(car ?fl) With ,(car ?f2)))))

For every pair of successive columns in the flowsheet consider as a possible design alternative
exchanging the separation methods that take place in each one of them.

Figure 5 .21 : Create all the possible interchanges.

The Seader & Westerberg method contains only one evolutionary rule along

with a set of criteria for pruning the alternatives proposed by this rule . The

general rule is [54]:

`Interchange the relative positions of two adjacent subproblems, and for

a given separation subproblem using separation method a, substitute

separation method O .'

The set of criteria under which the interchange is possible is determined by try-

ing to apply in a given order the heuristics that were not used during the creation

of the initial flowsheet . For example, if the separation methods for two successive

columns in the initial design were chosen according to the heuristics that try to

disregard separations with very small relative volatility between the key compo-

nents, the criteria used in the evolutionary phase will include all the heuristic rules

belonging to the design strategy except those that disregard separations with very

small relative volatilites.

All the possible interchanges for the Seader & Westerberg method are intro-

duced by the heuristic rule described in Figure 5 .21 and examined in a breadth-first

fashion until a cheaper design is found . The possible interchanges are pruned by

a set of rules that identify difficult separations in the interchanges proposed . For

example, Figure 5 .22 presents a rule that rejects an interchange that affects an

extractive distillation unit . The particular interchange schedules the column used

to recover the polar solvent in the unit before the extractive distillation column.

Another example is Figure 5 .23 which establishes an order of preference between

exchanges that are almost equivalent under the application of a certain separation

heuristic and those that are not . Finally, Figure 5.24 shows how the interchanges

are scheduled in this strategy .

143

(defHeuristic Protect-Extractive-Distillation-Units
Class Filter-Possible-Interchanges

Conditions ((Exchange
(Consider (Possible (Separation extractive-distillation (?lk-1 ?hk-1) ?coil)))

With (Consider (Possible (Separation distillation (?lk-2 ?p-s) ?col2))))
:Var ?fl

(Mass-Separating-Agent ?p-s ?coil))
Action ((examined-alternative ?fl)

(reject ?fl)))

IF there has been suggested a possible interchange between columns ?coil and ?co12

AND ?coil is an extractive distillation column

AND ?co12 is used to recover the polar solvent used in ?coil

THEN reject this interchange and note that ?fl is an examined alternative.

Figure 5 .22 : Reject the interchanges that rearrange extractive distillation units.

(defHeuristic Check-Relative-Volatilities

Class Filter-Possible-Interchanges
Conditions

((Exchange
(Consider (Possible (Separation distillation (?lk-1 ?hk-1) ?coil)))

With
(Consider (Possible (Separation distillation (?lk-2 ?hk-2) ?col2))))

Var ?fl
(Value-of (A (Alpha-LK-HK ?lk-1 ?hk-1 ?coil ?conditions)) ?a-1 ?eq-1)

(Value-of (A (Alpha-LK-HK ?lk-2 ?hk-2 ?co12 ?conditions)) ?a-2 ?eq-2)
Test (<_ (abs (- ?a-1 ?a-2)) *alpha-difference*)

(Exchange

(Consider (Possible (Separation distillation (?lk-3 ?hk-3) ?col3)))

With
(Consider (Possible (Separation distillation (?lk-4 ?hk-4) ?col4))))
Var ?f2

(Value-of (A (Alpha-LK-HK ?lk-3 ?hk-3 ?co13 ?conditions)) ?a-3 ?eq-3)
(Value-of (A (Alpha-LK-HK ?lk-4 ?hk-4 ?co14 ?conditions)) ?a-4 ?eq-4)

Test (> (abs (- ?a-3 ?a-4)) *alpha-difference*))
Action

((unless (examined-alternative ?f2)
(prefer ?f2 Over ?fl :Rank 1))))

IF ?fl is a possible interchange between columns ?coil and ?co12

AND the relative volatilities between the two successive separations in ?fl are almost the same
AND ?f2 is a possible interchange between columns ?co13 and ?col!

AND the relative volatilities between the two successive separations in ?f2 vary widely
THEN unless ?f2 has already been examined, prefer ?f2 over ?fl and include in

the preference description the number of the heuristic that was responsible for this choice.

Figure 5 .23 : Prefer interchanges that do not constitute almost equivalent choices
using the Perform-Least-Tight-Separation-First heuristic .

144

(defHeuristic Sequence-Heuristics
Class Schedule-Alternatives
Conditions

((Exchange ?fl With ?f2) :Var ?f3 :Test (most-preferable-for-evolution ?f3))
Action ((assume-in-cycle '(Schedule-Alternative ,?f3))))

IF ?f3 is a possible interchange between columns ?coll and ?co12

AND the heuristic responsible for the retention of ?f3 has the lowest order
between the heuristics in the initial part of the strategy

THEN choose ?f3 as the next interchange

Figure 5 .24 : Schedule alternatives in the Seader & Westerberg method.

5 .1 .3.2 Binary distillation

The heuristic rules for the binary distillation design problem serve four main func-
tions; check whether the numerical results are consistent with the constraints in
the qualitative model, determine the location for the introduction of the feed in the
binary column, look for discrepancies between parameter values computed during
the analysis phase and the design specifications and, finally, determine how to
update inaccurate estimates for some design parameters . We present these rules
in more detail below.

Check for Consistency. Inconsistencies in the numerical results arise as a
result of inaccurate numerical estimates for some of the design parameters or as
a result of incomplete design descriptions . For example, if the number of stages
in a column is overstimated, then the analysis may compute negative values for
the mole fractions of substances in some column stages . The same thing can
happen if the location of the feed in a column has not been determined . There are
two heuristics in OUZO that deal with these kinds of inconsistencies and propose
changes to the values of the affected parameters (Figure 5 .25).

Feed Location . Currently, OUZO contains only one heuristic for deciding on
the stage in the column in which the feed is introduced . Figure 5.26 describes
these heuristic in detail.

Compare with Specifications . Inaccurate estimates for some of the de-
sign parameters may lead to discrepancies between parameter values computed
during the analysis phase and the design specifications . The heuristics in Figure
5 .27 detect such discrepancies and propose changes in the values of the parame-
ters that will eliminate the differences . The procedure compare-equations solves
all the equations that calculate the parameter in its argument and detects any
discrepancies between the computed values .

145

(defHeuristic Compare-with-Zero-1
Class Check-Consistency
Conditions ((not (Less-than (A ?param) ZERO)) var ?fl

(Value-of (A ?param) ?value ?eqn) var ?f2 :Test (< ?value 0))
Action ((reject ?f2)

(assert '(Increase (A ,?param)))))

IF the amount of parameter ?param should not be negative
AND the value computed for the amount of ?param is negative

THEN the numerical value for ?param is inconsistent and the program
should find ways of increasing this value.

(defHeuristic Compare-with-Zero-3
Class Check-Consistency

Conditions ((Greater-Than (A ?param) ZERO) :var ?fl
(Value-of (A ?param) ?value ?eqn) var ?f2 :Test (< ?value 0))

Action ((reject ?f2)
(assert '(Increase (A ,?param)))))

IF the amount of parameter ?param should be positive

AND the value computed for the amount of ?param is not positive
THEN the numerical value for ?param is inconsistent and the program

should find ways of increasing this value.

Figure 5 .25 : Check for consistent numerical values in binary distillation design.

Update Estimates . These rules update the values for the parameters that
were estimated using approximate equations . The heuristics in Figure 5 .28 suggest

an increase or descrease in the values for these parameters based on the suggestions
made for the variables that were found to be inconsistent with either the qualitative

constraints or the design specifications . The procedure exists-path in these rules
searches for a causal path between two parameters.

Figure 5.29 describes the rules that modify the values for the parameters that

were estimated using approximate equations.

5 .1 .4 Strategies

Design strategies are plans for sequencing the execution of the various classes

of heuristic rules in ways that were found capable of producing optimal designs.

Strategies are explicitly represented in our approach . This scheme enables the

design system to reason about their appropriateness for a given task . In addition,

it allows the system to be used as a testbed for experimenting with different

strategies that can solve a specific problem . Figure 5.30 provides an example of the

146

(defHeuristic Feed-Location-Heuristic
Class Feed-Location
Conditions

((Gas-Path ?stagel ?stage2)
(Contained-Binary-Liquid-Mixture (2-C-S (?substancel ?substance2) liquid ?stagel))

(Contained-Binary-Liquid-Mixture (2-C-S (?substancel ?substance2) liquid ?stage2))
(Steady-State-Column-Design-Features

?column ?c-stage ?c-phase ?r-stage ?r-phase ?distillate-flow
?bproduct-flow ?substancel ?substance2)

(Value-of (A (Feed-Fraction ?substancel ?column)) ?feed-fraction ?egnl)
(Value-of

(A (Mole-Fraction ?substancel (2-C-S (?substancel ?substance2) liquid ?stagel))) ?mf-1 ?eqn2)
(Value-of

(A (Mole-Fraction ?substancel (2-C-S (?substancel ?substance2) liquid ?stage2))) ?mf-2 ?eqn3)
:Test (and (< ?mf-1 ?feed-fraction) (> ?mf-2 ?feed-fraction))

(not (Feed-Stage ?stagel)))
Action ((assert '(Install-Feed-Stage ,?stagel ,?substancel ,?substance2))))

IF ?stagel and ?stage2 are successive stages in a column

AND each stage contains a binary liquid mixture
AND we assume steady-state behavior for the column
AND the mole fractions of the most volatile component in the feed (?feed-fraction)

and in stages ?stagel (mf-1) and ?stage2 (?mf-2) are known
AND ?feed-fraction lies between ?mf-1 and ?mf-2
AND the feed is not entering the column through the lower stage (?stagel already

THEN introduce the feed at stage ?stagel.

Figure 5 .26 : Determine the location of the feed stage in binary distillation .

147

(defHeuristic Increase-Analysis-Parameter
Class Compare-with-Specifications

Conditions ((Value-of (A ?param) . ?rest) Var ?fl
(Design-Spec (A ?param) ?val) Test (> (compare-equations ?param) 0))

Action ((reject ?fl)
(assert '(Increase (A ,?param)))))

IF there exists an estimated numerical value for ?param

AND a value for ?param is also part of the design specifications
AND by solving all the equations for ?param the estimated value for it

is found less than the design specifications
THEN reject the estimated value for ?param and suggest an increase in this estimate.

(defHeuristic Decrease-Analysis-Parameter

Class Compare-with-Specifications
Conditions ((Value-of (A ?param) . ?rest) Var ?fl

(Design-Spec (A ?param) ?val) Test (< (compare-equations ?param) 0))
Action ((reject ?fl)

(assert '(Decrease (A ,?param)))))

IF there exists an estimated numerical value for ?param

AND a value for ?param is also part of the design specifications
AND by solving all the equations for ?param the estimated value for it

is found greater than the design specifications
THEN reject the estimated value for ?param and suggest a decrease in this estimate.

Figure 5 .27: Compare the design specifications with the results of the analysis
phase.

148

(defHeuristic Change-Guess-Parameter-1
Class Update-Estimates
Conditions ((Guess-Parameter ?g-param)

(Increase (A ?param)) Test (> (exists-path ?g-param ?param ?g-param (,?g-param)) 0))
Action ((assume (Increase (A ?g-param)))))

IF ?g-param was estimated using an approximate equation

AND an increase in the value for ?param has been suggested
AND there is a causal path from ?g-param to ?param that indicates

that ?param increases whenever ?g-param increases
THEN suggest an increase in the estimate for ?g-param.

(defHeuristic Change-Guess-Parameter-2
Class Update-Estimates

Conditions ((Guess-Parameter ?g-param)
(Decrease (A ?param)) Test (> (exists-path ?g-param ?param ?g-param (,?g-param)) 0))

Action ((assume (Decrease (A ?g-param)))))

IF ?g-param was estimated using an approximate equation
AND a decrease in the value for ?param has been suggested

AND there is a causal path from ?g-param to ?param that indicates
that ?param decreases whenever ?g-param decreases

THEN suggest a decrease in the estimate for ?g-param.

(defHeuristic Change-Guess-Parameter-3
Class Update-Estimates

Conditions ((Guess-Parameter ?g-param)
(Increase (A ?param)) Test (< (exists-path ?g-param ?param ?g-param (,?g-param)) 0))

Action ((assume (Decrease (A ?g-param)))))

IF ?g-param was estimated using an approximate equation
AND an increase in the value for ?param has been suggested
AND there is a causal path from ?g-param to ?param that indicates

that ?param increases whenever ?g-param decreases
THEN suggest a decrease in the estimate for ?g-param.

(defHeuristic Change-Guess-Parameter-4

Class Update-Estimates
Conditions ((Guess-Parameter ?g-param)

(Decrease (A ?param))
:Test (< (exists-path ?g-param ?param ?g-param '(,?g-param)) 0))

Action ((assume (Increase (A ?g-param)))))

IF ?g-param was estimated using an approximate equation

AND a decrease in the value for ?param has been suggested
AND there is a causal path from ?g-param to ?param that indicates

that ?param decreases whenever ?g-param increases
THEN suggest an increase in the estimate for ?g-param.

Figure 5 .28 : Update inaccurate estimates .

149

(defHeuristic Increase-Guess-Param

Class Update-Estimates
Conditions ((Increase ?param) :var ?fl

(Change-Step ?param ?num)
(Value-of ?param ?old-value ?eqn) :var ?f0)

Action ((reject ?f0)
(reject ?fl)

(propose-value ?param (+ ?num ?old-value))))

IF an increase in the value for ?param has been suggested
AND the unit change for ?param is ?nurn
AND the old value for ?param is ?old-value

THEN increase ?param by ?nurn and invalidate the previous value
and suggestion for it.

(defHeuristic Decrease-Guess-Param

Class Update-Estimates
Conditions ((Decrease ?param) :var ?fl

(Change-Step ?param ?num)
(Value-of ?param ?old-value ?eqn) :var ?f0)

Action ((reject ?f0)
(reject ?fl)

(propose-value ?param (- ?old-value ?num))))

IF a decrease in the value for ?param has been suggested
AND the unit change for ?param is ?nurn
AND the old value for ?param is ?old-value

THEN decrease ?param by ?nurn and invalidate the previous value
and suggestion for it.

Figure 5 .29 : Modify numerical estimates .

150

(defStrategy Nath-&-Motard-Evolutionary-Strategy

Heuristic-Classes
(Challenge-Heuristic-11 Examine-Neighboring-Approximations Challenge-Heuristic-15

Delay-MSA-Removal Challenge-Heuristic-10)
;; The bindings for the variables in the Conditions slot are the ones used in the rest

;; of the form. The predicates in the Conditions slot become the antecedents of an ATMoSphere rude.

Conditions
((Separation-System ?system)

(Consider (Evolutionary-Strategy-for ?system Nath-&-Motard))
(Consider (Design-Complete ?system ?cost)))

:ATMS-Context :Implied-By
;; The instantiated predicates in this slot will be appended to the beginning of every

;; heuristic rude that belongs to this strategy.
Focus-Predicates ((Apply-Strategy-to ?system))

;; The body of the ATMoSphere rude in which the defStrategy form is translated consists of the contents
;; of the Action slot along with a set of functions in which the Execution-Order slot is translated.

Action ((cond ((< ?cost (find-previous-cost))
(store-design)

(assume-in-cycle '(Apply-Strategy-to ,?system)))
(t (pop-design))))

Execution-Order
(:SERIAL Challenge-Heuristic-11 Examine-Neighboring-Approximations Challenge-Heuristic-15

Delay-MSA-Removal Challenge-Heuristic-10))

IF we have completed the design of a separation system

AND we use the Nath-&-Motard strategy to evolve the current design
THEN if the current separation system costs less than the previous design

mark the separation system we are going to evolve (the :Action part)
and then apply the heuristics that are stored under the class Challenge-Heuristics-11

followed by the heuristics stored under the class Examine-Neighboring-Approximations
followed by the rest of the heuristic classes in the :Execution-Order slot of the form.

If the separation system costs more then pop the previous design description
and apply the evolutionary heuristics in the order described above.

Figure 5 .30: Typical strategy form and its interpretation . This particular form

represents the evolutionary rules for the Nath & Motard design strategy .

151

representation for a design strategy in the system. Each strategy representation
includes the heuristic classes it uses and the preconditions under which it should be
applied . In addition, it contains control information that optimizes the application
of heuristic knowledge . This information is stored in the ATMS-Context, Focus-
Predicates and Execution-Order slots.

The ATMS-Context slot determines the problem-solving context under which
the heuristic rules are applied . In the current implementation, the problem-solving
context is determined by an ATMS focus environment [19] . This consists of a set
of assumptions representing the major design decisions considered by the system
at the current stage . There are two possible problem-solving contexts . Under the
:Implied-By context specified in Figure 5 .30, all the application conditions for each
heuristic rule must be implied by the current focus environment in the ATMS in
order for the heuristic rule to trigger [19] . In the :In context all the applications
conditions for each heuristic rule must hold for the rule to fire . A generic focus
environment is used in this case.

The Focus-Predicates slot contains a set of predicates that will focus the appli-
cation of heuristic rules to certain columns or systems in the separation sequence.

Finally, the Execution-Order slot determines the mode (serial, parallel or any
combination of them) under which the heuristic classes are applied.

Currently, OUZO supports two of the most significant evolutionary strategies for
the synthesis of separation sequences [43], [54] . For the Nath & Motard strategy
the representation for the method that creates the initial design flowsheet is given
in Figure 5 .31 . Figure 5 .30 contains the representation for the evolutionary part
of the strategy.

In the case of the Seader & Westerberg strategy, Figure 5 .32 contains the form
that represents the method used to create the initial design . Figure 5.33 contains
the evolutionary part of the strategy.

Finally, OUZO supports a pure heuristic strategy for the binary distillation de-
sign problem that is based on the McGabe-Thiele method [35] . Figure 5.34 de-
scribes the implementation for this strategy.

5 .1 .5 Configuration Synthesis Rules

This is a set of rules that provide a set of procedures for changing the current design
description and monitoring the state of design . For example, one such rule will
fire whenever the products for a column in the sequence have been determined. It
will then create descriptions for the columns that are going to be connected to the
product streams (distillate and/or bottom products) of the current column that

152

(defStrategy Nath-&-Motard-Initial-Design-Heuristics
Heuristic-Classes

(Separation-Alternatives-Representation Favor-Smallest-Production-Set Favor-Distillation
Perform-Least-Tight-Separation-First Disregard-Small-Relative-Volatilities

Avoid-Extreme-Operating-Conditions MSA-Agent-Isolation Order-Choices)
Conditions ((Separation-System ?system)

(Consider (Evolutionary-Strategy-for ?system Nath-&-Motard)))
Focus-Predicates ((Focus ?column))

:ATMS-Context In
Action ((set-nm-strategy-parameters))

Execution-Order
(:SERIAL Separation-Alternatives-Representation

(:PARALLEL Favor-Smallest-Production-Set Favor-Distillation

Perform-Least-Tight-Separation-First Disregard-Small-Relative-Volatilities
Avoid-Extreme-Operating-Conditions MSA-Agent-Isolation)

Order-Choices))

Figure 5 .31 : The part of the Nath & Motard strategy that develops the initial

design flowsheet.

(defStrategy Seader-&-Westerberg-Initial-Strategy

Heuristic-Classes
(Separation-Alternatives-Representation Disregard-Small-Relative-Volatilities
Perform-Least-Tight-Separation-First Separate-Most-Plentiful-Components-First

Remove-MSA-From-Products-in-Subsequent-Operation Favor-Smallest-Production-Set Order-Choices)
Conditions ((Separation-System ?system)

(Consider (Evolutionary-Strategy-for ?system Seader-&-Westerberg)))
:ATMS-Context In

Focus-Predicates ((Focus ?column))
Action ((set-sw-strategy-parameters))

Execution-Order
(:SERIAL Separation-Alternatives-Representation Disregard-Small-Relative-Volatilities

Perform-Least-Tight-Separation-First Separate-Most-Plentiful-Components-First
Remove-MSA-From-Products-in-Subsequent-Operation Favor-Smallest-Production-Set

Order-Choices))

Figure 5 .32 : The part of the Seader & Westerberg strategy that develops the

initial design flowsheet .

153

(defStrategy Seader-&-Westerberg-Evolutionary-Strategy

:Heuristic-Classes (Create-All-Possible-Interchanges Filter-Possible-Interchanges
Schedule-Alternatives)

:Conditions ((Separation-System ?system)
(Consider (Evolutionary-Strategy-for ?system Seader-&-Westerberg))

(Consider (Design-Complete ?system ?cost)))
:ATMS-Context :Implied-By

:Focus-Predicates ((Apply-Strategy-to ?system))
:Action ((cond ((< ?cost (find-previous-cost))

(store-design)

(assume-in-cycle '(Apply-Strategy-to ,?system)))
(t (when (all-interchanges-examined) (pop-design)))))

:Execution-Order (:SERIAL Create-All-Possible-Interchanges
Filter-Possible-Interchanges

Schedule-Alternatives))

Figure 5 .33 : The part of the Seader & Westerberg strategy that controls the

application of the evolutionary heuristics.

(defStrategy McGabe-Thiele-Strategy
:Heuristic-Classes

(Check-Consistency Feed-Location Compare-with-Specifications Update-Estimates)
:Conditions ((Distillation-Column ?column)

(Consider (Design-Strategy-for ?column McGabe-Thiele)))
:ATMS-Context :In

:Focus-Predicates ((Apply-Strategy-to ?column))
:Action ((assume-in-cycle '(Apply-Strategy-to ,?column))

(set-mcgabe-strategy-parameters))
:Execution-Order

(:SERIAL Check-Consistency Feed-Location Compare-with-Specifications Update-Estimates))

Figure 5 .34 : The design strategy for the binary distillation design problem .

154

do not correspond to any of the desired products in the problem specification.
Appendix C describes these rules in detail.

5 .2 Controlling OUZO

The controller algorithm in OUZO is a design cycle consisting of the following phases
(Fig . 5.35):

(1) Qualitatively analyze the current design description. The qualitative anal-
ysis performed by the system is the same as the one used in SIMGEN [21] . It is
used to determine the operating conditions under which each model fragment in
the domain theory is active.

(2) Construct and solve the numerical model . The activation of the model
fragments in the numerical model depends on the results of the qualitative analy-
sis and the current focus environment . The later is an ATMS focus environment
that consists of the major design decisions taken using the assume-in-cycle, assert-
in-design or assume-in-design primitives . These design decisions include the sepa-
ration schemes for each column, along with predicates that denote which columns
are being examined by the design system at the current stage . For example, when-
ever the heuristic analysis decides on a particular separation for a column with
the assert-in-design primitive, the current focus environment is updated to reflect
this decision.

(3) Apply the design strategies and the configuration synthesis rules that are
implied by the current focus . This step results in the generation, selection and
implementation of design alternatives along with the updating of the focus envi-
ronment.

Steps 2 and 3 constitute an inner loop which is applied until the heuristics
suggest no more changes to the current focus environment or equivalently when
there are no more design decisions taken . In this case, if the design description
has been modified the system goes back to Step 1.

This scheme provides a way of controlling the level of detail in which each design
alternative is analyzed. For example, when designing multicomponent separation
systems, for every column in a flowsheet, OUZO decides which of several possible
separations should be performed . This decision is based on an estimation of the
properties for each design in a set of reference conditions. When this analysis
is done, the current focus environment is updated to include only the promising
separations . Consequently, a more detailed set of numerical models is activated
that generates cost estimates only for the promising separations in a set of actual

155

Figure 5 .35: The controller algorithm in OUZO .

Fail

INoSuccess
A

Yes

Yes

Qualitative
Domain
Theory

Qualitative Analysis

Numerical
Models Construct & Solve

the Numerical Model

Heuristic Analysis

Strategies

Heuristics

Evaluate Alternatives

Make Decisions

Implement Decisions

156

conditions . Because qualitative analysis is computationally the most expensive

stage in the design cycle, the system tries to do as much of the analysis as possible

using the numerical models and the heuristics and that is the purpose for the loop

between steps 2 and 3.

The design process ends when the design description remains unchanged dur-

ing a design cycle . In this case, if the design specifications are satisfied OUZO

terminates with success, otherwise it exits with failure.

5 .3 Discussion

As we mentioned in chapter 3 there are three important problems in process

synthesis [42]:

1. The Representation Problem consists of developing a representation of the

problem that is both expressive and effective.

2. The Evaluation Problem consists of finding ways of efficiently evaluating the

design alternatives.

3. The Strategy Problem is the development of strategies that optimize the

screening of alternatives.

In chapter 4 .1 we explained how the physical knowledge in the program deals

with the representation problem. The design knowledge component addresses the

remaining problems.

More specifically, OUZO contains an extensive set of heuristic rules that tackle

the evaluation problem . These rules increase the efficiency of design, since they

provide empirical methods for pruning the number of alternatives . Furthermore,

in contrast to CAD systems, the program coordinates the use of physical and

design knowledge without any user intervention . The qualitative analysis is able

to automatically relate physical knowledge representations to the current design

scenario. Finally, the use of focus environments allows the design knowledge to

control the activation of qualitative and numerical models on an as needed basis.

Both these features increase the efficiency of the analysis phase and therefore

provide an attractive solution to the evaluation problem.

The development of explicit strategies that optimize the application of heuris-

tic knowledge deals with the strategy problem . These strategies have a direct

correspondence to empirical methods used by engineers in design . Furthermore,

strategy representations make it possible to use the program as a testbed for

157

different design methods . The fact that OUZO supports both pure heuristic and

evolutionary methods which constitute general design methodologies in fields other

than separation systems, allows us to conjecture that this framework can cover a

wide set of design problems .

Chapter 6

Examples

158

159

6.1 Overview

An instance of a binary distillation design problem was used to test the physi-
cal and design knowledge components that deal with binary separations in OUZO.
In addition, four well-known separation cases from the chemical engineering lit-
erature were used to test the physical and design knowledge components for the
multicomponent mixtures.

6.2 The Binary Distillation Design Problem

6 .2 .1 The Design Specifications

In the binary distillation design problem [35] the desired separation is specified
along with the flow at some point (usually the reflux) . What has to be determined
is the number of stages that are necessary to achieve the given separation.

In the particular instance of the problem we describe below (taken from [35]),
we considered a benzene toluene distillation process with the pressure set at 1
atm and with a constant relative volatility between the two substances set at 2 .25
throughout the column . The rest of the variables were set as follows:

1. The feed flow rate was 1 mol per unit time.

2. The mole fraction of benzene in the feed was 0 .4.

3. The desired separation was for 90% of the benzene to be recovered in 95%
purity.

4. The reflux was set to 1 mole per mole of feed.

Finally, we assumed that the feed to the column was a saturated liquid.
What we needed to find were the number of stages for achieving this separation

and the location of the feed to the column (i .e. at which stage in the column should
we introduce the feed) . Figures 6.1 and 6.2 contain the problem specifications that
were fed to the system.

In particular, Figure 6.1 contains the qualitative description for the problem.
This includes a minimal structural description for the column consisting of the col-
umn name along with the names of the two stages we always assume to be present
in a distillation column (a stage for the reboiler and a stage for the condenser).
In addition, we make a set of design and operating assumptions for the separation

160

process . These include the name of the design strategy we want to use, a steady-
state assumption for the column, the types of condenser and reboiler we are using
(a partial condenser and a partial reboiler l), the assumptions that both the gas
and liquid phases of the mixture are present in the reboiler and the condenser,
and finally the assumption that condensing and vaporization are always active in
these stages.

Furthermore, the problem description contains the set of modeling assumptions
the user is willing to make in design . The implications for all these assumptions
were described in Figures 4 .4, 4 .5 and 4 .6.

Finally, a statement relating the physical properties of the two substances is
introduced in the problem specification . The fact that benzene is more volatile
than toluene allows the qualitative model to compute the distillate and bottom
products for the column.

Figure 6 .2 describes the numerical data for the specific problem. The values
for particular parameters in the problem are set using the assign predicate . The
solve-for predicate indicates the parameters we are interested in finding a value
for.

6 .2 .2 The Program Trace

OUZO accepts the qualitative and numerical descriptions in Figures 6 .1 and 6.2
and instantiates the qualitative model that is consistent with this description (a
distillation column with only two stages ; a reboiler and a condenser) . In the
next step the equations that are consistent with this qualitative description are
instantiated and the system tries to solve for all the parameters it is interested in
(in our case the Nurn-of -Stages quantity) . It turns out that there is not enough
information to compute a numerical value for the number of stages in the column
at this point . As a result, the system looks for equations that provide estimates
for any of the design parameters . The Gilliland-Fenske equation [13] provides an
estimate for the number of stages in the column that corresponds to a 13-stage
column.

The results of the qualitative and numerical analysis analysis along with the
contents of the design knowledge component are fed into the heuristic analysis
stage of the design algorithm (Figure 5.35) . The heuristics that belong to the

I A partial reboiler is one in which part of the input liquid is vaporized . This stands in contrast
with a total reboiler in which all of the input liquid is vaporized . An analogous definition is used
for a partial condenser .

161

;; Structural features for the column.

(assertq (Distillation-Column column))
(assertq (Distillation-Column-Stages column (reboiler condenser)))

(assertq (Stage reboiler))
(assertq (Stage condenser))

(assertq (Condenser-Stage condenser))
(assertq (Reboiler-Stage reboiler))

;; Design assumptions for the column

(assertq (Consider (Design-Strategy-for column McGabe-Thiele)))

;; Operational assumptions about the column.

(assertq (Consider (Steady-State-in column)))

(assertq (Consider (Partial-Condenser column)))
(assertq (Consider (Partial-Reboiler column)))

(assertq (Contained-Binary-Liquid-Mixture (2-C-S (benzene toluene) liquid reboiler)))

(assertq (greater-than (A (Amount-of (2-C-S (benzene toluene) liquid reboiler))) ZERO))
(assertq (Contained-Binary-Liquid-Mixture (2-C-S (benzene toluene) liquid condenser)))

(assertq (greater-than (A (Amount-of (2-C-S (benzene toluene) liquid condenser))) ZERO))
(assertq (Contained-Binary-Gas-Mixture (2-C-S (benzene toluene) gas reboiler)))

(assertq (greater-than (A (Amount-of (2-C-S (benzene toluene) gas reboiler))) ZERO))
(assertq (Contained-Binary-Gas-Mixture (2-C-S (benzene toluene) gas condenser)))

(assertq (greater-than (A (Amount-of (2-C-S (benzene toluene) gas condenser))) ZERO))

(assertq (Consider (Condense (2-C-S (benzene toluene) gas condenser))))

(assertq (Consider (Vaporize (2-C-S (benzene toluene) liquid reboiler))))

;; Modeling assumptions about the column.

(assertq (Consider (Equilibrium-Stages-in column)))
(assertq (Consider (Negligible-Pressure-Drop-in column)))

(assertq (Consider (Negligible-Temperature-Drop-in column)))
(assertq (Consider (Ideal-System benzene toluene

	

:in column)))
(assertq (Consider (Constant-Molal-Overflow-in column)))

(assertq (Consider (Neglect Vapor-HoldUp-in column)))

;; Physical properties information concerning the substances of the binary mixture.

(assertq (More-Volatile benzene :than toluene))

Figure 6 .1 : The qualitative description for the binary distillation problem.

162

(assign
(assign
(assign

(A
(A
(A

(Feed-Flow column))

	

1 .)
(Feed-Fraction benzene column))

	

.4)
(Mole-Fraction benzene

	

(2-C-S

	

(benzene toluene)

	

gas condenser))) .95)

(assign
(assign

(assign
(assign

(A
(A

(A
(A

(Fraction-Recovery benzene condenser column))

	

.9)
(Reflux column))

	

1 .)

(Constant-Alpha column))

	

2 .25)
(Pressure

	

column))

	

1 .)

(solve-for (A (Num-of-Stages column)))

Figure 6 .2 : Numerical specifications for the binary distillation design problem.

McGabe-Thiele design strategy (Figure 5 .34) are applied next . Since the problem
statement does not include any specific column description at this point (Figure
6 .1), no heuristic rules fire . The onfiguration synthesis rules create the description
for a 13-stage column . This description is then fed to the qualitative analysis stage
which computes the qualitative model for the column and then to the numerical
analysis stage which instantiates and solves the numerical models that describe
the steady-state behavior for the column.

In the next step the McGabe-Thiele design strategy is activated and the heuris-
tics in the Check-Consistency class detect an inconsistency in the numerical value
computed for the mole fraction of benzene in stage11 2 . In particular, the numer-
ical model calculates a negative value for the mole fraction of benzene in stagell
(-0 .825), while the qualitative theory specifies that it should always be positive.
Furthermore, the heuristics in the Feed-Location class suggest that the feed should
enter the column at stage 6 3 . This design step ends with the configuration syn-
thesis rules changing the current design description to reflect the location of the
feed stage.

Qualitative and numerical analysis are applied to the new column description.
The heuristics in the Check-Consistency class detect a new contradiction . The
value for the mole fraction of benzene in the reboiler is found to be negative (-
0 .0446), in contrast to the positive value specified in the qualitative domain theory.
These heuristics suggest an increase in the value for this parameter . The rules in
the Compare-with-Specifications class explain the inconsistency in terms of the
estimates for the design parameters . Two values have been computed for the mole

2The numbering of the stages begins at the top with the condenser being stagel and the reboiler
being stagel3.

'The inconsistency in the mole fraction of benzene in the reboiler was generated because the
description for the column did not include a stage for introducing the feed.

163

fraction of benzene in the reboiler . According to the equations relating directly
this mole fraction to the design specifications, the mole fraction of benzene in the
reboiler is 0 .0644 . The value that is causing the contradiction (-0.0446) is based
on the estimate for the number of stages from the Gilliland-Fenske equation . The
heuristics in the Update-Estimates class try to eliminate the contradiction by look-
ing for a causal path that relates the quantity for which there are conflicting values
to the design parameters for which the approximation equations were applied (the
Num-of-Stages quantity in our case) . The relation

(Qprop- (Mole-Fraction ?substance1 (2-C-S (?substance1 ?substance2) ?r-phase ?r-stage))

(Num-of-Stages ?column))

from Figure 4 .18 provides a causal path between these two quantities and suggests
that in order to increase the mole fraction of benzene in the reboiler we will have
to decrease the number of stages in the column . OUZO decides on the specific
number by which the number of stages is reduced (1 in this run) using the Def-
First-Guess-Parameter form in Figure 4 .41.

Qualitative and numerical models for a 12-stage distillation column are con-
structed and analyzed by the system . The heuristics in the Check-Consistency
class detect a negative value for the mole fraction of benzene in stage 11 (-0 .808).
The rules in the Feed-Location class are activated, suggesting that the feed should
enter the column at stage 7 . The configuration synthesis rules change the current
design description to reflect the new location for the feed.

After the equations for a 12-stage column are solved, the Compare-with-Specifications
rules find a discrepancy between the values for the mole fraction of benzene in the
reboiler . More specifically, the Gilliland-Fenske method estimates this mole frac-
tion to be equal to 0 .124, while the design specifications insist it is 0 .064. There
is a difference of 0.0597 between these two values and the system asks the user
whether he/she is happy with it . The user informs the system that he/she is satis-
fied with the current result and the design process terminates. Figure 6 .3 contains
the proposed design.

6 .2 .3 Statistics

This example ran on an IBM RS/6000, Model 320, with 64MB of RAM running
Lucid Common Lisp . The results from OUZO (a column with 12 equilibrium stages)
were consistent with the ones found in [35] . These results correspond to the
program trace we described above . As Table 6.1 indicates most of the running

164

Elapsed Real Time for the Design system 1 hr 37 mins

Elapsed Real Time for Qualitative Analysis 1 hr 27 mins

Number of scenario models tested in producing the final de-

sign proposal

4

Number of Quantities in the proposed design 314

Number of active Processes in the proposed design 26

Number of instantiated Views in the proposed design 139

Number of rules run 91,780

Table 6 .1 : Statistics for the distillation design example . The times shown corre-
spond to the time spent in finding the first acceptable design in the problem.

time was spent in the qualitative analysis of the various column models that were
proposed during the design process.

6.3 The C6 Separation Synthesis Problem

The C 6 separation synthesis problem is described in [53] . The version we are going
to describe below is the same as [43] . Table 6.2 contains the problem definition that
we used . In this case we have a mixture of three components (n-Hexane, Benzene
and Cyclohexane) which we want to separate into pure component products . The
composition, the flow rate, the temperature and the pressure of the input mixture
are given.

The qualitative description for this problem is given in Figure 6.4 . First,
the feed to the column is described . It is a multicomponent mixture consisting
of three substances (n-Hexane, Benzene and Cyclohexane) . Subsequently, the
separation system we want to construct is designated (systeml) and the relation
between the multicomponent mixture and the separation system is established (the
Separation-System-Feed predicate) . At the end of this part we supply a name for
the environment surrounding the column in order to associate physical constants
(such as the atmospheric pressure or the gas constant) with this environment.

The next part of the problem description contains the list of desired products
for separation system systeml . In addition, the modeling assumptions we are
willing to use in the analysis of the design alternatives for each column are specified.

165

Feed
Component Component Name Mole Fraction

1
2
3

n-Hexane

Benzene

Cyclohexane

.3333

.3333

.3334
Desired Products

	

Conditions
Product Component T = 37 .8°C

P = 1 .033 kg/cm'
Total Flow Rate =

= 170.1 kg mol/h

1
2
3

1
2
3

Table 6 .2 : Problem definition for the C6 separation synthesis problem.

The first one is the sharp separation approximation for each separation unit (the
Sharp-Separation-For predicate) . The second one refers to the phase of the feed
to the separation system . We assume that the feed is always liquid (the Liquid-
Phase-Feed predicate) . This simplifies the Underwood equations for calculating
the minimum reflux ratio (see Appendix B .2).

The next part contains the set of design assumptions for this problem . The
first statement specifies the design strategy we want the system to follow (the
Nath & Motard strategy in the figure) . In addition, we supply the system with
values for some of the design parameters such as the efficiency for each stage in
the column, the correlation between the minimum and the actual reflux rate for
each column (the Operating-Reflux-Estimate predicate) and the projected life for
the separation system.

Furthermore, the description contains some of the physical properties for the
mass separating agent (furfural) used in extractive distillation, such as the sub-
stances in the original mixture with which it can associate (benzene and cyclo-
hexane) . The physical and design knowledge are not dependent on this particular
agent . We chose to use furfural because it was easier to obtain physical properties
data for this substance.

Finally, the value for the atmospheric pressure is given. We have to specify
this value here rather than in the numerical description for the problem because
some of the model fragments in the qualitative domain theory use this value in
their argument list.

Figure 6.5 contains the numerical description for the problem . All the numer-
ical data from Table 6 .2 are included along with the reference conditions for the

166

Alternative Method Light Key Heavy Key
alt-1
alt-2
alt-3
alt-4
alt-5
alt-6
alt-7
alt-8

Distillation
Distillation
Distillation
Distillation
Extractive Distillation
Extractive Distillation
Extractive Distillation
Extractive Distillation

n-Hexane
Benzene
Benzene
Cyclohexane
n-Hexane
Cyclohexane
Benzene
Benzene

Cyclohexane
Cyclohexane
n-Hexane
Benzene
Benzene
Benzene
n-Hexane
Cyclohexane

Table 6 .3 : The separation alternatives for COLUMN1.

column (130°F and 1 atm), the reference temperatures that are used to calculate
equilibrium ratios and finally the value for the gas constant in the ideal gas law.

We implemented two evolutionary design strategies in OUZO for this problem,
the Seader & Westerberg [54] and the Nath & Motard [43] strategies . The traces
for both methods are described below.

6 .3 .1 The Nath & Motard Strategy Trace

The design process begins with a qualitative and numerical analysis of the problem
description. As a result, a set of qualitative and numerical models introducing
relevant physical properties for the multicomponent mixture and its substances
(e .g. boiling points, vapor pressures, etc) are instantiated and solved . The results
of this analysis along with the contents of the design knowledge component are
fed into the heuristic analysis stage of the design algorithm (Figure 5 .35) . The
heuristics that belong to the initial part of the Nath & Motard strategy (Figure
5 .31 are applied next . Since the problem statement does not include any specific
column description at this point (Figure 6 .4), no heuristic rules fire . The current
design scenario activates a set of configuration synthesis rules that create the
description for the first column (COLUMN1) in the separation system.

The new design description is analyzed using the physical knowledge compo-
nent . As a result a set of qualitative model fragments for each separation alter-
native in COLUMN1 are created . In particular, the qualitative domain theory

167

computes four ordinary distillation alternatives and four extractive distillation
alternatives that use furfural as the mass separating agent 4 (see Table 6 .3).

For all these design choices the system instantiates and solves qualitative and
quantitative models that correspond to the separation properties for the reference
conditions 5 (Figures 4 .36 and 4 .37) . Furthermore, for every alternative the system
activates the model fragments that describe the distillate and bottoms products
(Figures 4 .28, 4 .29, 4 .30, 4 .31, 4 .32, 4.33 and 4.34) and their corresponding numer-
ical models are solved. Finally, a set of qualitative model fragments that describe
relevant features for each design choice in actual operating conditions (Figures
4 .38, 4 .39) are instantiated.

In the next step the initial part of the Nath & Motard strategy is activated in
an effort to prune the design space . The heuristics in the Separation-Alternatives-
Representation class (Figure 5 .2) feed all the ordinary distillation alternatives in
the heuristic analysis . The rules in the Disregard-Small-Relative-Volatilities class
(Figure 5 .6) reject the alternatives alt-2, alt-3 and alt-4 6 . The same heuristics in-
troduce the alt-5, alt-6 and alt-8 extractive distillation alternatives in the analysis.
Alt-8 is rejected by the rules in the Disregard-Small-Relative-Volatilities class . The
heuristics in the Perform-Least-Tight-Separation-First class (Figure 5 .9) indicate
that alt-5 is better than alt-6 since its coefficient for the difficulty of separation is
found to be the lowest of the two . Finally, the heuristics in the Favor-Distillation
class (Figure 5 .8) conclude that alt-1 is better than alt-5 and alt-6 . As a result,
the heuristics in class Order-Choices (Figure 5 .3) indicate that alt-1 is the most
promising design for COLUMN1.

The properties for alt-1 in actual operating conditions are now implied by the
results of the heuristic analysis . The corresponding numerical models for alt-1 are
constructed and solved . Using the equations in appendix B .2 the installation cost
for alt-1 is estimated at $ 69,958 . The configuration synthesis rules update the
design description for COLUMN1 by generating the product streams that corre-

4In the solution developed in [43] the mass separating agent used was phenol . We had difficulty
obtaining physical properties data for phenol, therefore we decided to use furfural instead . This
decision did not have an effect on the flowsheets developed by OUZO for the C6 separation which
were analogous with the ones presented in [43].

5Presure and temperature.
6The relative volatility between cyclohexane and benzene has different values in [43] and in this

research because we use different sources for physical properties data . In particular, the relative
volatility between benzene and cyclohexane in reference conditions is found by [43] to be equal to
1 .18 while we compute it equal to 0 .99 . As a result, alt-2 in [43] is rejected when compared to
alt-1 because of a lower value for its coefficient of the difficulty of separation (CDS) . In our case it
is rejected because its relative volatility is found to be less than the minimum value specified by
the design method (1 .1) .

168

spond to alt-1. In addition, the configuration synthesis rules check whether all
the desired products have been recovered . There are two more products that we
still need to separate from the input mixture (Benzene and Cyclohexane) . Conse-
quently, the configuration synthesis rules instantiate a new column (COLUMN2)
that feeds from the bottom products of COLUMN1.

The same processing cycle is repeated for COLUMN2 and after two such cy-
cles that correspond to columns COLUMN2 and COLUMN3 we end up with the
flowsheet shown in part (a) of Figure 6 .6.

At this point all the desired products have been recovered . The configuration
synthesis rules inform the rest of the design system that a complete flowsheet
has been found for the problem . As a result the evolutionary part of the Nath
& Motard strategy (Figure 5 .30) is activated . The heuristics belonging to the
Challenge-Heuristic-15 class (Figure 5 .18) notice that the relative volatility be-
tween n-Hexane and Benzene in alt-5 is larger than almost the square of the rel-
ative volatility between these two substances in alt-1 . Consequently, COLUMN2
and COLUMN3 are removed from the flowsheet and the system starts to investi-
gate a new design that does not involve an ordinary distillation process between
n-Hexane and Bezene in COLUMN1 . Another sequence of design cycles is initi-
ated resulting in the flowsheet shown in part (b) of Figure 6 .6 . Flowsheet (b) is a
better design alternative, since it costs less than the first one.

Once more the evolutionary part of the Nath & Motard strategy is activated for
the most recent separation system . The heuristics in the Delay-MSA-Removal class
(Figure 5 .19) suggest that the removal of the mass separating agent in COLUMN2
should be delayed since there is an extractive distillation process that uses the
same agent immediately following COLUMN2. The part of the flowsheet that
feeds from the products of COLUMN2 is removed and the system investigates
design alternatives for COLUMN2 that are different from an ordinary distillation
split between Cyclohexane and Furfural (the previous design decision).

Another sequence of design cycles creates the flowsheet that is described in
part (c) of Figure 6 .6. This design is found to be cheaper than all the previous
alternatives . No more evolutionary heuristics are applicable at this point and the
design program exits with the most recent flowsheet as the proposed design.

6 .3 .2 The Seader & Westerberg Strategy Trace

The design process begins by creating the description for the first column (COL-
UMN1) in the separation system in a way similar to what is the case for the Nath
& Motard strategy in section 6 .3 .1 .

169

The new design description is analyzed using the physical knowledge compo-
nent . As a result a set of qualitative model fragments for each separation alter-
native in COLUMN1 are created . In particular, the qualitative domain theory
computes the same eight design alternatives with the ones included in Table 6 .3
above . In addition, for each one of these design choices the same qualitative and
numerical model fragments with the ones described in section 6 .3 .1 become active.

In the next step the initial part of the Seader & Westerberg strategy is acti-
vated in an effort to prune the design space . The heuristics in the Separation-
Alternatives-Representation class (Figure 5 .2) feed all the ordinary distillation
alternatives in the heuristic analysis . The rules in the Disregard-Small-Relative-
Volatilities class (Figure 5 .6) reject alternatives alt-2, alt-3 and alt-4 . Furthermore,
these heuristics introduce alternatives alt-5, alt-6 and alt-8 in the heuristic analy-
sis . Alt-8 is rejected by the heuristics in the Disregard-Small-Relative-Volatilities
class . The rules in the Perform-Least-Tight-Separation-First class (Figure 5 .7)
conclude that alt-5 is more preferable than alt-6 . There are two remaining alter-
natives; alt-1 and alt-5 . The heuristics in the Order-Choices class (Figure 5 .3)
pick alt-1 as the most promising design for COLUMN1 . This is a random choice
since there is no heuristic rule in the Seader & Westerberg strategy capable of
comparing these two alternatives.

The detailed distillation features for alt-1 are now implied by the results of the
heuristic analysis and the corresponding numerical models for alt-1 are constructed
and solved. At the end of this design cycle the system creates the description for
a new column (COLUMN2) in a way similar to the Nath & Motard strategy in
section 6 .3 .1.

A set of analogous design steps are applied for COLUMN2 and COLUMN3
resulting in the flowsheet shown in part (a) of Figure 6 .7.

At this point all the desired products have been recovered . The configuration
synthesis rules inform the rest of the design system that a complete flowsheet has
been found for the problem. As a result the evolutionary part of the Seader &
Westerberg strategy (Figure 5 .33) is activated . The heuristics in the Create-All-
Possible-Interchanges class (Figure 5 .21) compute two possible interchanges for
the current flowsheet:

1. Exchange the splits between columns COLUMN1 and COLUMN2 (inter-1).

2. Exchange the splits between columns COLUMN2 and COLUMN3 (inter-2).

Inter-2 is rejected by the rules in the Filter-Possible-Interchanges class (Figure
5 .22) since COLUMN2 and COLUMN3 form an extractive distillation unit . As a

170

Problem Strategy Run Time Designs Num of Rules
C6 separation
C6 separation

Nath & Motard
Seader & Westerberg

28 mins 30 secs
17 mins 54 secs

3
2

56,762
35,673

Table 6 .4 : Performance results for the C6 separation propblem in OUZO.

result, the part of the flowsheet that feeds from the products of COLUMN1 is de-
stroyed and the system starts to investigate an alternative flowsheet that involves
an extractive distillation between Cyclohexane and Benzene in COLUMN1 . An-
other sequence of design cycles is initiated resulting in the flowsheet shown in part
(b) of Figure 6.7 . The second flowsheet is cheaper than the original one, therefore
it is a better design alternative. No more evolutionary heuristics are applicable
at this point and the design system exits with the most recent flowsheet as the
proposed design.

6 .3 .3 Results

Table 6.4 presents the performance results for the C 6 separation synthesis problem
in OUZO . The Designs column in the table refers to the number of designs examined
by the system until an optimal solution was found . The Num of Rules refer to
the total number of rules executed in ATMoSphere . The example ran on an IBM
RS/6000, Model 340, with 64 MB of RAM running Lucid Common Lisp.

There are eight possible flowsheets for this problem . Both methods relied on
the use of heuristic strategies to prune the number of design alternatives . The
designs proposed by the Nath & Motard method were consistent with the ones
reported in [43] . We know of no published results for the Seader & Westerberg
method on the C6 separation problem.

In terms of performance the two methods were not equivalent . The Seader
& Westerberg strategy generated only two flowsheets but, assuming that our nu-
merical calculations were accurate, its final design was not optimal . The Nath &
Motard strategy generated three flowsheets but came up with an optimal design.
In addition, the heuristics in the Nath & Motard strategy were more effective in
evaluating the design choices. Our implementation of the Seader & Westerberg
method had to resort to a random decision when choosing between alternatives
alt-5 and alt-1 in section 6 .3.2.

171

Feed

	

Desired Products

	

Conditions
Component Component Name Mole Fraction Product Component T = 53 .89°C

1 Propane .0147 1 1 P = 5 .62 kg/cm 2
2 n-Butane .5029 2 2 Total Flow Rate =
3 Butene-1 .1475 3 3, 4, 5 = 303 .04 kg mol/h
4 Trans-Butene-2 .1563 4 6
5 Cis-Butene-2 .1196
6 n-Pentane .0590

Table 6 .5 : Problem specification for the n-Butylene purification problem.

6.4 The n-Butylene Purification Problem

The n-Butylene purification problem is described in [30] . The version we are going
to describe below is the same as the one presented in [43] . Table 6 .5 contains the
problem definition that we used.

The qualitative description for this problem is given in Table 6 .8 . First, the
feed to the column is described . It is a multicomponent mixture consisting of
six substances (Propane, n-Butane, Butene-1, trans-Butene-2, cis-Butene-2, n-
Pentane) . Subsequently, the separation system we want to construct is designated
(systeml) and the relation between the multicomponent mixture and the separa-
tion system is established (Separation-System-Feed) . At the end of this part we
supply a name for the environment surrounding the column in order to associate
physical constants (such as the atmospheric pressure or the gas constant) with
this environment.

The next part of the problem description contains the list of desired products
for separation system systeml . The rest of the problem description is analogous
to the one described for the C 6 separation synthesis problem (see section 6 .3).

Figure 6.9 contains the numerical description for the problem . All the numer-
ical data from Table 6 .5 are included along with the reference conditions for the
column (130°F and 1 atm), the reference temperatures that are used to calculate
equilibrium ratios and the value for the gas constant in the ideal gas law.

6 .4 .1 The Seader & Westerberg Trace

As in the C6 separation problems we described above, the design process begins
with a qualitative and numerical analysis of the problem description . As a result
a set of qualitative and numerical models introducing relevant physical properties
for the multicomponent mixture and its substances (e .g. boiling points, vapor

172

pressures, etc) are instantiated and solved . The results of this analysis along
with the design knowledge component are fed to the heuristic analysis stage of the
design algorithm (Figure 5 .35) . At this point the heuristic rules that belong to the
initial part of the Seader & Westerberg strategy (Figure 5 .32) are activated . Since
the problem statement does not include any specific column description at this
point (Figure 6 .8), no heuristic rules fire . The current design scenario activates a
set of configuration synthesis rules that create the description for the first column
(COLUMN1) in the separation system.

The new design description is analyzed using the physical knowledge compo-
nent . As a result a set of qualitative model fragments for each separation alter-
native in COLUMN1 are created . In particular, the qualitative domain theory
computes twenty ordinary and extractive distillation alternatives for COLUMN1
(see Table 6 .6).

For all these alternatives the system instantiates and solves the appropriate
qualitative and quantitative models . These are similar with the ones in section
6 .3.1 above.

In the next step, the initial part of the Seader & Westerberg strategy is acti-
vated in an effort to reduce the number of design choices . The heuristics in the
Separation-Alternatives-Representation class (Figure 5 .2) feed all the ordinary dis-
tillation alternatives in the heuristic analysis . The rules in the Disregard-Small-
Relative-Volatilities class (Figure 5 .6) reject the alternatives alt-3, alt-4, alt-6,
alt-7, alt-8, alt-9 and alt-10 since their relative volatilities are found to be less
than the minimum relative volatility that is acceptable by the method . The same
heuristics introduce alt-14, alt-15 and alt-19 as promising extractive distillation
alternatives in the analysis . In addition, the heuristics in class Perform-Least-
Tight-Separation-First (Figure 5 .7) conclude that alternatives alt-5 and alt-1 are
better than alt-2 since the difference in their relative volatilities is higher than
alpha-difference (.01) . Also, alt-5 and alt-1 are found better than all the extrac-
tive distillation alternatives by the Ordinary-vs-Extractive-Distillation heuristic
in the Perform-Least-Tight-Separation-First class (Figure 5 .7) . Finally, the small
difference in the relative volatilities between alt-5 and alt-1 (< *alpha-difference*)
triggers the Difficulty-of-Separation-2 heuristic (Figure 5 .7) . Similar to what hap-
pens in [54] the user is prompted to select the most promising split . We choose
alt-1 in order to be consistent with [54] and the heuristics in class Order-Choices
(Figure 5.3) update the focus environment to reflect this development.

It should be noted that the relative volatilities between the keys in alt-1 and
alt-5 are almost the same and the feed flows for Butane and n-Pentane are small
compared to the rest of the input . Therefore, the ordering between alt-1 and alt-5

173

is insignificant, since the final flowsheets in both cases would end up costing almost
the same, if the rest of the designs were identical.

The detailed distillation features for alt-1 are now implied by the focus envi-
ronment and the corresponding numerical models for alt-1 are constructed and
solved . Using the equations in appendix B .2 the installation cost for alt-1 is esti-
mated at $ 27,936. The configuration synthesis rules update the design description
for COLUMN1 by generating the product streams that correspond to alt-1 . In
addition, the configuration synthesis rules check whether all the desired products
have been recovered . There are three more products that we still need to separate
from the input mixture (n-Butane, n-Pentane and the group of butenes) . Conse-
quently, the configuration synthesis rules create the description for a new column
(COLUMN2) that feeds from the bottom products of COLUMN1.

The same processing cycle is repeated for COLUMN2 and after four such cycles
that correspond to the next four columns we end up with the flowsheet shown in
part (a) of Figure 6 .10.

At this point all the desired products have been recovered . The configuration
synthesis rules inform the rest of the design system that a complete flowsheet
(F-1) has been found for the problem . The evolutionary part of the Seader &
Westerberg strategy (Figure 5 .30) is activated . The heuristics in the Create-All-
Possible-Interchanges class (Figure 5 .21) compute four possible interchanges for
the current flowsheet:

1. Exchange the splits between columns COLUMN1 and COLUMN2 (inter-1).

2. Exchange the splits between columns COLUMN2 and COLUMN3 (inter-2).

3. Exchange the splits between columns COLUMN3 and COLUMN4 (inter-3).

4. Exchange the splits between columns COLUMN4 and COLUMN5 (inter-4).

The heuristics in the Filter-Possible-Interchanges class (Figure 5 .22) are acti-
vated in order to prune the number of possible exchanges in the flowsheet . Inter-4
is rejected since COLUMN4 and COLUMNS form an extractive distillation unit.
Inter-1 is found less preferable because the difference in the relative volatilities be-
tween the two splits is negligible (^ 0,002 which is less than the *alpha-difference*
(.01) set by the method) . Finally, inter-3 is found less preferable since the relative
volatility for the extractive split ' in COLUMN4 (1 .7) is less than *min-extractive-
alpha* (2 .0) . The most preferable alternative is inter-2 and the flowsheet is altered
to reflect the interchange . The part of the flowsheet that feeds from the products
of COLUMN2 is removed and alt-2 is chosen as the separation that takes place in

174

COLUMN2 . Two design cycles later a new, cheaper flowsheet (F-2) emerges (part
(b) of Figure 6 .10).

Once again the evolutionary part of the Seader & Westerberg strategy (Figure
5 .30) is activated . The heuristics in the Create-All-Possible-Interchanges class
compute two possible interchanges for the current flowsheet:

1. Exchange the splits between columns COLUMN1 and COLUMN2 (inter-5).

2. Exchange the splits between columns COLUMN3 and COLUMN4 (inter-6).

Inter-6 is rejected by the heuristics in the Filter-Possible-Interchanges class,
since the relative volatility for the extractive split in COLUMN4 (1 .7) is less than
min-extractive-alpha (2 .0) . Inter-5 is used to evolve the current design . In the
end, the flowsheet in part (c) of Figure 6 .10 (F-3) is constructed . The cost for F-3
is found to be less than F-2.

No more evolutionary heuristics are applicable at this point and the design
system exits with F-3 as the proposed design . The design trace is consistent with
the one reported in [54].

6 .4 .2 The Nath & Motard Strategy Trace

The design process begins by creating the description for the first column (COL-
UMN1) in the separation system in a way similar to what is the case for the Seader
& Wsterberg strategy in section 6 .4.1.

The new design description is analyzed using the physical knowledge compo-
nent . As a result a set of qualitative model fragments for each separation alter-
native in COLUMN1 are created . In particular, the qualitative domain theory
computes the same twenty design alternatives with the ones presented in Table
6 .6 .

In the next step the initial part of the Nath & Motard strategy is activated in
an effort to prune the design space . The heuristics in the Separation-Alternatives-
Representation class (Figure 5 .2) feed all the ordinary distillation alternatives in
the heuristic analysis . The Disregard-Small-Relative-Volatilities class rejects al-
ternatives alt-6, alt-7, alt-4, alt-8, alt-9, alt-3 and alt-10 . The same rules introduce
extractive distillation alternatives alt-16 and alt-17 in the analysis . The heuristics
in the Perform-Least-Tight-Separation-First class use the values of the coefficients
of difficulty of separation to indicate that alt-5 is the worst of the remaining or-
dinary distillation choices and that alt-1 is better than alt-2 . The same heuristic
class concludes that among the extractive distillation alternatives alt-16 is the
best choice. The heuristics in the Favor-Distillation class indicates that all the

175

remaining ordinary distillation alternatives should be considered better than the
extractive distillation ones. The Favor-Smallest-Production-Set class rejects all the
extractive distillation alternatives because they do not produce any of the specified
products directly. Finally, the heuristics in the Order-Choices class indicate that
alt-1 is the best alternative for COLUMN1.

The detailed distillation features for alt-1 are now implied by the results of the
heuristic analysis and the corresponding numerical models for alt-1 are constructed
and solved. At the end of this design cycle the system creates the description for
a new column (COLUMN2) . A set of analogous design steps are applied for
COLUMN2, COLUMN3 and COLUMN4 resulting in the flowsheet shown in part
(a) of Figure 6.11.

At this point all the desired products have been recovered . The configuration
synthesis rules inform the rest of the design system that a complete flowsheet has
been found. As a result the evolutionary part of the Nath & Motard strategy
(Figure 5 .30) is activated . The heuristics belonging to the Challenge-Heuristic-11
class (Figure 5 .18) notice that in order to isolate Butene-1, trans-Butene-2 and
cis-Butene-2 as a product set we had to use an extractive distillation process in
COLUMN3 . These heuristics decide to split the product set in the hope of avoiding
an extractive distillation process in the new flowsheet . There are two members in
the new product set : (i) Butene-1 and (ii) trans-Butene-2 and cis-Butene-2 . The
system starts a new design from scratch with the new product set . The resulting
flowsheet is shown in part (b) of Figure 6 .11.

Once again the evolutionary part of the Nath & Motard strategy is activated.
The heuristics in the Challenge-Heuristic-10 class notice that the separation in
COLUMN1 is much easier than the one in COLUMN2 . It has been observed that
choosing a very easy separation at some stage may not always lead to an optimum
design [43], since the next separation may be a very difficult one . In order to
explore this possibility the heuristics in class Challenge-Heuristic-10 evolve a new
design, excluding the use of alt-1 as a possible separation for COLUMN1 . The
flowsheet shown in part (a) of Figure 6 .12 is created.

Finally, the evolutionary heuristics in the Challenge-Heuristic-10 class notice
that the separation in COLUMN2 is much easier than the one in COLUMN3.
Alt-5 is excluded as a possible separation for COLUMN2 and a new flowsheet is
constructed for the bottom products of COLUMN1 . The final flowsheet is shown
in part (b) of Figure 6 .12.

No more evolutionary heuristics are applicable at this point and OUZO exits
with the flowsheet in part (a) of Figure 6.12 as the proposed design . The design
trace is consistent with the one reported in [43] .

176

6 .4 .3 Results

Table 6 .7 presents the performance results for the n-Butylene purification prob-
lem . The Designs column in the table refers to the number of designs examined
by the system until an optimal solution was found . The Num of Rules refer to the
total number of rules executed in ATMoSphere . The system was run on an IBM
RS/6000, Model 340, with 64 MB of RAM running Lucid Common Lisp.

There are 1,344 possible flowsheets for this problem . Both methods relied on
the use of heuristic strategies to prune the number of design alternatives . The
Seader & Westerberg strategy was more effective in proposing a solution for this
problem, since it proposed a solution after examining only 3 flowsheets . It took
four flowsheets for the Nath & Motard strategy to come up with a final design.
All of the results were consistent with the ones reported in [54], [43].

6.5 Discussion

Despite the fact that OUZO is able to deal with fairly complex problems the run
times for most of the examples are not optimal . In particular, most of the running
time for the program (^ 80%) is spent in the qualitative analysis stage . This is
mainly a consequence of the fact that qualitative analysis is responsible for gen-
erating representations for all the design alternatives at each stage in the process.
As a result, qualitative models have to support what seems to be the computation-
ally most expensive stage of the design process . However, we believe that adapting
the current analysis routines (which were taken from SIMGEN [21]) to fit more
closely the needs of design, will have a positive effect on the run-time behavior of
OUZO . For example, we believe that using a justification-based truth maintenance
system (JTMS) in the examples we described above will improve significantly the
performance . At least in the examples that we tested our system in, we have no
more than two changes of focus environments per design cycle . In these cases, it
is much better to compute all the nodes that are implied by the current focus at
run-time using a JTMS, rather than compute and use the precompiled labels of
an ATMS.

The examples described above clearly indicate the potential of using OUZO as
a testbed for various design strategies . Providing explicit representations for the
design knowledge in this domain allows the designer to use the system either for
testing his/her ideas or (potentially) for generating better design strategies for
different classes of problems automatically .

177

Figure 6.3 : A 12-stage binary distillation column with a partial condenser . The
feed enters the column at stage 6.

. ..

A

Stage 2
Distillate

A

	

Stage 3

Feed

A

S

S

S

g4

g5

g6
S gll

Stage 7

Sig8

Reflajix

S g9

S g 10

Condenser Unit

S

Bottoms

	I

KEYS

	 ► Vapor Flow

_* Liquid Fl

Stage 12

(Rth®iller)

178

;; The separation system and its inputs.

(assertq (Substance n-Hexane))
(assertq (Substance Benzene))

(assertq (Substance Cyclohexane))
(assertq (MultiComponent-Mixture (M-C-S (n-Hexane Benzene Cyclohexane) liquid feed-stage)))

(assertq (Separation-System systeml))

(assertq (Separation-System-Feed (M-C-S (n-Hexane Benzene Cyclohexane) liquid feed-stage) systeml))
(assertq (Environment environment))

;; The desired products for the system.

(assertq (Desired-Products (n-Hexane) systeml))

(assertq (Desired-Products (Benzene) systeml))
(assertq (Desired-Products (Cyclohexane) systeml))

;; The modeling assumptions for the problem.

(assertq (Consider (Sharp-Separation-For systeml)))
(assertq (Consider (Liquid-Phase-Feed

(M-C-S (n-Hexane Benzene Cyclohexane) liquid feed-stage) systeml)))

;; The design assumptions for the system.

(assertq (Consider (Evolutionary-Strategy-For systeml Nath-&-Motard)))
(assertq (Consider Stage-Efficiency .85))

(assertq (Consider (Operating-Reflux-Estimate 1 .2)))
(assertq (Consider (Projected-Life 10))) ; ; years

;; Physical Properties data.

(assertq (Value-of (A (Atmospheric-Pressure environment)) 101000 .0 :user)) ; ; 101000 Pa is 1 atm

;; Properties of the mass separating agent we are going to use.

(assertq (Substance Furfural))
(assertq (Polar-Solvent Furfural))

(assertq (Attracts Furfural Benzene))
(assertq (Attracts Furfural Cyclohexane))

(assertq (Consider (Polar-Solvent-Recovery Furfural .99)))

Figure 6.4 : The qualitative description for the C6 separation synthesis problem .

179

(assign

(A (Feed-Flow n-Hexane

	

; ; kg mol/h
(M-C-S (n-Hexane Benzene Cyclohexane) liquid feed-stage) systeml)) 56 .69433)

(assign
(A (Feed-Flow Benzene

(M-C-S (n-Hexane Benzene Cyclohexane) liquid feed-stage) systeml)) 56 .69433)

(assign
(A (Feed-Flow Cyclohexane

(M-C-S (n-Hexane Benzene Cyclohexane) liquid feed-stage) systeml)) 56 .71134)

(assign
(A (Feed-Temperature (M-C-S (n-Hexane Benzene Cyclohexane) liquid feed-stage) systeml))

100.0)

	

; ; Fahreneit (" 37 .8 oC)

(assign
(A (Feed-Pressure

(M-C-S (n-Hexane Benzene Cyclohexane) liquid feed-stage) systeml)) 101306 .31)

	

Pa

(assign (A (Product-Specification (n-Hexane)

	

systeml))

	

.99)
(assign (A (Product-Specification (Benzene)

	

systeml))

	

.98)

(assign (A (Product-Specification (Cyclohexane)

	

systeml))

	

.98)

(assign (A (Reference-Temperature systeml)) 130) ; ; Fahreneit ("54 .4 oC)

(assign (A (Reference-Pressure systeml)) 101000 .0) ; ; 1 atm

(assign (A (K-Ideal-Reference-Temperature n-Hexane))

	

25) ; ;

	

Celsius
(assign

(assign

(A

(A

(K-Ideal-Reference-Temperature

(K-Ideal-Reference-Temperature

Benzene))

	

25)

Cyclohexane))

	

25)

(assign (A (Gas-Constant environment)) 1 .987) ; ; cal/mol .K

Figure 6.5 : The numerical data for the C 6 separation synthesis problem.

180

Figure 6 .6 : The flowsheets generated by the Nath & Motard method for the
C6 separation problem. The columns with an asterisk (*) indicate extractive
distillation units .

n-He xa ne

	

C yc lo he xa ne

	

Benzene

Furfura 1

(a)

Column1

$ 26,400

Furfura 1

CC®Iluum 2

$ 37,439

Furfura 1

Colima:n.3

	

CCclu 4

$ 38,885

	

$ 17,990

Column1
$ 69,958

CCclunam2

	

CColimain3
$ 39,256

	

$ 17,819

Benzene/
Cyclohexane C yc lo he xa ne

	

Benzene

i

(b)

n -He xa n e

n -He xa n e

	

Cyclohexane

	

Benzene

T
Furfura 1

C®llunm1

	

CC®Iluunin2

$ 26,400

	

$ 39,277

CC®ll3

$ 18,233

(c)

181

Figure 6.7 : The flowsheets generated by the Seader & Westerberg method for
the C6 separation problem . The columns with an asterisk (*) indicate extractive
distillation units .

n -He xa n e

	

Cyclohexane

	

Benzene

(a)

Colunan1
$ 69,958

Colunnn2

	

CobTmt13
$ 39,256

	

$ 17,819

$ 90,209

	

n-Hexane
$ 55,105

Colunnn2

Cyclohexane
>

	

(b)Be n ze n e

CobTmt1 .3

Colunan1
Furfura 1

>-

$ 18,233

182

(assertq (Substance Propane))
(assertq (Substance n-Butane))

(assertq (Substance Butene-1))
(assertq (Substance trans-Butene-2))

(assertq (Substance cis-Butene-2))
(assertq (Substance n-Pentane))

(assertq
(MultiComponent-Mixture

(M-C-S (Propane n-Butane Butene-1 trans-Butene-2 cis-Butene-2 n-Pentane) liquid feed-stage)))

(assertq (Separation-System systeml))
(assertq (Separation-System-Feed

(M-C-S (Propane n-Butane Butene-1 trans-Butene-2 cis-Butene-2 n-Pentane) liquid feed-stage)
systeml))

(assertq (Environment environment))

(assertq (Desired-Products (Propane) systeml))
(assertq (Desired-Products (n-Butane) systeml))

(assertq (Desired-Products (Butene-1 trans-Butene-2 cis-Butene-2) systeml))
(assertq (Desired-Products (n-Pentane) systeml))

(assertq (Consider (Sharp-Separation-For systeml)))
(assertq (Consider

(Liquid-Phase-Feed
(M-C-S (Propane n-Butane Butene-1 trans-Butene-2 cis-Butene-2 n-Pentane) liquid

feed-stage)
systeml))

(assertq (Consider (Evolutionary-Strategy-For systeml Nath-&-Motard)))

(assertq (Consider Stage-Efficiency .85))
(assertq (Consider (Operating-Reflux-Estimate 1 .2)))
(assertq (Consider (Projected-Life 10))) ; ; years

(assertq (Value-of (A (Atmospheric-Pressure environment)) 101000 .0 :user))

(assertq (Substance Furfural))

(assertq (Polar-Solvent Furfural))
(assertq (Attracts Furfural Trans-Butene-2))

(assertq (Attracts Furfural Butene-1))
(assertq (Attracts Furfural n-Pentane))

(assertq (Consider (Polar-Solvent-Recovery Furfural .99)))

Figure 6.8 : The qualitative description for the n-Butylene purification problem .

183

(assign

(A (Feed-Flow
propane
(M-C-S (Propane n-Butane Butene-1 trans-Butene-2 cis-Butene-2 n-Pentane) liquid feed-stage)

systeml)) 4 .5) ; ; kg mol/h
(assign

(A (Feed-Flow
n-butane

(M-C-S (Propane n-Butane Butene-1 trans-Butene-2 cis-Butene-2 n-Pentane) liquid feed-stage)
systeml)) 154 .7)

(assign
(A (Feed-Flow

butene-1
(M-C-S (Propane n-Butane Butene-1 trans-Butene-2 cis-Butene-2 n-Pentane) liquid feed-stage)

systeml)) 45 .4)

(assign
(A (Feed-Flow

trans-butene-2
(M-C-S (Propane n-Butane Butene-1 trans-Butene-2 cis-Butene-2 n-Pentane) liquid feed-stage)

systeml)) 48 .1)
(assign

(A (Feed-Flow
cis-butene-2

(M-C-S (Propane n-Butane Butene-1 trans-Butene-2 cis-Butene-2 n-Pentane) liquid feed-stage)
systeml)) 36 .7)

(assign
(A (Feed-Flow

n-pentane
(M-C-S (Propane n-Butane Butene-1 trans-Butene-2 cis-Butene-2 n-Pentane) liquid feed-stage)

systeml)) 18 .1)
(assign

(A (Feed-Temperature
(M-C-S (Propane n-Butane Butene-1 trans-Butene-2 cis-Butene-2 n-Pentane) liquid feed-stage)
systeml)) 205) ; ; Fahreneit

(assign
(A (Feed-Pressure

(M-C-S (Propane n-Butane Butene-1 trans-Butene-2 cis-Butene-2 n-Pentane) liquid feed-stage)
systeml)) 2171862 .0) ; ; Pa

(Product-Specification (Propane) systeml))

	

.99)

(Product-Specification (n-Butane) systeml))

	

.96)
(Product-Specification (Butene-1 trans-Butene-2 cis-Butene-2)

	

systeml))

	

.95)
(Product-Specification

(Reference-Temperature

(n-Pentane)

	

systeml))

	

.98)

systeml))

	

130)

	

; ;

	

Fahreneit

	

(" 54 .4

	

oC)

Figure 6 .9: The numerical data for the n-Butylene purification problem.

(assign (A

(assign (A
(assign (A
(assign (A

(assign (A
(assign (A (Reference-Pressure systeml)) 101000 .0) ; ; 1 atm

(assign (A (K-Ideal-Reference-Temperature Propane)) 25) ; ; Celsius
(assign (A (K-Ideal-Reference-Temperature n-Butane)) 25)

(assign (A (K-Ideal-Reference-Temperature Butene-1)) 25)
(assign (A (K-Ideal-Reference-Temperature trans-Butene-2)) 25)

(assign (A (K-Ideal-Reference-Temperature cis-Butene-2)) 25)
(assign (A (K-Ideal-Reference-Temperature n-Pentane)) 25)

(assign (A (Gas-Constant environment)) 1 .987)

	

cal/mol .K

184

Alternative Method Light Key Heavy Key
alt-1

alt-2

alt-3

alt-4

alt-5

alt-6

alt-7

alt-8

alt-9

alt-10

alt-11

alt-12

alt-13

alt-14

alt-15

alt-16

alt-17

alt-18

alt-19

alt-20

Distillation

Distillation

Distillation

Distillation

Distillation

Distillation

Distillation

Distillation

Distillation

Distillation

Extractive Distillation

Extractive Distillation

Extractive Distillation

Extractive Distillation

Extractive Distillation

Extractive Distillation

Extractive Distillation

Extractive Distillation

Extractive Distillation

Extractive Distillation

Propane

Butene-1

n-Butane

trans-Butene-2

cis-Butene-2

n-Pentane

cis-Butene-2

trans-Butene-2

Butene-1

n-Butane

cis-Butene-2

trans-Butene-2

Butene-1

trans-Butene-2

Butene-1

n-Butane

n-Butane

Propane

cis-Butene-2

n-Pentane

Butene-1

n-Butane

trans-Butene-2

cis-Butene-2

n-Pentane

cis-Butene-2

trans-Butene-2

n-Butane

Propane

Butene-1

trans-Butene-2

cis-Butene-2

Propane

n-Butane

n-Butane

trans-Butene-2

Butene-1

Butene-1

n-Pentane

cis-Butene-2

Table 6 .6 : The separation alternatives for COLUMN1.

Problem Strategy Run Time Designs Num of Rules
n-Butylene purification

n-Butylene purification

N & M

S & W

3 hrs 36' 50"

2 hrs 27' 25"

4

3

210,746

147,347

Table 6.7: Performance results for the n-Butylene purification problem.

185

Figure 6 .10 : The flowsheets generated by the Seader & Westerberg method for
the n-Butylene purification problem. The columns with an asterisk (*) indicate
extractive distillation units.

Propane

	

Bute ne -1

	

n-Butane

	

Tra ns-Bute ne -2 /
/ Cis-Butene-2

(a)

Furfura 1n-Pe nta ne

Co unm1

	

Co un 2

$ 27,936

	

$ 101,241

Co u=3

$ 29,009

Co u=4

	

Co un 5

$ 18,932

	

$ 11,609

Propane

	

Butene-1
Tra ns-Bute ne -2 /

/ Cis-Butene-2

(b)

n-Butane

n-Pe nta ne

	

Furfura 1

Co unm1

	

Co un 2

	

Co un 3

	

Co 4

	

Co un 5

$ 27,936

	

$ 62,828

	

$ 36,265

	

$ 18,932

	

$ 11,609

Propane

Co u=5 $ 8,667

Bute ne -1

n-Butane
Tra ns-Bute ne -2 /
/ Cis-Bute ne-2

Colnm1
$ 66,416

n-Pe nta ne
Furfura 1

(c)

Co un 2

	

Co un 3

	

Co u=4
$ 36,265

	

$ 18,932

	

$ 11,609

186

Figure 6 .11: The first two flowsheets generated by the Nath & Notard method
for the n-Butylene purification problem. The columns with an asterisk (*) indicate
extractive distillation units.

Propane

	

n-Butane

	

Bute ne-1 /
/ Trans-Butene-2 /

/Cis-Butene -2

(a)

n-Pentane

	

Furfura 1

Column1

	

Column2

	

Column3

	

Column4

$ 27,936

	

$ 101,241

	

$ 19,054

	

$14,543

Propane

	

Butene-1 Trans-Butene-2 /
/ Cis-Bute ne-2

(b)

n-Butane

n-Pentane

Furfura 1

Columnl

	

Column2

	

Column3

	

Column4

	

Columns

$ 27,936

	

$ 62,828

	

$ 36,265

	

$18,932

	

$11,609

187

Figure 6 .12 : The last two flowsheets generated by the Nath & Notard method
for the n-Butylene purification problem. The columns with an asterisk (*) indicate
extractive distillation units .

Pro pane

C®Iln5

	

$ 8,667

C®IlnIl

$ 66,416

Bute ne -1

n-Butane Tra ns-Bute ne -2 /
/ Cis-Bute ne -2

Furfura 1
n-Pe nta ne

(a)

C®Ilurrnm2

	

C®Ilumm.3

	

Col u=4

$ 36,265

	

$ 18,932

	

$ 11,609

Pro pane

Furfura 1

	

V

CC®Iln6

$ 4,133

CC®IlnIl

$ 66,416

Col u=5

$ 8,667

Bute ne -1

C®Ilu=2

$ 34,077

n-Butane

C®Ilw=.3

	

C®Iln4

$ 18,932

	

$ 11,609

Tra ns-Bute ne -2 /
/ Cis-Bute ne -2

(b)

n-Pe nta ne

i

Furfura 1

Chapter 7

Conclusions

188

189

7 .1 Contributions

The primary contributions of this thesis are:

• We describe DIAS, a computational framework that enables the transfor-
mation of informal accounts of innovative engineering design into precise
computational models for performing the design task.

• We present a computational model for innovative design that views design
as a sequence of design cycles.

• We describe a novel algorithm for orchestrating the use of physical and design
knowledge in innovative design that is independent of heuristic or evolution-
ary design strategies.

• We develop a set of primitives for capturing design actions in DIAS.

• We demonstrate how to integrate a qualitative modeling language like QP
Theory with numerical models and representations for heuristic knowledge
in design.

• We describe a program (OUZO) which provides a platform for implementing
different design strategies for separation systems.

7 .2 Future Work

We have identified five areas for possible extensions of this research.

7 .2 .1 Generate explanations during the design process

DIAS focuses on the performance aspects of design and not on the generation of
explanations for the design process . In general, while performance requires as
much domain-specific knowledge as possible for efficiency purposes, explanation
depends on representations relating the design results to the intuitions of the
designer . Typically, in engineering design these intuitions can be expressed as
commonsense rules balancing economic considerations against performance and
functionality . For example, all of the heuristics for separation system design in
Table 2 .1 can be expressed as instances of more general guidelines for the design
of filters (see section 3 .5 .6) . Therefore, in order for our computational framework

190

to support explanation generation, it will probably need to have a set of more
abstract commonsense rules that describe the heuristics used in performing the
design task.

Furthermore, the qualitative models in the physical knowledge component can
form the basis for generating more intuitive explanations of the physical principles
and the model construction process during the analysis phase of design.

7.2 .2 Automate search for better design strategies

The development of evolutionary heuristics provides an example of how this ap-
proach might work . Most of these heuristic rules are developed by studying the
effects that small structural changes introduce in configurations generated using an
initial set of heuristics (see Table 5 .1) . The designer's task is to determine the ap-
plication conditions for each modification that results with high enough frequency
in superior designs. Machine learning techniques [56] can be used to automate
the construction of evolutionary rules . Furthermore, planning techniques [2] can
help to organize the application of new sets of initial and evolutionary heuristics
in better design strategies.

7.2 .3 Use more sophisticated model formulation techniques

At its current phase, DIAS supports compositional modeling techniques [15] for
formulating physical knowledge models based on the current design description
and the current sets of modeling and design assumptions . However, it is usually
the case that the structure of the system and the assumptions for describing it
are not the only parameters that determine how suitable for design is a physi-
cal model. Accuracy and computational efficiency play equally important roles
in model selection . Therefore, the compositional modeling techniques in our ap-
proach need to be extended to capture the effects of these additional parameters
during the analysis phase . Combining compositional modeling techniques with
model sensitivity analysis [67] is a potential first step towards this direction.

7.2 .4 Extend OUZO to other design domains

Different classes of process design problems in chemical engineering like control
system synthesis, or total process flowsheets are possible new domains . Control
system synthesis, in particular, presents a major challenge for our approach, since

191

critical design decisions like the establishment of critical variables or the identifica-

tion of significant interactions between design features and steady-state control are

largely based on qualitative knowledge (e .g . order of magnitude reasoning) [45].

Other engineering domains where there is a singificant interest in using AI tech-

niques (e .g. mechanical or aeronautical engineering) pose a new set of challenges

for our approach .

APPENDIX A

Qualitative Process Theory : An
Overview

192

193

Qualitative Process Theory (QP Theory) is a modeling language centered around
the notion of processes as the agents of change in the world . The primitives used
in QP Theory include quantities, numbers, entities, views, perspectives, processes
and influences.

Quantities . The representation of a parameter of an object is called a quan-
tity . Each quantity has two numbers associated with it: its amount (A) and its
derivative (D) . Each one of these numbers has a sign and a magnitude . A quantity
belongs to at least one individual and it exists only when its owner does . Quan-
tities are related with each other via a set of ordinal relationships . These include
the greater-than, less-than and equal-to relations, their legal combinations and the
unrelated relation . The later holds between two quantities when one of them does
not exist.

Entities . Entities indicate instances of classes of objects . For example, various
container entities represent instances of classes of objects that can be characterized
as containers. Each entity contains the quantities of interest for the particular class
of objects along with the causal dependencies and the inequality relations between
them.

Views, Perspectives and Processes . Views and perspectives are condi-
tional descriptions of state . Processes are conditional descriptions of behavior.
Any instance of these model fragments exists for every combination of objects
that match the descriptions of the individuals field in its description. Views and
processes become active when their preconditions and quantity conditions are sat-
isfied . Quantity conditions consist of sets of inequalities between quantities . Pre-
conditions capture activation conditions that cannot be predicted solely by the
dynamics of the situation (e .g . the actions of a human operator) . Perspectives
have no quantity conditions . They become active when their preconditions are
satisfied.

Influences . Influences specifiy what can cause a quantity to change . There
are two kinds of influences : direct and indirect . If a quantity is directly influenced,
its derivative equals the sum of all the direct influences on it . There are two
kinds of direct influences, I+ and I-, depending on whether the derivative of the
quantity is monotonically increasing or decreasing with respect to the quantity it
is influenced by. A quantity can be directly influenced only through a process.
Processes and their influences are considered to be the causal origin of all change.
If there are no active processes then all quantities must be constant.

An indirect influence occurs when a quantity is a function of some other quan-
tity that is changing. There are three kinds of indirect influences, Qprop, Qprop-
and Q= . The relation : (Qprop Q1 Q2) states that Q1 is monotonically increasing
in Q2. The relation (Qprop- Q1 Q2) states that Q1 is monotonically decreasing

194

(defPerspective (Separation-System-Input ?system ?feed ?component)
Individuals ((?system :Type Separation-System)

(?feed Type Multicomponent-Mixture

Form (M-C-S ?components ?phase ?container)
Conditions (Separation-System-Feed ?feed ?system))

(?component :Type Substance
:Test (member ?component ?components)))

Relations ((Non-Negative-Quantity (Feed-Flow ?component ?feed ?system))
(Qprop (Total-Feed-Flow ?feed ?system) (Feed-Flow ?component ?feed ?system))))

Figure A.1 : The input to a separation system for multicomponent mixtures.
A term preceeded with a question mark (e .g. ?system) is a variable which is
instantiated as part of the model construction process.

in Q2 . Finally, the relation (Q= Q1 Q2) is translated as : (i) (equal-to (A Q1) (A
Q2)), (ii) (equal-to (D Q1) (D Q2)) and (iii) (Qprop Q1 Q2).

A.1 An example

Figure A.1 provides an example of what the qualitative model fragment for the
input for a separation system looks like in the domain theory. One more word
about the syntax of QP Theory . As the example indicates the specification for
each individual must have at least one of the following parts:

• The :Type part indicates that the next token is a unary predicate which must
hold for an instance to exist.

• The :Form part constrains the possible bindings of the variable to those
which unify with the form that follows.

• The :Test part signifies that the next form is going to be a LISP expression
which should evaluate to a non-nil value for an instance to be created with
the bindings so far.

• The :Conditions part indicates that all the remaining forms are additional
statements that have to be believed for an instance to be created .

APPENDIX B

Numerical Models for

Multicomponent Columns

195

196

The following section deals with two aspects of the numerical models that are
used by the system, the calculation of relative volatilities and the generation of
cost estimates.

B.1 Computing Relative Volatilities

In order to compute the relative volatilities for the various substances in a multi-
component mixture, the system uses a library of physical properties . The entries
in this library include vapor pressures at various temperatures, boiling points at
various pressures, the critical pressures and the Antoine equation coefficients for
some of the substances. Figures B.1, B.2, B.3 and B.4 describe some of the equa-
tions that use property information to compute relative volatilities for the ordinary
and extractive distillation cases.

In particular, Figures B .1 and B.2 show how the relative volatilities between
two substances are calculated based on the equilibrium ratios (the Relative- Volatility-
Calculation-from-K Values equation) or the vapor pressures between them (the
Relative- Volatility-Calculation-from- Vapor-Pressures equation) l . We use the An-
toine equation [72] for computing vapor pressures for substances, in case these are
not directly available from the physical properties table . For the equilibrium ra-
tios we use an equation from [54] (the K-Ideal-Calculation-in-Reference-Conditions
equation in the figure) . The Liquid-Molal- Volume-in-Physical-Properties-Table
equation exemplifies the way physical properties are retrieved from the proper-
ties table. The table has an accessor function (get-physical-property) that gets
evaluated using the :EVALUATE directive. The later informs the equation solver
that the right hand side of the equation will not be algebraically solved but will
be evaluated as a LISP expression. Most of these equations come in pairs that
compute physical properties at reference and actual operating conditions.

Figures B .3 and B .4 describe the relative volatility calculations in the extractive
distillation case . The computation of these parameters proceeds in a similar way
with the ordinary case except that we have to multiply the relative volatility for
the ordinary distillation case with the selectivity between the key components
(the Extractive-Alpha-LK-HK- Calculation-for-Keys-and-Polar-Solvent-in- Ternary
and the Extractive-Alpha-LK-HK-Calculation equations) . The selectivity of two
substances is defined as the ratio of the relative volatility of the key components
in the mixture which are to be separated in the presence of the mass separating
agent to their relative volatility before the addition of the agent . The formula we

'There are similar equations for the actual operating conditions for the column .

197

(defEquation Antoine-Equation

((Separation-Properties-in-Feed-Conditions ?feed ?column ?substance))
((Vapor-Pressure ?substance ?column :operating)
(Alpha-1 ?substance)

(Alpha-2 ?substance)
(Alpha-3 ?substance)

(Feed-Temperature ?feed ?column)
(Critical-Pressure ?substance))

(_ (A (Vapor-Pressure ?substance ?column :operating))

	

; ; (in psia)
(* (A (Critical-Pressure ?substance))

(exp (- (A (Alpha-1 ?substance))
(/ (A (Alpha-2 ?substance))

(+ (A (Feed-Temperature ?feed ?column)) (A (Alpha-3 ?substance)))))))))

(defEquation Liquid-Molal-Volume-in-Physical-Properties-Table

((K-Ideal-Substance-Properties ?substance ?op-temp ?ref-temp ?phys-temp ?system ?op-prey ?column))
((Liquid-Molal-Volume ?substance ?phys-temp))

(_ (A (Liquid-Molal-Volume ?substance ?phys-temp))
(:EVALUATE (get-physical-property Liquid-Molal-Volume ?substance ?phys-temp))))

(defEquation Liquid-Volume-Calculation

((K-Ideal-Substance-Properties ?substance ?op-temp ?ref-temp ?phys-temp ?system ?op-prey ?column))
((Liquid-Volume-Constant ?substance)

(Liquid-Molal-Volume ?substance ?phys-temp)
(Critical-Temperature ?substance))

(_ (A (Liquid-Volume-Constant ?substance))
(/ (A (Liquid-Molal-Volume ?substance ?phys-temp))

(+ 5 .7 (* 3 .0 (/ (* 1 .8 (+ ?phys-temp 273 .15)) (A (Critical-Temperature ?substance))))))))

(defEquation K-Ideal-Calculation-in-Reference-Conditions

((K-Ideal-Substance-Properties ?substance ?op-temp ?ref-temp ?phys-temp ?system ?op-prey ?column)
(Value-of (A (Atmospheric-Pressure ?env)) ?atm ?eqn))

((K-Value ?substance ?column :reference)
(Vapor-Pressure ?substance ?column :reference)

(Critical-Temperature ?substance)
(Critical-Pressure ?substance)

(Liquid-Molal-Volume ?substance ?ref-temp))
(_ (A (K-Value ?substance ?column :reference))

(* (/ (A (Vapor-Pressure ?substance ?column :reference)) (/ ?atm 6894 .8))
(exp (+ (/ (* 0 .4278 (- (/ ?atm 6894 .8) (A (Vapor-Pressure ?substance ?column :reference))))

(* (expt (/ (+ ?ref-temp 459 .67) (A (Critical-Temperature ?substance))) 2 .5)
(A (Critical-Pressure ?substance))))

(/ (* (A (Liquid-Molal-Volume ?substance ?ref-temp))
(- (/ ?atm 6894 .8) (A (Vapor-Pressure ?substance ?column :reference))))

(* (+ ?ref-temp 459 .67) 10 .73)))))))

Figure B .1 : Computing the vapor pressures and the equilibrium ratios of the
substances in a multicomponent mixture for the ordinary distillation case .

198

(defEquation Relative-Volatility-Calculation-from-KValues
((Distillation-Features-at-Reference-Conditions
distillation ?column ?h-k ?l-k ?pressure (M-C-S ?components ?phase ?stage) ?op-prey ?ref-temp)

:Test (null (polar-solvent-in? ?components)))
((Alpha-LK-HK ?l-k ?h-k ?column :reference)

(K-Value ?l-k ?column :reference)
(K-Value ?h-k ?column :reference))

(_ (A (Alpha-LK-HK ?l-k ?h-k ?column :reference))
(/ (A (K-Value ?l-k ?column :reference)) (A (K-Value ?h-k ?column :reference)))))

(defEquation Relative-Volatility-Calculation-from-Vapor-Pressures

((Distillation-Features-at-Reference-Conditions
distillation ?column ?h-k ?l-k ?pressure (M-C-S ?components ?phase ?stage) ?op-prey ?ref-temp)
:Test (null (polar-solvent-in? ?components)))

((Alpha-LK-HK ?l-k ?h-k ?column :reference)
(Vapor-Pressure ?l-k ?column :reference)

(Vapor-Pressure ?h-k ?column :reference))
(_ (A (Alpha-LK-HK ?l-k ?h-k ?column :reference))

(/ (A (Vapor-Pressure ?l-k ?column :reference))
(A (Vapor-Pressure ?h-k ?column :reference)))))

Figure B .2 : Computing the relative volatilities of the substances in a multicom-
ponent mixture for the ordinary distillation case.

use for calculating the selectivity (the Selectivity-Calculation equation) is based
on an infinite dilution of the substances in the mass separating agent (the Weimer
and Prausnitz method from [72]) . This is an approximation since the polar solvent
concentration of the solvent that we are actually using is .9 of the total volume
of the feed to the extractive distillation column 2. In an actual design system we
would expect to have access to data that would allow us to assume non-infinite
dilution for the selectivity parameter . Unfortunately we did not have access to
this data for this work.

The equations refering to the reference conditions for each column are activated
for all the separation alternatives . The set of equations dealing with the actual
operating conditions are active only for the design alternatives that are found to
be promising by the design knowledge.

2According to the (Consider (Polar-Solvent-Concentration ?p-s .9)) statement in Figure 4 .37 .

199

(defEquation Weimer-&-Prausnitz-Method-Activity-Coefficients

((Extractive-Distillation-Features-at-Actual-Conditions
?column ?1-k ?h-k ?p-s ?pres ?temp (M-C-S ?components ?phase ?stage))

(Substance ?s) :Test (and (not (eql ?s ?p-s)) (member ?s ?components)))
((Polar-Solubility ?p-s ?column :operating)

(Energy-of-Interaction ?s ?p-s ?column :operating)
(NonPolar-Solubility ?s ?column :operating)
(NonPolar-Solubility ?p-s ?column :operating)

(Molar-Volume ?s ?column :operating)
(Molar-Volume ?p-s ?column :operating)

(Gas-Constant ?env)
(Infinite-Activity-Coefficient ?s ?p-s ?column :operating))

(_ (A (Infinite-Activity-Coefficient ?s ?p-s ?column :operating))
(exp (/ (+ (* (A (Molar-Volume ?s ?column :operating))

(- (+ (expt (- (A (NonPolar-Solubility ?p-s ?column :operating))
(A (NonPolar-Solubility ?s ?column :operating))) 2)

(expt (A (Polar-Solubility ?p-s ?column :operating)) 2))
(* 2 .0 (A (Energy-of-Interaction ?s ?p-s ?column :operating)))))

(* (* (A (Gas-Constant ?env)) ?temp)
(- (+ (log (/ (A (Molar-Volume ?s ?column :operating))

(A (Molar-Volume ?p-s ?column :operating)))) 1 .0)
(/ (A (Molar-Volume ?s ?column :operating))

(A (Molar-Volume ?p-s ?column :operating))))))
(* (A (Gas-Constant ?env)) ?temp)))))

(defEquation Selectivity-Calculation
((Extractive-Distillation-Features-at-Actual-Conditions ?column ?1-k ?h-k ?p-s ?pres ?temp ?feed))

((Infinite-Activity-Coefficient ?h-k ?p-s ?column :operating)
(Infinite-Activity-Coefficient ?1-k ?p-s ?column :operating)

(Selectivity ?1-k ?h-k ?p-s ?column :operating))
(_ (A (Selectivity ?1-k ?h-k ?p-s ?column :operating))

(/ (A (Infinite-Activity-Coefficient ?1-k ?p-s ?column :operating))
(A (Infinite-Activity-Coefficient ?h-k ?p-s ?column :operating)))))

Figure B .3 : Computing infinite activity coefficients and selectivities for the ex-
tractive distillation case . The parameters for which we have supplied no equations
in this figure (e .g. Energy-of-Interaction, NonPolar-Solubility, etc) are computed

directly from the physical properties table .

200

(defEquation Extractive-Alpha-LK-HK-Calculation-for-Keys-and-Polar-Solvent-in-Ternary
((Extractive-Distillation-Features-at-Actual-Conditions ?column ?l-k ?h-k ?p-s ?pres ?op-temp ?feed)
(Extractive-Ternary-Mixture-Underwood-Rel ?p-s ?eleml ?elem2 ?l-k ?h-k ?feed ?column ?op-temp)

(Substance ?s) :Test (member ?s '(,?eleml ,?elem2)))
((Infinite-Activity-Coefficient ?s ?p-s ?column :operating)

(Vapor-Pressure ?s ?column :operating)
(Vapor-Pressure ?p-s ?column :operating)

(Extractive-Alpha-LK-HK ?s ?p-s ?p-s ?column :operating))
(_ (A (Extractive-Alpha-LK-HK ?s ?p-s ?p-s ?column :operating))

(/ (* (A (Infinite-Activity-Coefficient ?s ?p-s ?column :operating))
(A (Vapor-Pressure ?s ?column :operating)))

(A (Vapor-Pressure ?p-s ?column :operating)))))

(defEquation Extractive-Alpha-LK-HK-Calculation

((Extractive-Distillation-Features-at-Actual-Conditions ?column ?l-k ?h-k ?p-s ?pres ?temp ?feed))
((Extractive-Alpha-LK-HK ?l-k ?h-k ?p-s ?column :operating)

(Selectivity ?l-k ?h-k ?p-s ?column :operating)
(K-Value ?l-k ?column :operating)

(K-Value ?h-k ?column :operating))
(_ (A (Extractive-Alpha-LK-HK ?l-k ?h-k ?p-s ?column :operating))

(* (A (Selectivity ?l-k ?h-k ?p-s ?column :operating))
(/ (A (K-Value ?l-k ?column :operating)) (A (K-Value ?h-k ?column :operating))))))

Figure B .4 : Computing the relative volatilities of the substances in a multicom-
ponent mixture for the extractive distillation case.

B.2 Generating Cost Estimates

All the numerical models described below are activated only for the alternatives
that were identified as promising by the design heuristics.

The method for producing cost estimates is based on the Fenske-Underwood-
Gilliland method for multicomponent distillation columns . Figures B.5, B .6, B.7

and B .8 describe all the equations in the version of the method that we use . The
method starts by calculating the parameter Phi (in equation Ternary-Mixture-
Underwood-Phi-Calculation, Fig . B .5) which is a special-purpose parameter used
for computing the reflux ratio for a given separation using the Underwood equation
[35] . Note that there is a constant relative volatility value used in this equation
for each pair of substances . All of the shortcut design procedures rely on this
assumption [13] . In addition, the sharp separation assumption in the preconditions
of this equation allows us to use the feed flow rate for each substance instead of
the distillate flow rate for that substance . Finally, we assume that the feed to the
current column is always liquid.

The procedure interval-halving-method in the Ternary-Mixture-Underwood-
Phi-Calculation equation implements an interval halving algorithm for finding

201

through iteration the roots of the expression in tis third argument . The numerical
intervals for the solution are indicated by the first (upper bounds) and second
(lower bounds) arguments to the procedure . The fourth argument refers to the
acceptable error margin for the method . The fifth argument is the quantity we
are solving for and, finally, the sixth argument represents the monotonicity of the
expression with respect to the variable we are solving for (+ for increasing and —
for decreasing monotonicity).

The Phi parameter is used in the Min-Reflux-Ratio-l-for-3 and Min-Reflux-
Ratio equations for calculating the minimum reflux ratio (the quantity Min-Reflux-
Ratio) for the column. The quantity Min-Reflux-Ratio-1 is used to hold an inter-
mediate result during this calculation . The Min-Reflux-Ratio-l-for-3 equation
refers to ternary mixtures. There are similar equations for quadratic, quintic
and hexadic mixtures . There is also a similar set of equations covering extrac-
tive distillation for all these types of mixtures . Finally, the Sigma expression in
the Min-Reflux-Ratio-l-for-3 equation refers to the j symbol for addition . The
equation solver recognizes this special symbol and solves the composite equation
accordingly.

The minimum reflux ratio is used in Figure B .7 in the Operating-Reflux-Ratio-1
equation to compute an estimate of the operating reflux ratio (the quantity Reflux-
Ratio) for the column. The particular value of the Operating-Reflux-Estimate used
is 1 .2 as suggested by [13] . This value is supplied to the model as one of the design
assumptions in the problem specification.

The operating reflux ratio is then combined with the average vapor velocity
calculated by the Average-Vapor-Velocity-for-Ordinary-Distillation equation taken
from [49] to give an estimation of the diameter of the column that is going to
achieve a given separation (the Column-Diameter-1 equation taken again from
[49]).

The Min-Number-of-Stages equation in Figure B .7 is used to estimate the min-
imum number of stages needed to achieve a given separation . This equation is the
same with the Gilliland-Fenske equation for binary mixtures . The sharp separa-
tion assumption allows us to use it for multicomponent mixtures . The minimum
number of stages is used in the Column-Height-for-Ordinary-Distillation equation
to compute an estimation for the height of a column that achieves a given separa-
tion.

Finally, the estimates for the column and the diameter of the column are
combined in Figure B .8 to give an estimate for the installation cost for the column
(the equation is taken from [49]) . We assume that the total cost for the column
is equal to the installation cost, therefore we do not take into account the annual
operating cost for each separation unit .

202

The program contains a similar set of equations that estimates all these pa-

rameters for the extractive distillation case .

203

(defEquation Ternary-Mixture-Underwood-Phi-Calculation
((Consider (Possible (Separation distillation (?l-k ?h-k) ?column)))
(Consider (Reference-Component ?comp (M-C-S (?eleml ?elem2 ?elem3) ?phase ?stage)))

(Consider (Liquid-Phase-Feed (M-C-S ?components ?phase ?stage) ?column))
(Actual-Conditions ?column distillation (Pressure ?op-pres) (Temp ?op-temp) (?l-k ?h-k)))

((Phi (?eleml ?elem2 ?elem3) ?column)
(Alpha-LK-HK ?eleml ?comp ?column operating)

(Alpha-LK-HK ?elem2 ?comp ?column operating)
(Alpha-LK-HK ?elem3 ?comp ?column operating)

(Feed-Flow ?eleml (M-C-S ?components ?phase ?stage) ?column)
(Feed-Flow ?elem2 (M-C-S ?components ?phase ?stage) ?column)

(Feed-Flow ?elem3 (M-C-S ?components ?phase ?stage) ?column))
(_ (A (Phi (?eleml ?elem2 ?elem3) ?column))

(:EVALUATE
(interval-halving-method
(3 .6 2 .4 1 .3)

(3 .5 2 .2 1 .001)
(+ (/ (* (A (Alpha-LK-HK ?eleml ?comp ?column operating))

(A (Feed-Flow ?eleml (M-C-S ?components ?phase ?stage) ?column)))
(- (A (Alpha-LK-HK ?eleml ?comp ?column operating))

(A (Phi (?eleml ?elem2 ?elem3) ?column))))
(/ (* (A (Alpha-LK-HK ?elem2 ?comp ?column operating))

(A (Feed-Flow ?elem2 (M-C-S ?components ?phase ?stage) ?column)))
(- (A (Alpha-LK-HK ?elem2 ?comp ?column operating))

(A (Phi (?eleml ?elem2 ?elem3) ?column))))
(/ (* (A (Alpha-LK-HK ?elem3 ?comp ?column operating))

(A (Feed-Flow ?elem3 (M-C-S ?components ?phase ?stage) ?column)))
(- (A (Alpha-LK-HK ?elem3 ?comp ?column operating))

(A (Phi (?eleml ?elem2 ?elem3) ?column)))))
.05

0.0
(A (Phi (?eleml ?elem2 ?elem3) ?column))

-OM

Figure B .5 : Estimating the Phi parameter for ordinary distillation and a ternary
mixture . The program uses similar equations for quadratic, quintic and hexadic

mixtures as well as for the extractive distillation case .

204

(defEquation Min-Reflux-Ratio-l-for-3
((Consider (Possible (Separation distillation (?l-k ?h-k) ?column)))
(Consider (Reference-Component ?comp (M-C-S (?eleml ?elem2 ?elem3) ?phase ?stage)))

(Distillate-Products ?products ?column)
(Substance ?product)

:Test (and (member ?product ?products)
(member ?product '(,?eleml ,?elem2 ,?elem3)))

(Actual-Conditions ?column distillation (Pressure ?op-pres) (Temp ?t) (?l-k ?h-k))
(Column-Feed (M-C-S ?components ?phase ?stage) ?column))

((Distillate-Component-Flow-Rate ?product ?column (?l-k ?h-k))
(Total-Distillate-Flow-Rate ?column (?l-k ?h-k))

(Alpha-LK-HK ?product ?comp ?column :operating)
(Phi ?components ?column)

(Min-Reflux-Ratio-1 (?l-k ?h-k) ?column))
(_ (A (Min-Reflux-Ratio-1 (?l-k ?h-k) ?column))

(Sigma
(/ (* (/ (A (Distillate-Component-Flow-Rate ?product ?column (?l-k ?h-k)))

(A (Total-Distillate-Flow-Rate ?column (?l-k ?h-k))))
(A (Alpha-LK-HK ?product ?comp ?column :operating)))

(- (A (Alpha-LK-HK ?product ?comp ?column :operating))

(A (Phi ?components ?column)))))))

(defEquation Min-Reflux-Ratio
((Consider (Possible (Separation distillation (?l-k ?h-k) ?column)))

(Consider (Reference-Component ?comp (M-C-S ?substances ?phase ?stage)))
(Actual-Conditions ?column distillation (Pressure ?op-pres) (Temp ?t) (?l-k ?h-k))

(Column-Feed (M-C-S ?components ?phase ?stage) ?column))
((Distillate-Component-Flow-Rate ?h-k ?column (?l-k ?h-k))

(Total-Distillate-Flow-Rate ?column (?l-k ?h-k))
(Alpha-LK-HK ?h-k ?comp ?column :operating)

(Phi ?substances ?column)
(Min-Reflux-Ratio (?l-k ?h-k) ?column)

(Min-Reflux-Ratio-1 (?l-k ?h-k) ?column))
(_ (A (Min-Reflux-Ratio (?l-k ?h-k) ?column))

(+ (A (Min-Reflux-Ratio-1 (?l-k ?h-k) ?column))

(/ (* (/ (A (Distillate-Component-Flow-Rate ?h-k ?column (?l-k ?h-k)))
(A (Total-Distillate-Flow-Rate ?column (?l-k ?h-k))))

(A (Alpha-LK-HK ?h-k ?comp ?column :operating)))
(- (A (Alpha-LK-HK ?h-k ?comp ?column :operating))

(A (Phi ?substances ?column)))))))

Figure B .6 : Estimating the minimum reflux ratio for a given separation using

the Underwood method for the ordinary distillation case .

205

(defEquation Min-Number-of-Stages
((Distillation-Features-in-Actual-Conditions
distillation ?column ?h-k ?l-k ?pressure (M-C-S ?components ?phase ?stage) ?op-temp))

((Min-#-of-Stages ?column (?l-k ?h-k))
(Distillate-Component-Flow-Rate ?l-k ?column (?l-k ?h-k))

(Distillate-Component-Flow-Rate ?h-k ?column (?l-k ?h-k))
(Bottom-Component-Flow-Rate ?l-k ?column (?l-k ?h-k))

(Bottom-Component-Flow-Rate ?h-k ?column (?l-k ?h-k))
(Alpha-LK-HK ?l-k ?h-k ?column :operating))

(_ (A (Min-#-of-Stages ?column (?l-k ?h-k)))
(/ (log (* (/ (A (Distillate-Component-Flow-Rate ?l-k ?column (?l-k ?h-k)))

(A (Distillate-Component-Flow-Rate ?h-k ?column (?l-k ?h-k))))
(/ (A (Bottom-Component-Flow-Rate ?h-k ?column (?l-k ?h-k)))

(A (Bottom-Component-Flow-Rate ?l-k ?column (?l-k ?h-k))))))

(log (A (Alpha-LK-HK ?l-k ?h-k ?column :operating))))))

(defEquation Average-Vapor-Velocity-for-Ordinary-Distillation
((Distillation-Features-in-Actual-Conditions

distillation ?column ?h-k ?l-k ?pressure ?feed ?op-temp)
((Average-Vapor-Velocity ?column (?l-k ?h-k)))

(_ (A (Average-Vapor-Velocity ?column (?l-k ?h-k))) (* .761 (sqrt (/ 1 .0 (/ ?pressure 101330 .0))))))

(defEquation Operating-Reflux-Ratio-1
((Distillation-Features-in-Actual-Conditions

distillation ?column ?h-k ?l-k ?pressure ?feed ?op-temp)
(Consider (Operating-Reflux-Estimate ?val)))

((Reflux-Ratio (?l-k ?h-k) ?column)
(Min-Reflux-Ratio (?l-k ?h-k) ?column))

(_ (A (Reflux-Ratio (?l-k ?h-k) ?column))
(* ?val (A (Min-Reflux-Ratio (?l-k ?h-k) ?column)))))

(defEquation Column-Diameter-1
((Distillation-Features-in-Actual-Conditions

distillation ?column ?h-k ?l-k ?pressure ?feed ?op-temp)
(First-Column ?system ?column)

(Reference-Conditions ?column (Pressure ?ref-prey) (Temp ?ref-temp)))
((Column-Diameter ?column distillation (?l-k ?h-k))

(Average-Vapor-Velocity ?column (?l-k ?h-k))
(Reflux-Ratio (?l-k ?h-k) ?column)

(Total-Feed-Flow ?feed ?column)
(TBoil ?l-k ?system :reference)
(Total-Distillate-Flow-Rate ?column (?l-k ?h-k)))

(_ (A (Column-Diameter ?column distillation (?l-k ?h-k)))
(sqrt (* (/ 4 .0

(* pi (A (Average-Vapor-Velocity ?column (?l-k ?h-k)))))
(A (Total-Distillate-Flow-Rate ?column (?l-k ?h-k)))

(+ 1 .0 (A (Reflux-Ratio (?l-k ?h-k) ?column)))
22 .2

;; APPROX: Because there is a large concentration of only one desired product and an almost atmospheric operating pressure
;; it is assumed that the dew point of the vapors at the distillate is nearly equal to the boiling point of the desired product.

(/ (+ (A (TBoil ?1-k ?system :reference)) 273 .15)

	

; ; ; from oC to oK
273 .0)

(/ 1 .0 (/ ?pressure 101330 .0)

	

; ; ; from Pa to atm
(/ 1 .0 3600 .0))))))

Figure B .7 : Estimating the required diameter for a column that achieve a given
separation for the ordinary distillation case .

206

(defEquation Column-Height-for-Ordinary-Distillation
((Distillation-Features-in-Actual-Conditions distillation ?column ?h-k ?1-k ?pressure

?feed ?op-temp)
(Consider Stage-Efficiency ?efficiency))

((Min-#-of-Stages ?column (?l-k ?h-k))
(Column-Height ?column distillation (?l-k ?h-k)))

(_ (A (Column-Height ?column distillation (?l-k ?h-k)))
(+ (* .61 (/ (A (Min-#-of-Stages ?column (?l-k ?h-k))) ?efficiency)) 4 .27)))

(defEquation Min-Column-Cost-for-Ordinary-Distillation
((Distillation-Features-in-Actual-Conditions distillation ?column ?h-k ?1-k ?pressure

?feed ?op-temp))
((Column-Height ?column distillation (?l-k ?h-k))

(Column-Diameter ?column distillation (?l-k ?h-k))
(Installation-Cost ?column (?l-k ?h-k)))

(_ (A (Installation-Cost ?column (?l-k ?h-k)))
(* 43 .4 7620 .0 (A (Column-Diameter ?column distillation (?l-k ?h-k)))

(expt (/ (A (Column-Height ?column distillation (?l-k ?h-k))) 12 .2) .68))))

Figure B .8 : Computing the height and the final cost estimate for the current
column in the ordinary distillation case .

APPENDIX C

Configuration Synthesis Rules in

OUZO

207

208

(ConfigSynthRule Determine-Feed-Flows-for-Distillate-Feed
((Missing-Products ?desired-products ?prev-feed (?l-k ?h-k) ?column)
(Distillate-Products ?distillate-products ?column)

:Test (subsetp ?desired-products ?distillate-products)
(Distillate-Feed From ?column To ?system)

(Separation-System-Feed ?feed ?system)
(Value-of (A (Distillate-Component-Flow-Rate ?product ?column (?l-k ?h-k))) ?d ?d-eqn)

:Test (member ?product ?desired-products))
(unless (member '(assign (A (Feed-Flow ,?product ,?feed ,?system)) ,?d) *problem* :Test #'equal)

(assign-in-problem '(A (Feed-Flow ,?product ,?feed ,?system)) ?d)))

IF ?desired-products have not been recovered yet
AND ?desired-products are a subset of the distillate products for ?column

AND separation system ?system feeds from the distillate products for ?column
AND ?product is one of the distillate products for ?column

for which we know its distillate flow rate
THEN the feed flow for ?product in ?column will be equal to the distillate flow rate for ?product.

Figure C .1 : Assert the feed flow rates for a separation system that feeds from the
distillate products of the current column . There is a similar rule for the bottom
products for the current column . A pair of similar rules are also used for the
distillate and bottom products for the extractive distillation case.

C .1 Overview

Configuration synthesis rules contain methods for changing the current design
description and monitoring the state of design . Figures C .2, C .3, C .6, C .7, C .5,

C .9, C .10, C .11, C .1, C .4, C .12, C .13, C .14 and C .15 describe these rules in detail.
Each figure contains the actual encoding of the rule along with a summary of its
content (in English).

The majority of these rules encode procedural knowledge on how to update the
current flowsheet . Consequently, they have a strong procedural flavor as indicated
by the frequent use of LISP code in their body . Most of this code is hidden behind
procedure calls . Apart form the primitives described in section 5 .1 .2 there are
three major procedures used in the bodies of these rules.

The procedure delete-assertion removes an assertion that unifies with its ar-
gument from *scenario*. Assign-in-problem is used to assign numerical values to
parameters in the design description . The global variable *problem * holds all these
assignments . Finally, clear-eqn-table removes all the equations from the list of ac-
tive equations (*active-egns *) that refer to the column or the separation system
specified in its argument .

209

(ConfigSynthRule Establish-Equilibrium-Temperature

((Value-of (A (Equilibrium-Temperature ?component ?pressure)) ?temp ?eqn) :Var ?fl)
(unless (find-if #'(lambda (x)

(and (eql (car (second x)) 'Value-of)
(equal (second (second x)) (second (car ?fl)))))

scenario)
(assert-in-scenario (car ?fl))))

(ConfigSynthRule Establish-K-Ideal-Temperatures
((Value-of (A (K-Ideal-Reference-Temperature ?component)) ?temp ?eqn) :Var ?fl)

(unless (find-if #'(lambda (x)
(and (eql (car (second x)) 'Value-of)

(equal (second (second x)) (second (car ?fl)))))
scenario)

(assert-in-scenario (car ?fl))))

(ConfigSynthRule Establish-Boiling-Points
((Value-of (A (TBoil ?substance ?system :reference)) ?boil-point ?eqn) :Var ?fl)

(unless
(find-if #'(lambda (x)

(and (eql (car (second x)) 'Value-of)
(equal (second (second x)) (second (car ?fl)))))

scenario)
(assert-in-scenario (car ?fl))))

For each substance establish its boiling point and the reference
temperature under which the calculation of the equilibrium ration is based.

(ConfigSynthRule Establish-System-Reference-Temperature

((Value-of (A (Reference-Temperature ?system)) ?ref-temp ?eqn) :Var ?fl)
(unless (find-if #'(lambda (x)

(and (eql (car (second x)) 'Value-of)
(equal (second (second x)) (second (car ?fl)))))

scenario)
(assert-in-scenario (car ?fl))))

Insert the reference temperature for the current separation system in the design description.

Figure C .2 : Insert physical properties for each substance and separation system

in the design description.

210

(ConfigSynthRule Establish-K-Value-Relations

((Value-of
(Value-of

(A
(A

(TBoil
(TBoil

?substancel
?substance2

?system :reference))

	

?boil-1 ?eqn-1)
?system :reference))

	

?boil-2 ?eqn-2) :Test

	

(<

	

?boil-1

	

?boil-2))

(let

	

((nl
(n2

'(A
'(A

(TBoil
(TBoil

,?substance2
,?substancel

,?system

	

:reference)))
,?system

	

:reference))))

(unless (or (member (assertq

	

(greater-than

	

,nl

	

,n2))

	

scenario

	

:test #'equal)
(member (assertq

	

(less-than

	

,n2

	

,nl))

	

scenario

	

:test

	

#'equal))

(if (equal nl (car (qpe : :find-qrel nl n2)))
(pushnew '(assertq (greater-than ,nl ,n2)) *scenario* :test #'equal)

(pushnew '(assertq (less-than ,n2 ,nl)) *scenario* :test #'equal)))))

IF ?substancel has lower boiling than ?substance2

THEN assert the relation between the boiling points in the design description.

Figure C .3: Include the relations between the boiling points of substances in the

design description.

(ConfigSynthRule Determine-Polar-Solvent-Feed-Flow
((Consider (Possible (Separation extractive-distillation (?l-k ?h-k) ?column)))

(Bottom-Feed From ?column To ?system)
(Separation-System-Feed ?feed ?system)
(Polar-Solvent ?p-s)

(Attracts ?p-s ?h-k)
(Consider (Polar-Solvent-Concentration ?p-s ?c))

(Value-of (A (Total-Feed-Flow ?prev-feed ?column)) ?f ?f-eqn))
(unless (or (member

'(assign (A (Feed-Flow ,?p-s ,?feed ,?system)) ,(* ?c ?f)) *problem* :Test #'equal)
(exists '(Value-of (A (Feed-Flow ,?p-s ?f ,?system)) . ?y)))

(assign-in-problem (A (Feed-Flow ,?p-s ,?feed ,?system)) (* ?c ?f))))

IF extractive distillation takes place in ?column
AND separation system ?system feeds from the bottom products for ?column

AND ?p-s is the polar solvent used in ?column
AND the total feed flow for ?column is ?f

AND the desired concentration for ?p-s is ?c
THEN the feed flow for ?p-s in ?system will be equal to the product of ?c and ?f.

Figure C .4 : Assert the feed flow rates for the polar solvent in a separation system

that feeds from the bottom products of the current column.

211

(ConfigSynthRule Update-Num-of-Stages
((Steady-State-Column-Design-Features
?column ?c-stage ?c-phase ?r-stage ?r-phase ?distillate-flow

?bproduct-flow ?substancel ?substance2)
(Consider (Partial-Condenser ?column))

(Consider (Partial-Reboiler ?column))
(Condenser-Stage ?condenser-stage)

(Reboiler-Stage ?reboiler-stage)
(Value-of (A (Num-of-Stages ?column)) ?num-of-stages ?eqn))

(let ((Cur-Stage nil)
(stage-list '(,?reboiler-stage ,?condenser-stage))

(prev-num-of-stages (second (car (find-if #'(lambda (x) (in? x))
(exists '(Num-of-Stages . ?x)))))))

(unless (and prev-num-of-stages (= prev-num-of-stages (truncate ?num-of-stages)))

(assert-in-scenario '(Num-of-Stages ,(truncate ?num-of-stages)))
(dotimes (i (- (truncate ?num-of-stages) 2)) ; ; 2 because the reboiler and condenser are already there

(setq Cur-Stage (gentemp "stage"))
(assert-in-scenario (not (Feed-Stage ,cur-stage))))

(assert-in-scenario (Stage ,Cur-Stage))
(assert-in-scenario

(Contained-Binary-Liquid-Mixture (2-C-S (,?substancel ,?substance2) liquid ,Cur-Stage)))
(assert-in-scenario

(greater-than (A (Amount-of (2-C-S (,?substancel ,?substance2) liquid ,Cur-Stage))) ZERO))
(assert-in-scenario

'(Contained-Binary-Gas-Mixture (2-C-S (,?substancel ,?substance2) gas ,Cur-Stage)))
(assert-in-scenario

(greater-than (A (Amount-of (2-C-S (,?substancel ,?substance2) gas ,Cur-Stage))) ZERO))
(assert-in-scenario (Gas-Path ,Cur-Stage ,?condenser-stage))

(assert-in-scenario (Liquid-Path ,?condenser-stage ,Cur-Stage))
(assert-in-scenario

(Consider (Gas-Flow-Between (2-C-S (,?substancel ,?substance2) gas ,Cur-Stage)
(2-C-S (,?substancel ,?substance2) gas ,?condenser-stage))))

(assert-in-scenario

'(Consider (Liquid-Flow-Between (2-C-S (,?substancel ,?substance2) liquid ,?condenser-stage)
(2-C-S (,?substancel ,?substance2) liquid ,Cur-Stage))))

(assert-in-scenario '(Gas-Path ,?reboiler-stage ,Cur-Stage))
(assert-in-scenario '(Liquid-Path ,Cur-Stage ,?reboiler-stage))

(assert-in-scenario
'(Consider (Liquid-Flow-Between (2-C-S (,?substancel ,?substance2) liquid ,Cur-Stage)

(2-C-S (,?substancel ,?substance2) liquid ,?reboiler-stage))))
(assert-in-scenario
'(Consider (Gas-Flow-Between (2-C-S (,?substancel ,?substance2) gas ,?reboiler-stage)

(2-C-S (,?substancel ,?substance2) gas ,Cur-Stage))))
(delete-assertion (find-fact-in-list 'Distillation-Column-Stages *scenario*))

(assert-in-scenario
'(Distillation-Column-Stages ,(second (find-fact-in-list 'Distillation-Column *scenario*))

,stage-list)))))

IF the steady-state design features for the column are active
AND the column has a partial condenser and a partial reboiler

AND the particular stages for these units have been defined
AND the value for the number of stages in the column is ?num-of-stages

AND the current design description does not correspond to a column with ?num-of-stages stages
THEN create a new design description for a column with a partial condenser, a partial reboiler and

?num-of-stages stages.

Figure C .5 : Update the number of stages in a binary column .

212

(ConfigSynthRule Initialize-Separation-System

((Separation-System ?system)
(Consider (Sharp-Separation-Model-For ?system))
(Separation-System-Feed (M-C-S ?components ?phase ?feed-stage) ?system)

(Value-of (A (Feed-Pressure (M-C-S ?components ?phase ?feed-stage) ?system)) ?pressure ?eqn)
(Value-of (A (Feed-Temperature (M-C-S ?components ?phase ?feed-stage) ?system))

?temperature ?eqn-1))
(unless (exists '(First-Column ,?system ?column))

(let ((new-column (gentemp "COLUMN")))
(assert-in-scenario (Distillation-Column ,new-column))

(assert-in-scenario (Consider (Sharp-Separation-Model-For ,new-column)))
(assert-in-scenario (Column-Feed (M-C-S ,?components ,?phase ,?feed-stage) ,new-column))

(assert-in-scenario
'(Consider (Liquid-Phase-Feed (M-C-S ,?components ,?phase ,?feed-stage) ,new-column)))

(assert-in-scenario (First-Column ,?system ,new-column))

(assert-in-scenario
'(Value-of (A (Feed-Pressure (M-C-S ,?components ,?phase ,?feed-stage) ,new-column))

,?pressure :CS-Rule))
(assert-in-scenario

'(Value-of (A (Feed-Temperature (M-C-S ,?components ,?phase ,?feed-stage) ,new-column))
,?temperature :CS-Rule))

(assert '(First-Column ,?system ,new-column))
(assign-in-problem

'(A (Feed-Pressure (M-C-S ,?components ,?phase ,?feed-stage) ,new-column)) ?pressure)
(assign-in-problem

'(A (Feed-Temperature (M-C-S ,?components ,?phase ,?feed-stage) ,new-column)) ?temperature)
(dolist (examine (exists '(Examine ?x))) (delete-assertion (car examine)))

(assert-in-scenario (Examine ,new-column))
(assume-in-scenario (Focus ,new-column)))))

IF there exists a separation system ?system

AND we assume sharp separators for ?system
AND we know the feed mixture for ?system
AND we know the operating conditions for ?system

THEN if there are no columns defined for ?system
then instantiate the description for its first column new-column.

New-column will have the same feed and operating conditions as ?system.
We assume a liquid feed and a sharp separation approximation for new-column.

Finally, the Examine predicate directs the qualitative analysis to focus on new-column
and the Focuspredicate directs the heuristic analysis to evaluate

alternatives for new-column.

(ConfigSynthRule Column-System-Desired-Products

((Desired-Products ?products ?system)
(First-Column ?system ?column) :Test (null (exists '(Desired-Products ,?products ,?column))))

(assert-in-scenario '(Desired-Products ,?products ,?column)))

IF we know the desired products for separation system ?system
AND the desired products for the first column ?column in ?system have not been determined

THEN the desired products for ?column will be the same with the ones for ?system.

Figure C .6 : Create the description for a new column in a separation system .

213

(ConfigSynthRule Column-Products

((not (Consider (Design-Complete ?system ?tcost)))
(First-Column ?system ?column)

(Column-Feed (M-C-S ?components ?phase ?stage) ?column)
(Value-of (A (Reference-Pressure ?system)) ?ref-prey ?pres-eqn)

(Consider (Possible (Separation distillation (?l-k ?h-k) ?column)))
:Test (null (exists '(Destroy (Connections-to ,?column)))))

(unless (exists '(Column-Products ?x ?y ,?column))

(let ((top-products nil)
(bottom-products nil))

(mapc #'(lambda (x)
(when (and (less-volatile? ?l-k x ?ref-prey) (not (eql x ?h-k)))

(push x top-products)))
?components)

(mapc #'(lambda (x)
(when (and (less-volatile? x ?h-k ?ref-prey) (not (eql x ?1-k)))

(push x bottom-products)))
?components)

(pushnew
'(assertq (Column-Products ,top-products (,?l-k ,?h-k) ,?column)) *scenario* :test #'equal)

(assert (Column-Products ,top-products (,?l-k ,?h-k) ,?column))
(assert (Distillate-Products ,top-products ,?column))

(pushnew '(assertq (Distillate-Products ,top-products ,?column)) *scenario* :test #'equal)
(pushnew
'(assertq (Column-Products ,bottom-products (,?l-k ,?h-k) ,?column)) *scenario* :test #'equal)

(assert (Column-Products ,bottom-products (,?l-k ,?h-k) ,?column))
(assert (Bottom-Products ,bottom-products ,?column))

(pushnew '(assertq (Bottom-Products ,bottom-products ,?column)) *scenario* :Test #'equal))))

IF a solution to the design problem for separation system ?system has not been found
AND and we know the feed and the reference pressure for the current column ?column

AND the heuristics have decided on an ordinary distillation process for ?column
AND ?column is not scheduled for removal by the evolutionary heuristics

THEN assert in the design description the distillate and bottom products for ?column.

Figure C .7 : Include the products of the current column in the flowsheet for the
ordinary distillation case . There is a similar rule for the extractive distillation

case .

214

(ConfigSynthRule Describe-Product-Splits

((Distillate-Products ?d-products ?column)
(Bottom-Products ?b-products ?column)

(Desired-Products ?desired-prods ?column)
:Test (and (intersection ?desired-prods ?d-products) (intersection ?desired-prods ?b-products))

(First-Column ?prev-system ?column)
(Value-of (A (Product-Specification ?desired-prods ?prev-system)) ?p-r ?eq-1)

(Connects-to ?column ?system)
(Separation-System-Feed (M-C-S ?components ?phase ?stage) ?system))

(unless (or (exists '(Desired-Products ,(intersection ?desired-prods ?d-products) ,?system))
(exists '(Desired-Products ,(intersection ?desired-prods ?b-products) ,?system)))

(assert-in-scenario '(Blend ,?d-products ,?b-products ,?desired-prods ,?system))

(assert '(Blend ,?d-products ,?b-products ,?desired-prods ,?system))
(unless (_ (length ?d-products) 1)

(let ((desired-products (intersection ?desired-prods ?d-products))
(ff nil))

(when (subsetp desired-products ?components)
(assert-in-scenario '(Desired-Products ,desired-products ,?system))

(dolist (comp desired-products)
(setq ff (value-of-param '(A (Feed-Flow ,comp ?x ,?column))))

(assign-in-problem
'(A (Feed-Flow ,comp (M-C-S ,?components ,?phase ,?stage) ,?system)) ff))

(assign-in-problem '(A (Product-Specification ,desired-products ,?system)) ?p-r)
(assert '(Desired-Products ,desired-products ,?system)))))

(unless (_ (length ?b-products) 1)
(let ((desired-products (intersection ?desired-prods ?b-products))

(ff nil))
(when (subsetp desired-products ?components)

(assert-in-scenario '(Desired-Products ,desired-products ,?system))
(dolist (comp desired-products)

(setq ff (value-of-param '(A (Feed-Flow ,comp ?x ,?column))))

(assign-in-problem
'(A (Feed-Flow ,comp (M-C-S ,?components ,?phase ,?stage) ,?system)) ff))

(assign-in-problem '(A (Product-Specification ,desired-products ,?system)) ?p-r)
(assert '(Desired-Products ,desired-products ,?system)))))))

IF some of the desired products (?desired-prods) for ?column have been split between

the distillate and the bottom products
AND ?column is part of separation system ?prev-system
AND the desired recovery for ?desired-prods in ?prev-system is ?p-r
AND ?column connects to separation system ?system for which we know its feed

THEN assert in the design description that the split products should blend at some point

and include in the description for ?system the product specifications and feed flows
for the components of the split products that we want to recover.

Figure C .8 : Detect product splits .

215

(ConfigSynthRule Define-New-Separation-System-For-Distillate-Products
((Missing-Products ?desired-products ?feed (?l-k ?h-k) ?column)

(Distillate-Products ?distillate-products ?column)
:Test (subsetp ?desired-products ?distillate-products)
(First-Column ?prev-system ?column)

(Value-of (A (Reference-Pressure ?prev-system)) ?r-prey ?r-pres-eqn))
(Value-of (A (Reference-Temperature ?prev-system)) ?r-temp ?r-temp-eqn))

(unless (exists '(Distillate-Feed From ,?column . ?x))
(let ((?system (gentemp "SYSTEM")))

(assert '(Distillate-Feed From ,?column To ,?system))
(assert-in-scenario (Separation-System ,?system))

(assert-in-scenario '(Distillate-Feed From ,?column To ,?system))
(assert-in-scenario (Connects-to ,?column ,?system))

(assert-in-scenario (Consider (Sharp-Separation-Model-For ,?system)))
(assert-in-scenario '(Value-of (A (Reference-Temperature ,?system)) ,?r-temp ,?r-temp-eqn))

(assert-in-scenario '(Value-of (A (Reference-Pressure ,?system)) ,?r-prey ,?r-pres-eqn))
(assert '(Connects-to ,?column ,?system))

(assert '(Separation-System ,?system))
(assert '(Distillate-Feed From ,?column To ,?system))

(assert '(Consider (Sharp-Separation-Model-For ,?system)))
(let ((prey-focus (exists '(Focus . ?x))))
(when prey-focus (delete-assumption (caar prev-focus)))))))

IF ?desired-products have not been recovered yet

AND ?desired-products are a subset of the distillate products for ?column
AND we know the reference conditions for the separation system for which ?column is part of

THEN create the description for a new separation system that feeds from the distillate products
for ?column.

Figure C .9 : Instantiate a new separation system to isolate the desired products

that are included in the distillate for the current column. There is a similar rule

for the bottom products of a column .

216

(ConfigSynthRule Determine-New-Products-For-Distillate-Feed

((Missing-Products ?desired-products ?feed (?l-k ?h-k) ?column)
(Distillate-Feed From ?column To ?system)

(Distillate-Products ?distillate-products ?column)
:Test (subsetp ?desired-products ?distillate-products)

(First-Column ?prev-system ?column)
(Connects-to ?column ?system)

(Value-of (A (Product-Specification ?desired-products ?prev-system)) ?r ?r-eqn))
(unless (member '(assertq (Desired-Products ,?desired-products ,?system)) *scenario* :Test #'equal)

(assert-in-scenario '(Desired-Products ,?desired-products ,?system))
(assert '(Desired-Products ,?desired-products ,?system))

(assign-in-problem '(A (Product-Specification ,?desired-products ,?system)) ?r)))

IF ?desired-products have not been recovered yet
AND separation system ?system feeds from the distillate products for ?column

AND ?desired-products are a subset of the distillate products for ?column
AND we know the desired recoveries for ?desired-products

THEN indicate in the design description that ?desired-products are among the

desired products for ?system and set their desired recoveries equal to those
for separation system ?prev-system which contains ?column.

Figure C .10 : Assert the desired products and their recoveries for a separation

system that feeds from the distillate products of the current column . A similar

rule is used for the bottom products .

217

(ConfigSynthRule Determine-New-Feed-Properties-For-Distillate-Feed

((Distillate-Feed From ?column To ?system)
(Distillate-Products ?new-feed ?column)
(Value-of (A (Feed-Pressure ?initial-feed ?column)) ?pressure ?f-pres-eqn)

(Value-of (A (Feed-Temperature ?initial-feed ?column)) ?temp ?f-temp-eqn))
(unless (exists '(Separation-System-Feed ?x ,?system))

(let ((?feed-stage (gentemp "FEED-STAGE")))
(assert '(Separation-System-Feed (M-C-S ,?new-feed liquid ,?feed-stage) ,?system))

(assert '(Multicomponent-Mixture (M-C-S ,?new-feed liquid ,?feed-stage)))
(assert-in-scenario '(Multicomponent-Mixture (M-C-S ,?new-feed liquid ,?feed-stage)))

(assert-in-scenario '(Separation-System-Feed (M-C-S ,?new-feed liquid ,?feed-stage) ,?system))
(assert

(Value-of
(A (Feed-Pressure (M-C-S ,?new-feed liquid ,?feed-stage) ,?system)) ,?pressure :CSR))

(assert
(Value-of (A (Feed-Temperature (M-C-S ,?new-feed liquid ,?feed-stage) ,?system))

, ? temp :CSR))
(assign-in-problem

(A (Feed-Pressure (M-C-S ,?new-feed liquid ,?feed-stage) ,?system)) ?pressure)
(assign-in-problem
(A (Feed-Temperature (M-C-S ,?new-feed liquid ,?feed-stage) ,?system)) ?temp))))

IF separation system ?system feeds from the distillate products for ?column

AND ?new-feed are the distillate products for ?column
AND we know the actual conditions for ?column

THEN assert in the design description all the relevant properties for ?new-feed.

Figure C .11 : Assert the feed properties for a separation system that feeds from

the distillate products of the current column . There is a similar rule for the bottom

products of the current column .

218

(ConfigSynthRule Design-Complete?

((Separation-System ?system)
:Test (null (exists '(Connects-To ?column ,?system)))

(Separation-System ?recent-system)
(First-Column ?recent-system ?recent-column)

(Column-Products ?products ?keys ?recent-column)
(Distillate-Products ?d-products ?recent-column)

(Bottom-Products ?b-products ?recent-column)
(Value-of (A (Installation-Cost ?column)) . ?z))

(unless (or (member '(assume! '(Consider (Design-Complete ,?system ?x))) *scenario* :Test #'equal)
(exists '(Consider (Exchange . ?x)))

(exists '(Connects-to ,?recent-column ?x)))
(let ((Desired-Products

(remove-duplicates
(mapcar #'(lambda (x) (sort (copy-list (second (car x))) #'< :key #'sxhash))

(exists '(Desired-Products . ?x))) :Test #'equal))
(Distil-Products
(mapcar #'(lambda (x) (sort (copy-list (second (car x))) #'< :key #'sxhash))

(exists '(Distillate-Products . ?x))))
(Bottom-Products

(mapcar #'(lambda (x) (sort (copy-list (second (car x))) #'< :key #'sxhash))
(exists '(Bottom-Products . ?x))))

(Blends (mapcar #'(lambda (x) (sort (fourth (car x)) #'< :key #'sxhash))
(exists '(Blend . ?x)))))

(when (every #'(lambda (x) (or (member x Distil-Products :Test #'equal)
(member x Bottom-Products :Test #'equal)

(member x Blends :Test #'equal)))
Desired-Products)

(cover-specifications)
(assume-in-scenario '(Consider (Design-Complete ,?system ,(compute-cost))))))))

IF ?system is the separation system in the initial design specifications
AND ?recent-system is the current separation system

AND ?column is the current column
AND the products and the cost for ?column have been determined

THEN if all the desired products in the initial design specification have been recovered
then indicate that a complete design for ?system has been found.

Figure C .12 : Determine whether we have a complete design .

219

(ConfigSynthRule Evolve-Structure-1
((Destroy (Connections-to ?column))

(Connects-to ?column ?system)
(First-Column ?system ?next-column)

(Column-Feed ?feed ?next-column))
(progn

(setq *scenario*

(delete-if #'(lambda (x) (or (occurs-in? ?system x)
(occurs-in? ?next-column x)

(occurs-in? ?feed x)))
scenario))

(clear-eqn-table ?system)
(clear-eqn-table ?next-column)

(setq *assigned-parameters*
(delete-if #'(lambda (x)

(or (occurs-in? ?system (Parameter-Form x))
(occurs-in? ?next-column (Parameter-Form x))))

assigned-parameters))
(setq *problem*

(delete-if #'(lambda (x)
(or (occurs-in? ?system x) (occurs-in? ?next-column x)))

problem))
(assert '(Destroy (Connections-to ,?next-column)))))

IF the evolutionary heuristics have indicated that all the connections to ?column must be removed
AND ?column is connected to separation system ?system

AND ?nett-column is part of ?system
AND the feed for ?nett-column is ?feed

THEN remove from the current design description all the statements and the equations
for ?system, ?nett-column and ?feed and indicate that all the connections

to ?nett-column should be removed.

(ConfigSynthRule Evolve-Structure-2
((Destroy (Connections-to ?column))

:Test (null (exists '(Connects-to ,?column ?next-system))))
(progn

(let ((new-focus-env (create-environment *Focus-Assumptions*)))
(dolist (quant sg : :*quantities*)
(unless (implied-by? '((Quantity ,quant) . :True) new-focus-env)

(setq *problem*
(delete-if #'(lambda (x) (equal (second x) '(A ,quant))) *problem*))

(setq *assigned-parameters*
(delete-if #'(lambda (x) (equal (Parameter-Form x) quant))

assigned-parameters)))))))

IF the evolutionary heuristics have indicated that all the connections to ?column must be removed
AND ?column is not connected to anything else

THEN update the ATMS focus environment to reflect the new flowsheet and remove all the quantities
and their values that are not implied by the current focus.

Figure C .13: Evolve the current flowsheet .

220

(ConfigSynthRule Evolve-Seader-&-Westerberg-Scenario
((Consider

	

(Evolutionary-Strategy-For ?init-system Seader-&-Westerberg))

(Consider
(Exchange

	

(Consider

	

(Possible

	

(Separation ?methodl

	

(?lk-1

	

?hk-1)

	

?coil)))

With

	

(Consider

	

(Possible

	

(Separation ?method2

	

(?lk-2 ?hk-2)

	

?colt)))))
(First-Column ?system ?coil)

(Column-Products ?d-prods ?keys ?coil) :Var ?fl
(Distillate-Products

	

?d-prods

	

?coil)

	

:Var ?f2

(Column-Products ?b-prods

	

?keys ?coil)

	

:Var ?f3
(Bottom-Products

	

?b-prods

	

?coil)

	

:Var ?f4)

(progn

	

(clear-eqn-table ?coil)
(assert-in-scenario

	

'(Examine

	

,?coll))

(assert

	

'(Destroy

	

(Connections-to

	

,?coll)))
(delete-assertion (car ?fl))

(delete-assertion (car ?f2))
(delete-assertion (car ?f3))

(delete-assertion (car ?f4))
(delete-assertion '(Consider

	

(Possible

	

(Separation

	

,?methodl

	

(,?lk-1

	

,?hk-1)

	

,?coll))))

(assert-in-scenario '(Consider (Possible (Separation ,?method2 (,?lk-2 ,?hk-2) ,?coll))))
(let ((prey-column (second (caar (exists '(Connects-to ?c ,?system))))))

(update-design ?coil ?method2 ?lk-2 ?hk-2 prey-column))))

IF the evolutionary heuristics in the Seader & Westerberg method have indicated that

the separation in ?co12 should take place in ?coll

THEN update the design description to reflect the proposed change.

Figure C .14: Evolve the current flowsheet according to the Seader Westerberg

strategy.

221

(ConfigSynthRule Establish-Separation-Task

((Examine ?column)
(Consider (Possible (Separation ?method ?keys ?column))) :Var ?fl)

((establish-separation-method ?method ?keys ?column)))

IF ?column is the current column
AND a separation task has been chosen for ?column

THEN update the design description to reflect this design decision

(ConfigSynthRule Evolve-Design
((Consider (Design-Complete ?system ?tcost)) :Var ?fO

(Establish-New-Product-Set ?alt-product-set ?products ?recovery ?system)
(First-Column ?system ?column)

(Evolve-Design-From ?column))
((establish-new-product-set ?alt-product-set ?products ?recovery ?system)

(evolve-design-from-scratch ?column ?fO)))

IF a design satisfying the problem specifications has been found

AND the evolutionary heuristics have suggested to split one of the original product sets
AND ?column is the first column in the completed design

AND the evolutionary heuristics have suggested to evolve the current design
starting from ?column

THEN establish a new product set for design evolution and start modfying
the design starting from ?column

(ConfigSynthRule Evolve-Design-2

((Evolve-Design-From ?column ?sep-task ?sep-system))
((evolve-design-from ?column ?sep-task ?sep-system)))

Evolve the current design starting from column ?column in separation system ?sep-system

with current separation task ?sep-task.

(ConfigSynthRule Schedule-Alternative

((Schedule-Alternative ?sep-task ?sep-system))
((schedule-alternative ?sep-task ?sep-system)))

Schedule alternative ?sep-task in ?sep-system.

Figure C .15 : Implement design decisions and evolve the current design .

APPENDIX D

Creating Representations for

Heuristics in OUZO

222

223

This section provides an example of the method we followed for developing the
representations for the heuristic rules in OUZO.

Let us consider the following general heuristic for separation systems:

`Remove a mass separating agent from one of the products in another,
subsequent separation process . '

Before we attempt to write the representation for this rule we have to under-
stand what types of actions it supports . Some background on the properties of
mass separating agents explains why this a rejection heuristic . In particular', a
mass separating agent (MSA) is an extra component that is added to a mixture
in order to facilitate the separation of a mixture by extractive distillation . This
agent modifies the equilibrium relations between the vapor and the liquid phases
in the mixture in a direction that favors the desired separation. However, an
MSA is an extra component that is not mentioned as a desired product in the
design specifications, therefore at some point in the design we have to isolate this
component from the mixture . For this reason, we always choose a MSA that is
much less volatile than the original species, so that the separation of the MSA
from the rest of the mixture will always be an easy and cheap separation . This
means that if we have a column that accepts as input a mixture containing an
MSA, a separation scheme with the MSA as the heavy key will be better than any
other separation scheme (so we can reject the rest of them), except for the case
in which the input mixture contains more than one MSAs (the current column
feeds from two or more extractive distillation columns) . In the later case we have
to use the rest of the heuristics to choose between the separation schemes that
involve the MSAs . Rejection of design alternatives is possible in OUZO with the
reject primitive, therefore we use this primitive in the action part of the rule.

In order to write the conditions of the rule we have to determine how the the
feed to the current column relates to the products of the previous columns in
the sequence. This relation (for the case of a distillate feed) is described by the
configuration synthesis rules in Figures C .9, C.11 and C .6 according to which, if
the products of a separation task do not correspond to any of the desired products
in the design specifications, they are used as inputs to a subsequent column in the
separation sequence . Therefore, in order to represent this rule in OUZO we have to
find the terms that represent the input to a column, along with the existence of a
mass separating agent in the products of a previous column in the sequence . The
qualitative model provides two predicates for this . The (Column-Feed ?mixture

'See chapter 3 .

224

(defHeuristic Reject-non-MSA-Removal-Splits
Class Remove-MSA-From-Products-in-Subsequent-Operation
Conditions ((Mass-Separating-Agent ?p-s ?prev-column)

(Connects-to ?prev-column ?system)
(First-Column ?system ?column)

(Column-Feed (M-C-S ?components ?phase ?stage) ?column)
:Test (member ?p-s ?components)

(Possible (Separation ?method (?l-k ?h-k) ?column)) :Var ?fl
:Test (not (polar-solvent ?h-k)))

Action ((reject ?fl)))

IF a mass separating agent was used in some previous column
AND the previous column is connected to a separation system
AND the separation system is connected to the current column

AND the current column takes a multicomponent mixture as feed
AND the mass separating agent is one of the components of the feed

AND a possible separation scheme is proposed for the current column
AND the heavy key is not a polar solvent in this scheme

THEN reject this separation scheme.

Figure D .1 : Remove a MSA from one of the products in another, subsequent
separation process.

?column predicate represents the input mixture to a column, while the (Mass-
Separating-Agent ?msa ?column form introduced by the Distillation-Features-in-
Actual-Conditions view (Figure 4 .39) represents the fact that a mass separating
agent belongs to the products for ?column.

Furthermore, the sequencing order of the various column in a separation system
is represented using two predicates in the qualitative model . The (Connects-
to ?column ?separation-system predicate indicates that some of the products of
?column are used as inputs to the separation system ?system . The (First-Column
?system ?column form suggests that ?column is the first column of the separation
system ?system.

Finally, each possible separation task in a column is represented in the design
knowledge component using the (Possible (Separation ?separation-method (?light-
key ?heavy-key ?column)) predicate (see Figure 5 .2) . In order to make sure that
we do not reject any separation scheme with a MSA as a heavy key we use the
procedure polar-solvent which checks whether the heavy key is a polar solvent and
therefore a mass separating agent.

The final representation for this rule in OUZO is shown in Figure D .1 .

BIBLIOGRAPHY

[1] Aelion, V., Cagan J ., Powers, G . J., Inducing Optimally Directed Innovative
Designs from Chemical Engineering First Principles, Computers & Chemical
Engineering, vol . 15, no. 9, 1991.

[2] Allen, J ., Hendler, J ., Tate, A ., Readings in Planning, Morgan Kaufmann
Inc., 1990.

[3] Avallone, E . A ., Baumeister III, T ., Marks ' Standard Handbook for Mechanical
Engineers, McGraw-Hill, Inc ., New York, 1987.

[4] Birnbaum, L ., Collins, G ., Remindings and Engineering Design Themes : A
Case Study in Indexing Vocabulary, Panel Discussion on "Indexing Vocabu-
lary" , Proceedings of the DARPA Case-Based Reasoning Workshop, Morgan
Kaufmann Inc ., 1989.

[5] Brown, D. C., Chandrasekaran, B ., Design Problem Solving : Knowledge,
Structures and Control Strategies, Morgan Kaufmann Inc ., 1989.

[6] Catino, C . A., Grantham, S . D ., Ungar, L . H., Automatic generation of quali-
tative models of chemical process units, Computers chem. Engng . 15, 583-599,
1991.

[7] Chandrasekaran B ., Design Problem Solving : A Task Analysis, AI Magazine,
vol . 11, no . 4, Winter 1990.

[8] Cheung, J . T-Y, Stephanopoulos, G ., Representation of Process Trends -
Parts I-II, Computers & Chemical Engineering, vol. 14, no. 4//5, 1990.

[9] de Kleer, J ., An assumption-based truth maintenance system, Artificial In-
telligence, 28, 1986 .

225

226

[10] de Kleer, J ., Brown, J. S ., A qualitative physics based on confluences, in
Readings in Qualitative Reasoning about Physical Systems edited by Weld, D.
S . and de Kleer, J ., Morgan Kaufmann Inc, 1990.

[11] Collins, J . and Forbus, K . D ., Reasoning about Fluids via Molecular Col-
lections, Proceedings of the National Conference on Artificial Intelligence,
Seattle, July 1987.

[12] Collins, J . and Forbus, K . D ., Building Qualitative Models of Thermodynamic
Processes, Unpublished manuscript.

[13] Douglas, J . M ., Conceptual Design of Chemical Processes, McGraw-Hill, Inc .,
1988.

[14] Falkenhainer, B ., Learning from Physical Analogies: A Study in Analogy
and the Explanation Process, PhD Thesis, University of Illinois at Urbana-
Champaign, Urbana, Illinois, December 1988.

[15] Falkenhainer, B . and Forbus, K . D ., Compositional Modeling: Finding the
Right Model for the Job, Artificial Intelligence, 51, 1991.

[16] Falkenhainer, B ., Forbus, K . D ., Gentner, D ., The Structure-Mapping Engine:
Algorithm and Examples, Artificial Intelligence, 41, 1989.

[17] Forbus, K . D ., The qualitative process engine, in Readings in Qualitative
Reasoning about Physical Systems edited by Weld, D . S . and de Kleer, J .,
Morgan Kaufmann Inc, 1990.

[18] Forbus, K . D ., Qualitative Process Theory, in Readings in Qualitative Rea-
soning about Physical Systems edited by Weld, D . S . and de Kleer, J ., Morgan
Kaufmann Inc, 1990.

[19] Forbus, K . D ., de Kleer, J ., Focusing the ATMS, AAAI-88, August 1988.

[20] Forbus, K . D ., de Kleer, J ., Building Problem Solvers, The MIT Press, 1993.

[21] Forbus, K . D . and Falkenhainer, B ., Self-Explanatory Simulations: Scaling
up to large models . AAAI-92, July 1992.

[22] Foust, A . et al ., Principles of Unit Operations, R . E . Krieger Co, Malabar
Florida, 1990.

[23] Franke, D . W ., Deriving and Using Descriptions of Purpose, IEEE Expert,
April 1991 .

227

[24] Franks, R ., Modeling and Simulation in Chemical Engineering, John Wiley
& Sons, New York, 1972.

[25] Gero, J . S ., Design-Prototypes : A Knowledge Representation Schema for
Design, AI Magazine, vol. 11, no . 4, Winter 1990.

[26] Goel, A ., Integration of case-based reasoning and model-based reasoning for
adaptive design problem solving, PhD Thesis, Dept . of Computer and Infor-
mation Science, The Ohio State University, Columbus, Ohio, 1989.

[27] Grossmann, I. E ., Westerberg, A . W ., Biegler, L . T., Retrofit Design of Pro-
cesses. Reklaitis G . V ., Spriggs, H . D . (Eds), Foundations of Computer-Aided
Process Operations, New York, NY: CACHE/Elsevier, 1987.

[28] Hammond, K . J., On Functionally Motivated Vocabularies : An Apologia,
Panel Discussion on "Indexing Vocabulary" Proceedings of the DARPA Case-
Based Reasoning Workshop, Morgan Kaufmann Inc ., 1989.

[29] Hanna, A . S ., Willenbrock, J . H., Sanvido, V. E., Knowledge Acquisition
and Development for Formwork Selection System, Journal of Construction
Engineering and Management, ASCE, Vol . 118, No. 1, March 1992.

[30] Hendry, J. E., Hughes, R . R ., Generating Separation Process Flowsheets,
Chemical Engineering Progress, vol. 68, no. 6, 1972.

[31] Henley, E . J., Seader, J . D ., Equilibrium-stage separation operations in chem-
ical engineering, Wiley, New York, 1981.

[32] Hinrichs, T . R., Kolodner, J . L ., The Roles of Adaptation in Case-Based
Design, AAAI-91, July, 1991.

[33] Huang, Y. W ., Fan, L. T ., An Adaptive Heuristic-Based System for Syn-
thesis of Complex Separation Sequences, in Artificial Intelligence in Process
Engineering edited by Mavrovouniotis, M. L ., Academic Press Inc ., 1990.

[34] Joskowicz, L ., Williams, B . (eds), Working notes of the AAAI Fall Symposium
on Design from Physical Principles, Cambridge, Mass, 1992.

[35] King, C. J ., Separation Processes, McGraw-Hill, Inc ., 1971.

[36] Luyben, W . L ., Process Modeling, Simulation, and Control for Chemical En-
gineers, McGraw-Hill, Inc ., 1989 .

228

[37] Mahalec, V ., Procedures for the Initial Design of Chemical Processing Sys-
tems, PhD Thesis, Univ . Houston, Texas, 1976.

[38] Mahalec, V ., Motard, R. L ., Evolutionary Search for an Optimal Limiting
Process Flowsheet, Computers and Chemical Engineering, 1, 149, 1977.

[39] Mavrovouniotis, M. L . (ed), Artificial Intelligence in Process Engineering,
Academic Press Inc ., 1990.

[40] Mayer, A. K., Lu, S . C-Y., An AI-Based Approach for the Integration of
Multiple Sources of Knowledge to Aid Engineering Design, Journal of Mecha-
nisms, Transmissions and Automation in Design, Transactions of the ASME,
Vol . 110, September 1988.

[41] Mitchell, T . M ., Steinberg, L ., Kedar-Cabelli, S ., Kelly, V., Shulman, J . and
Weinrich T ., An Intelligent Aid for Circuit Redesign, AAAI-83, August 1983.

[42] Motard, R. L., Westerberg, A . W., Process Synthesis, AIChE Advanced Sem-
inar Lectures Notes, New York, 1978.

[43] Nath R ., Motard, R. L ., Evolutionary Synthesis of Separation Processes,
AIChE Journal, vol. 27, no. 4, July 1981.

[44] Navinchandra, D ., Sykara, K. P., Narasimhan, S ., Design Synthesis with
Qualitative Influence Graphs : Steps Towards Multi-State Dynamical Devices,
Working notes of the AAAI Fall Symposium on Design from Physical Prin-
ciples, Cambridge, Mass, 1992.

[45] Nishida N ., Stephanopoulos G ., Westerberg, A. W ., A Review of Process
Synthesis, AIChE Journal, vol. 27, no. 3, May 1981.

[46] Olson, D. G ., Erdman, A. G., Riley, D . R ., A Systematic Procedure for Type
Synthesis of Mechanisms with Literature Review, Mechanism and Machine
Theory, Vol. 20, No . 4, 1985.

[47] Pahl, G ., Beitz, W ., Engineering Design, The Design Council, London, 1984.

[48] Pikulik A. and Diaz, H. E ., Cost Estimating Major Process Equipment, Chem-
ical Engineering, vol . 84, no. 21, 1977.

[49] Rathore, R. N . S ., van Wormer, K . A ., Powers, G . J., Synthesis of Distillation
Systems with Energy Integration, AIChE Journal, vol . 20, 1974.

229

[50] Ressler, A ., A Circuit Grammar for Operational Amplifier Design, AI-TR-
807, MIT AI Lab, January 1984.

[51] Riesbeck, C . K ., Schank, R . S ., Inside Case-Based Reasoning, Hillsdale, NJ:
Lawrence Erlbaum, 1989.

[52] Roylance, G ., A Simple Model of Circuit Design, AI-TR-703, MIT AI Lab,
May 1980.

[53] Rodrigo, F . R., Seader, J . D ., Synthesis of Separation Sequences by Ordered
Branch Search, AIChE Journal, vol . 21, no 5, 1975.

[54] Seader, J. D ., Westerberg, A. W., A Combined Heuristic and Evolutionary
Strategy for Synthesis of Simple Separation Sequences, AIChE Journal, vol.
23, no. 6, November 1977.

[55] Sgouros, N., M., Integrating Qualitative and Numerical Models in binary
distillation design, AAAI Fall Symposium on Design from Physical Principles,
Cambridge, MA. October 1992.

[56] Shavlik, J . W ., Dietterich, T. G., Readings in Machine Learning, Morgan
Kaufmann Inc ., 1990.

[57] Siletti, C . A., Design of Protein Purification Processes by Heuristic Search,
in Artificial Intelligence in Process Engineering edited by Mavrovouniotis, M.
L ., Academic Press Inc ., 1990.

[58] Sriram, D., DESTINY: A Model for Integrated Structural Design, Journal
for AI and Engineering, October 1986.

[59] Steinberg, L . I ., Design as Refinement Plus Constraint Propagation: The
VEXED Experience, AAAI-87, July 1987.

[60] Stephanopoulos G ., Artificial Intelligence in Process Engineering - Current
State and Future Trends, Computers & Chemical Engineering, Vol. 14, No.
11, 1990.

[61] Stephanopoulos, G ., Johnston, J ., Kriticos, T ., Lakshamanan, R .,
Mavrovouniotis, M. and Siletti, G ., DESIGN-KIT : An object-oriented en-
vironment for process engineering, Computers & Chemical Engineering, vol.
11, no. 6, 1987 .

230

[62] Stephanopoulos, G ., Henning, G., Leone, H., MODEL .LA. A modeling lan-
guage for process engineering - Parts I-II, Computers & Chemical Engineering,
vol . 14, no. 8, 1990.

[63] Stephanopoulos, G ., Westerberg, A . W ., Studies in Process Synthesis - II.
Evolutionary Synthesis of Optimal Process Flowsheets, Chemical Engineering
Science, 31, 195, 1976.

[64] Thompson, R . W., King, C . J ., Systematic Synthesis of Separation Schemes,
AIChE Journal, 18, 941, 1972.

[65] Ulrich, K. T ., Computation and Pre-Parametric Design, AI-TR-1043, MIT
AI Lab, Sept . 1988.

[66] Webster 's Ninth New Collegiate Dictionary, Merriamm Webster Inc, 1984.

[67] Weld, D . S ., Reasoning about model accuracy, Artificial Intelligence, vol. 56,
no 2-3, August 1992.

[68] Weld, D . S., Theories of Comparative Analysis, MIT Press, 1990.

[69] Williams, B ., Invention from First Principles via Topologies of Interaction,
PhD Thesis, MIT, June 1989.

[70] Williams, B ., Qualitative analysis of MOS circuits, Artificial Intelligence, vol.
24, December 1984.

[71] Williams, B . C ., de Kleer, J ., Qualitative reasoning about physical systems:
a return to roots, Artificial Intelligence, vol. 51, no 1-3, October 1991.

[72] Winkle, M. V., Distillation, McGraw-Hill, Inc ., 1967.

[73] Yang, B ., Datseris, P., Datta, U., Kowalski, J ., An Integrated System for
Design of Mechanisms by an Expert System - Domes : Applications, Journal
of Mechanical Design, Transactions of the ASME, 24, vol . 113, March 1991 .

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36
	page 37
	page 38
	page 39
	page 40
	page 41
	page 42
	page 43
	page 44
	page 45
	page 46
	page 47
	page 48
	page 49
	page 50
	page 51
	page 52
	page 53
	page 54
	page 55
	page 56
	page 57
	page 58
	page 59
	page 60
	page 61
	page 62
	page 63
	page 64
	page 65
	page 66
	page 67
	page 68
	page 69
	page 70
	page 71
	page 72
	page 73
	page 74
	page 75
	page 76
	page 77
	page 78
	page 79
	page 80
	page 81
	page 82
	page 83
	page 84
	page 85
	page 86
	page 87
	page 88
	page 89
	page 90
	page 91
	page 92
	page 93
	page 94
	page 95
	page 96
	page 97
	page 98
	page 99
	page 100
	page 101
	page 102
	page 103
	page 104
	page 105
	page 106
	page 107
	page 108
	page 109
	page 110
	page 111
	page 112
	page 113
	page 114
	page 115
	page 116
	page 117
	page 118
	page 119
	page 120
	page 121
	page 122
	page 123
	page 124
	page 125
	page 126
	page 127
	page 128
	page 129
	page 130
	page 131
	page 132
	page 133
	page 134
	page 135
	page 136
	page 137
	page 138
	page 139
	page 140
	page 141
	page 142
	page 143
	page 144
	page 145
	page 146
	page 147
	page 148
	page 149
	page 150
	page 151
	page 152
	page 153
	page 154
	page 155
	page 156
	page 157
	page 158
	page 159
	page 160
	page 161
	page 162
	page 163
	page 164
	page 165
	page 166
	page 167
	page 168
	page 169
	page 170
	page 171
	page 172
	page 173
	page 174
	page 175
	page 176
	page 177
	page 178
	page 179
	page 180
	page 181
	page 182
	page 183
	page 184
	page 185
	page 186
	page 187
	page 188
	page 189
	page 190
	page 191
	page 192
	page 193
	page 194
	page 195
	page 196
	page 197
	page 198
	page 199
	page 200
	page 201
	page 202
	page 203
	page 204
	page 205
	page 206
	page 207
	page 208
	page 209
	page 210
	page 211
	page 212
	page 213
	page 214
	page 215
	page 216
	page 217
	page 218
	page 219
	page 220
	page 221
	page 222
	page 223
	page 224
	page 225
	page 226
	page 227
	page 228
	page 229
	page 230
	page 231
	page 232
	page 233
	page 234
	page 235
	page 236
	page 237
	page 238
	page 239
	page 240
	page 241
	page 242
	page 243
	page 244
	page 245
	page 246
	page 247
	page 248
	page 249
	page 250
	page 251
	page 252

