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A challenge for qualitative physics is to deduce the overall interactions ofa device using only
its structural decomposition and models of behaviorfor generic components. A qualitative
physics based on confluences [ l ] attempts to achieve this goal. The aim is to work with a
model (i.e ., a set of confluences) while providing a physical interpretation . In fact, only a
limited use ofconfluences has been made in previous work . A powerful use of such a model
requires first developing a qualitative calculus. 7%tis means understanding the power and the
limits of reasoning with confluences.

	

We focus here on the physical interpretation of the
calculus we have developed.

	

We show that it is possibir to extend the use of confluences
and to infer global laws .specific to the device .

	

This nreans that it is possible to reassemble
the device.
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Introduction
A general framework, "a Qualitative Physics based on confluences" has been proposed
by de Kleer and Brown [ 1

	

. A model of a device is a set of confluences. Each conflu
ence qualitatively describes local physical laws.

	

From a physical point of view, this
framework tries to capture the intuitive notion of perturbations propagating through a
device.

However in previous work only a limited use of confluences has been made. We show
here that an extensive use of confluences can be made. We start by a simple motivating
example. It shows that a qualitative calculus has to be developed. In fact, qualitative
calculus is reduced to a single rule, we call the Qualitative Gauss rule. The Qualitative
Gauss rule is fundamental, for it is the link between the model, taken from a formal
point of view, and the intended intuition. Applying the Gauss rule means combining the
perturbations propagating through the device. In fact the Gauss rule infers the mutual
influences between a!1 the physical quantities involved in the whole device. Thus by
connecting the different parts of the device, it reassembles it .

Is the surlt of two pipes a pipe?
Consider a very simple example, a qualitative model for two connected pipes. For each
pipe, there is a confluence describing the link between the sign of the pressure at the
different ends of the pipe and the flow Q. The confluence (1) rcsp (2) for pipe 1, and
pipe 2 are the following: .

(1)

	

[dP,l - [dP,l - [dQ] = 0'

(2)

	

[dP,l - [dPe] - [dQ]

	

0

e

	

C

Figure 1: Two connected pipes.

This model describes separately the different parts of the physical device. It is obvious
that the two connected pipes behave like a single pipe. A system performing qualitative
reasoning should be able to make such a deduction. On this example this can be done
in a very simple way by adding the two confluences (1) and (2).

(1)+(2)

	

[dPJ - [dP,l - [dQ] + [dP,l - [dP,l - [dQ] - 0

Eliminating [dP,] in (1)+(2), = reduces the confluence for the two pipes into a conflu-
ence (3) expressing that the two connected pipes behave just like a single pipe .

(3)

	

[dP,l - [dPe] - [dQ] - 0

t

	

[x] is the sign of the quantity x

and using the fact that q + q = q for any qualitative quantity q (cf. prop . 2 Annex) .
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Iiere combining confluences produces another confluence which corresponds to a phys-
ical law, describing a global constraint that must satisfy the two connected pipes. Is it
generally correct to combine confluences ? What does this kind of combination rule
mean for the interaction between separate elements of the device? To what extent ap-
plying such a rule leads to a description for all the interactions of the different parts of
the device ?

The Quantity Space, Basic Rernay "ks
The basic quantity space considered in Qualitative Physics is the set {0, +, - } . In order
to handle addition and product of signs it is necessary to add to the set S the element ? .
A physical parameter takes its qualitative value in S-{?}. If we assume that [dP,,]
and [dPJ _ - the following relation is meaningless for [dQ]

[dQ] = [dP,] - [dP,] = ?

The only information in this case is that the confluence is solved .

Generally, for a physical quantity x, [dx] is not necessarily ambiguous if a confluence
is reduced to [dx] - ? . Its qualitative value may be deduced from another confluence.

The relation = must not be interpreted as the classical notion of equality

	

of elements
of a seta It is necessary to give a clear definition for the relation =, called qualitative
equality:

a=b
or

a = b

	

ill-	a = ?
or

b = ?

The relation = as defined above offers a clear semantic . It extends the notion of equal-
ity, for if a equals b, then a - b. Obviously working with confluences is not just like
working within a vector space.

Qualitative Gausi Mile

Theorem : Qualitative Gauss rule .

A variable can be eliminated between two confluences, provided that no other variable is
eliminated at the same time.

This Qualitative Gauss rule expresses when it is correct to combine confluences. Com-
bining conflucnces is fundamental to deduce links between different parts of a device, i.e .
discovering the links between the qualitative values of physical quantities not involved
directly in a same confluence . For example, the only variable eliminated when adding
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the confluences for the two connected pipes is [dPe] . Thus the Qualitative Gauss rule
shows that combining the two confluences is correct. It establishes a link between Q ,
P� and P,: . So combining local confluences leads to a more global one. In other words,
different parts of the device are fitted together.

It is also possible to deduce a confluence which gives the relation between the pressure
at point B,P,, and the input pressures P, and P..

(1)-(2)

	

[dPj - [dPe] + [dP.] - 0 .

These two confluences are relations between internal ([dPe], [dQ] ) and external vari-
ables ([dPA], [dPA] ).

Froin local to a global path.
Applying the Gauss rule makes physical sense. A way to understand a confluence is to
consider that it describes a local path linking the physical variables at the boundary of
a component and its internal variables . For example the confluence for a pipe links the
pressures at its ends and the flow through the pipe . Combining confluences consists in
connecting ttivo paths and considering the entire path . Having a complete picture of a
device is considered here as linking internal physical variables to boundary physical pa-
rameters . The links obtained directly show how the internal variables react to an ex-
ternal perturbation influencing the device.

It is not required to assign some particular values to the inputs . But once values are
assigned to inputs, deducing the values of internal variables is straightforward . There is
no need of any indirect .proof, as in RAA [ I] . Let's focus again on the basic example
above and assume for instance that the inputs are [dPA] = + and [dP,] = 0 . It is ob-
vious using the two inferred confluences that [dPe] = + and [dQ] _ + .

	

Even in this
case RAA requires to make assumptions.

The pressure regulator revisited

X X X X X X X X X X X X-X J( X X X XXX X X X X X X X X

Figure 2: Pressure regulator .
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Reconsider the well known pressure regulator.

The model used here is slightly different from the model used by de Kleer and Brown
[ 11 . P, stands for the pressure at point I, Q is the flow (considered as uniform w.l.o .g .),
A is the area under the valve . It is assumed that the valve is neither completely open
or closed, and that the fluid flows from point 1 to point 5 (Q> 0) .

[dP,] - [dP,] - [dQ] - 0

	

Path (1,2)

[dP,] - [dP,] - [dQ] + [dA] - 0

	

Path (2,3)

[dP,] - [dP,] - [dQ] - 0

	

Path (3,4)

[dPj - [dP,] - [dQ] - 0

	

Path (4,5)

[dP,] + [dA] - 0

	

(Valve)

The physical parameters at the boundary of the pressure regulator are P, and P, '. The
internal parameters are P� P, , P� Q, A. The aim here is to find the direct influences of
the physical inputs P, and P� on the internal variables. The basic idea is to follow the
different paths that start at the boundary and that lead to the area where the particular
internal variable is involved.

For example there are three paths that lead to point 2: path {(1,2)}, path
((2,3) + (3,4) + (4,5)} and path {(2,3) + valve + (4,5)} . Combining the input per-
turbations through the different paths leads in five steps to :

[dP=] - [dP j ] + [dPs] .

In the same way relations are obtained for the other variables :

dP,] =- [dPj + [dPj
dA] =- [dP ] - [dP ].
dQ] -

	

[dP,~ - [dP,_] .

This set of confluences is relevant as far as simulation is concerned .

	

It may be interest-
ing to focus on another set of variables, for instance, in order to make postdiction . For
example, consider the set {[dQ],[dA]} . Following the different paths leads to :

[dP,] -

	

dQ] -

	

dA].
dl',] =-

	

dQ] -

	

MI .
[dP,] -

	

dQ] - IdAl
[dP,] - - [dA] .

P5 is not considered as an input in the model of the pressure regulator given in [I] . Considering point
5 as passive is equivalent to the assumption [dPs] s 0
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dP, dP,] - dQ] - 0 Paths {(3,4) + (4,5)}
dP, dP,] - dP,

dPj [[dQj
dQ - 0

°
Paths {(2,3) + (valve)}
Paths +dP, dP,] - - - 0 {(2,3) + (valve) (4,5)}

dP, dP, - dQ] - 0 Paths from 2 to 5 through 3 and the valve .
dP, dP,_ - dP,] - 0 All the paths from 1 and 5 to 2.



[dP,] = - [dQ] - [dAl

Conihining all the local paths.
From now on, solving confluences for given inputs is straightforward . For instance,
assume that:

{[dP,] = +,[dP,] = 0}

	

or

	

([dP,] = +,[dP,] = + }

In both cases deducing the qualitative values of02 0, and dA is obvious:

[dP,] = [dP,] + [dP,]

	

leads to :

	

[dP,] = + .
[dP,] = [dP,] + [dP,]

	

leads to:

	

[dP,] = + .
[dA] = - [dP,] - [dPj

	

leads to :

	

[dA] = - .

What does this mean? These confluences have been previously deduced by combining
the influences through all the paths linking P, and P, and respectively P, , P� and A
These results can be expressed 'a la Forbus' [2] : 'All the perturbations influence .pos-
itively the pressures at point 2 and 4 and negatively the area under the valve.'

Figure 3: Pressure at point 2 increases.

What about the pressure P, and the flow Q?

In the first case [dP,] = + and'[dQ] = + .

But the qualitative values of [dP,] and [dQ] are not determined in the second
The reason is that, considering the two paths and ((3,4) + (4,5))
{(2,3) + valve + (4,5)) leads to the two conflucnces

[dl's] - [dPs] - [dQ] = 0
[dl's] - [dP,] - [dPs] - [dQ] = 0
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Thus the influence of [dP,] on [dP,] is positive in the first confluence, but negative in
the second one. This means that the influences of [dP,] on [dP,] through the two
paths are opposite .

The qualitative Gauss rule and causal heuristics.

Quasi-static assumption.

It has been pointed out [I] that physical laws often used in qualitative physics are
equilibrium laws . A perturbation is considered as being immediately propagated through
the device . This is the quasi-static assumption : 'the device goes through an infinity of
infinitely close equilibrium states' . Using the Qualitative Gauss rule assumes that all the
perturbations are propagated through the difrcrent paths at the same time . In partic-
ular, it is not necessary here to consider 'mythical time' .

Concurrent inputs are needed .

It is essential to consider that a device may have several inputs . All the communicating
points with outside world must be considered as inputs . The differentiation between
"active" and "passive" communicating points (i.e., inputs and outputs) is strongly related
to the intended function of the device . A model that includes such a separation violates
the "No Function in Structure Principle" .

This idea corresponds to the good old mathematical 'adage' : "The solution of a differ-
ential system is determined by the conditions at its boundaries.' .

The causal heuristics cannot deal with concurrent inputs .

Let's assume that [dP,] = [dP,] =+ . The first causal heuristic applied to [dP,] infers
that [dQ] _ + . Causally propagaten

	

perturbations from 1 through the device retrieves
[dP,] = + .

	

Thus the input value
,g perturbations

is considered as a causal consequence of the
pressure perturbation at point 1 . One could attempt to invert the causal heuristics in
order to take into account the perturbation at point 5 as an initial one . Thus we could
deduce that the only value of [dQ] which could cause the increasing of pressure at point
5 is still [dQ] = +. Finally, some modified causal heuristics would probably assign the
unique value + to [dQ];_ Thus [dQ] =- would not be considered as a causal value .
It is nevertheless obvious that this behavior is possible if [dP,] is the most important
perturbation.

Perturbations can be propagated without assigning values to ambiguous
variables.

Still assuming that [dP,] = [dP,]

	

point 3 is used when combining paths leading
to point 2 in order to deduce [dP,] _ +. But the pressure at point 3 remains ambiguous.
Thus it has been possible to propagate an input perturbation through an ambiguous
variable with no assigned value . This is not possible using the causal heuristics . Causal
reasoning is able to assign a value to a variable V only if values have already been as-
signed to all the previous variables involved in a causal path leading to V . Thus con-
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sidering the path ((2,3) + (3,4)), it is impossible to deduce [dP,] = + without assigning
a value to [dP,] .

No particular values are assigned to ambiguous variables when propagating perturba-
tions through all the possible paths. Only non ambiguous variables are computed and
proved to be non ambiguous .

Choosing the main path.

When using the Gauss rule, no particular value is assigned to an ambiguous variable .
A variable is ambiguous when at least two opposite paths lead to it from inputs .
Choosing a value for such a variable means considering a path as more important than
the other ones . Contrarily causal heuristics assign values to ambiguous variables. In fact
applying the causal heuristics means arbitrarily choosing a main path . This choice is
not based on physical considerations. We believe that it is possible to deduce the main
path from intrinsic properties of the device .

Interpreting multiple solutions.
Multiple solutions corre and to multiple paths with opposite influences . Let's again
consider the case : ([dP,T= +,[dP,] = + ) . Propagating the computed values in the
initial conflucnces, leads to only one unsolved confluence :

[dP,] - [dQ] - +

The solutions of'this confluence can be are computed by a brutal branch and bound al-
gorithm. We cannot think of any other method, even causal ones.

[dP,] -

	

0 . +

	

+ P+

Table l : Possible values of [dP,] and [dQ].

Nevertheless, it is clear that only one behavior at a time is possible. The elegant way to
handle multiple solutions is to select the main path . Trying to find out what is the main
phenomena, can be achieved by performing order of magnitude reasoning . This requires
focusing on the orders of magnitude of key parameters .

	

It is not possible here to give
a complete description of what this involves, only the general idea is exposed.

	

Taking
into account orders of magnitude can be done as shown in [9] using Non Standard
Analysis. 'Non standard confluences' can be used, in the same way as classical ones .
Let's focus first on the relative orders of magnitude of the inputs.

	

The five initial con-
fluenccs can be kept . Let's assume that dP, is negligible compared to dP, . Every pres-
sure (except at point S) has the same order of magnitude as dP, , and the flow is
essentially influenced by dP, . Thus the flow and the pressure at point 3 increase .

Conversely, if dP, is negligible compared to dP, the flow Q decreases (but the pressure
at point 3 remains ambiguous). Thus the formal solution of initial conflucnces
[dQ] = 0 can be considered as an intermediate case, i.e . df, and dP, are of the same
order of magnitude, by a kind of rule of continuity .
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Three possibilities remain for dP, when dP, is negligible compared to dP, . Focusing now
on the tightness of the spring, k, leads to replace the confluence for the valve by a Non
Standard confluence

[[dP,]] + k[[dA]] = 0 .

If k is infinitely large, the pressure at point 3 is of the same order of magnitude as the
pressure at point 5 . But if k is infinitely small, the pressure at point 3 decreases .

So, when the spring is very hard, the pressure at point 3 increases. The main perturba-
tion path is 3 - 4 - 5 . Conversely, if the spring is lax, the pressure at point 3 decreases .
The influence of perturbation through the valve dominates all the other ones. There is
a 'hole of pressure' at point 3 .

What can the Qualitative Gauss Rule compute ?

As shown in the pressure regulator, the Qualitative Gauss rule allows to compute de-
pendencies between 'internal' variables and variables considered as inputs . For given
values of these inputs the qualitative values of the variables, which are completely de-
termined, can be computed by applying the two very simple propagation rules

Rulel: When the qualitative value of a variable is computed,
replace in all confluences the variable by its value.

Rulc2: When there is only one variable in a confluence,
deduce the qualitative value of this variable.

These rules are the two basic rules usually used in order to solve conflucnces . Solving
confluerices is a very difficult problem (it can be proved that it is a N-P complete prob-
lem) . But the two propagation rules above arc much more simple (polynomial) . Thus
reducing initial confluences to a set of confluences where the search consists in applying
only the propagation rules is fundamental . Such a set is called a relevant set .

Finding all the variables which are completely determined by special values of some in-
puts is obvious once a relevant set is found . Practically, finding First a relevant set pro-
vides good efficiency . The reason is that the most important computational work is done
once and '[-or all. This means 'compiling' the device, while computing solutions of the
confluences for particular inputs means 'interpreting' it.

In the same time, this purely symbolic computation assembles the device . This means
for the pressure regulator that the paths (i,j), with i < j, (except for j = 3), behave like a'
pipe.

Soundness of the Gauss fwle.

Does the Qualitative Gauss rule always provide a relevant set? This is a kind of
soundness problem . A first result is that, applying the Gauss Rule freely on a set of
confluences provides a relevant set . This result is a consequence of the fundamental
theorem (cf. Annex) which asserts that, when 'interpreted' for special values of inputs,
the Gauss rule infers the qualitative values of all the non ambiguous variables .
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How to obtain a relevant set of confluences?
Practically, applying the Gauss rule freely leads to combinatorial explosion . Thus it must
be controlled . It seems that the confluences that must be kept are provided by consid-
ering only chain paths, i.e . confluences which have been considered in the physical in-
terpretation above. Thus controlling the Gauss rule can be done by mean of physical
interpretation . For example, it seems that the following set of 14 confluences is relevant
for the pressure regulator .

dP,] -
dP, -
dP, -
dP, -
dP, -
dP, -
dP,l -
dP,] -
dP,] -
dP,
dP

dP, -~dQ]=0
- dQ]=0

dP,

	

- [dQI - 0
dP, -l

	

dQ]= 0
dP.

	

-

	

dQ]= 0
dP,J - LdQ] - 0
dP,~ -

	

dQ] = 0
dPs	-

	

dQ]- 0
dP,] +

	

dP,] - 0
dP,] + [dP,~ - 0
dP,] + PIPs

	

= 0
dP,] +

	

dP,

	

= 0
dP,] + [dP,]1 - 0
dA]=0

Good models.
Unexpectedly, as a consequence of the fundamental theorem, it is possible to state
whether a set of confluences is 'good' .

	

From a physical point of view, it is clear that a
device must remain steady if there are steady inputs. This is a stability property.

	

This
is the case for the model of the pressure regulator.

Three kinds of pitfalls may occur if the stability condition is not satisfied

1 .

	

The model is not correct.
2. The model is correct, but the device is not well designed . No given input can

produce a predictable answer at any point of the device .
3. The model is correct, and describe a well designed device, but the quantity space

{0, +; - } itself is too weak.

It can be proved using the fundamental theorem that, under reasonable assumptions
about the kind of used confluences, the stability condition above holds if and only if the
qualitative Gauss rule can deduce a non empty relevant set of confluences.

Power and limits of confluences.
Developing a qualitative calculus has allowed to extend the use of conflucnces.

	

Practi-
cally, it consists in 'compiling' the device .

Previous theoretical results show the limits of confluences.

	

For instance, interpreting
multiple solutions requires an extended model, based on orders of magnitude.

Our goal was to find the power and limits of confluenccs. This is a step towards model-
ing complex devices.
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Annex : qualitative calculus.

P1. Quasi-transitivity of the qualitative equality.
Let a, b, c belonging to S, b 0 ? , such that

a=band b-c
Then: a = e

The relation '=' is not transitive, but transitivity can be applied if the middle-term is
"defined" . -

P2. Compatibility of addition and qualitative equality.
Let a. b, c belonging to S such that

a+b=c
Then

	

a

	

- e - b

"- b" means (-) * b .

P3. Idempotency of addition.
Let a belonging to S.
Then a=a+a

TH l: Qualitative Gauss Rule
Let 1, J, K, L be four mutually disjoint sets not containing 0.
Let xo be an element of S different from '?' .
Let x, for i belonging to 1, J, K or L, a, for i belonging to K or L, and a and Q be ele-

ments of S.
Assume that:
xo + T_x, - Fx, + . F_akxk - a (1)

wI 181 keIt

- xo + F_x,
.
- F.x, + F_ax, = Q (2)1. : ai hL

Then:
Ex, -
i.!

F_x, + -'T_ akxk - a + 9 (3)
LJ k.RUL

Proof
From (1) and (2) by applying P2,

xo -

	

-

	

Ex, +

	

F.x, -

	

Fakxk +

	

a (1 ')
061

	

141 :-

	

keg
xo

=
Ex,

-
Exe

+ F_aix, -

	

(2')
Ill

	

wi

	

As L

Applying P 1 to (1') and (2') and x, leads to :

F_x, - F_x, + F-a,x, - Q - - F_x; + F_x, - F-akxk + a (3')
hI i.! AIL

	

Ib/ !hi keg
The Gauss rule is proved by applying P2, and then P3 to this qualitative equality . O
Remark: Physical quantities can be eliminated using the qualitative Gauss rule because
they always belong to ( + ,0, - ) .

TH.2: Fundamental theorem of qualitative calculus.
Let A X - D be a qualitative linear system,
where A is a squared matrix (n,n) .
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The qualitative Gauss rule recursively applied to this
system leads in a finite number of steps to the equation

X, = a
where a is the qualitative value of X, if
X, is uniquely determined.

Notation : A, X, and B are respectively a matrix and vectors of elements of S- (?).
Product of matrices and vectors is defined in a natural way. The relation = can be ex-
tended to vectors (two vectors of elements of S are qualitatively equal if and only if their
components are qualitatively equal) . The vector A X may have some components equal
to? .
When considering a device, X is the vector of its physical quantities . The system A X
B is obtained by adding to the set of confluences of the device the confluences

X, - B� where B, are the values assigned to the inputs X,.

The proofof this theorem is too long to be given here . It is based on a theory of qual-
itative determinant and on a characterization of squared matrices with determinant +
or
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