
The Qualitative Process Engine :
A study in Assumption-based Truth Maintenance

Kenneth D. Forbus
Qualitative Reasoning Group

Department of Computer Science
University of Illinois

1304 W. Springfield Avenue
Urbana, Illinois, 61801

Internet : Forbus®uiuc . ARPA
Voice: (217) 333-0193

This paper describes how to use an assumption-based truth maintenance
system (ATMS) to significantly speed up qualitative reasoning . Specifically,
we introduce three organizing abstractions for ATMS-based problem solvers
(many-worlds databases, justify/interpret cycles, and closed-world tables) . We
illustrate their utility by describing the Qualitative Process Engine (qPE), an
implementation of Qualitative Process theory that is roughly 95 times-faster
and signficantly simpler than the previous implementation. After analyzing
gPE's performance, we draw some general conclusions about the advantages and
disadvantages of assumption-based truth maintenance systems .

Program: ENGINEERING
Area:

	

Commonsense Reasoning
Subarea: Qualitative Physics
Length:

	

3977 words
Draft of- February 5, 1987

Abstract



1 Introduction

Recently there has been a great deal of interest in assumption-based truth main-
tenance systems (ATMS) (1,2,3] as a tool for building Al programs . This paper
describes several ATMS techniques applicable to a broad class of problems . We
illustrate these techniques by outlining their use in an envisioner for Qualitative
Process (QP) theory [8,9,101 which is roughly 95 times faster than our previous
implementation' . Based on this experience we comment on some advantages and
disadvantages of ATMS technology .

Qualitative simulation programs take as input a domain model and a scenario,
and produce as output a description of possible behaviors . The low resolution of
qualitative models means there typically are several possible behaviors . Envisioning
is the process of generating a description of all possible behaviors . Representing and
reasoning with these various possibilities is complex, and makes heavy computational
demands relative to generating specific histories . Still, envisioning is extremely valu-
able for developing new qualitative models, and produces knowledge bases which
may potentially be compiled for further applications (c . f.

	

;131) .
We view efficient envisioners as essential to continued progress in qualitative

physics . de Kleer has claimed that an ATMS is superior for these kinds of prob-
lems, . and this paper can be viewed in part as evidence for this claim. Qualitative
Process theory takes on more modelling work than device-centered models (such as
[4,221), making implementations of it more complex and thus a better test of ATMS
technology . For instance, a QP implementation must apply the idealizations of a
physics to descriptions of objects and relationships, rather than starting with a net-
work of idealized devices specified by the user . Changes in existence, such as steam
appearing and water vanishing due to boiling, must be taken into account . While we
believe these extra capabilities make QP theory more suitable for a broader range
of modeling tasks, they also pose formidable challenges to the implementor (see ~121
for details) .

This paper describes a set of useful abstractions for building ATMS problem
solvers to meet these and similar challenges . The advantages of these abstractions
are both conceptual and computational ; using them can both speed up and radically
simplify representations and algorithms . They are :

1 . The Many- Worlds database : The ATMS notion of environment can be used to
eliminate complicated temporal reference schemes for many tasks .

2 . The Justify/Interpret cycle : Organizing problem solving as alternating phases
which install justifications and construct partial solutions can reduce the com-
putational complexity of algorithms .

3 . Closed World Tables : The Justify/Interpret organization allows efficient im-
plementation of a simple yet expressive version of closed-world assumptions .

1QPE is written in ADB, an ATMS-based problem-solving language being developed jointly with
Johan de Kleer of Xerox PARC .



We begin by elaborating these ideas . Next we illustrate their use in the Quali-
tative Process Engine (QPE), .a high-performance envisioner for QP theory . Finally,
we analyze QPE's performance, and summarize some advantages and pitfalls we have
experienced with ATMS technology .

2 ATMS nomenclature
The ATMS is similar tothe original, justification-based TMS's (or JTMS, e.g .

	

'[211) .
Each fact has an associated node, whose status of IN or OUT indicates whether or not
it is believed . Justifications are Horn clauses; when all antecdent nodes are IN, the
consequent node will also be IN2 .

Unlike JTMS's, assumptions are a distinct datatype in the ATMS . Roughly, an
assumption can be viewed as the choice to assume a particular fact (but see 1.31) . A
set of assumptions is called an environment. The label of an ATMS node is the set of
minimal environments under which that node is believed . Environments provide the
ATMS notion of context . A fact is IN in a particular environment E only if there is
some environment in its label that is a subset of E. ATMS justifications primarily
serve to propagate environments . Since the ATMS maintains multiple environments,
and one can easily test if a fact is believed in an environment, reasoning in multiple
contexts is greatly simplified .

Logical constraints are installed by providing justifications for certain ,nodes
marked as contradictory. Any environment which appears in the label of a con-
tradictory node must itself be contradictory, and hence is called a nogood . Any envi
ronment which contains a nogood is itself nogood (i . e . , we forbid non-monotonicity) .
For simplicity we sometimes also refer to justifications of contradictory nodes as no-
goods since their effect is to generate contradictory environments .

3

	

The Many-worlds database
Using environments as contexts is very powerful . For example, a common inferential
operation is finding consistent extensions of a partial solution . The ATMS reduces
this operation to finding whether or not the fact F (representing the extension) is
consistent with the environment E (representing the partial solution) . The answer
is yes if some environment El in F's label can be consistently combined3 with E.

However, fully exploiting this notion requires a different problem-solver organization
than other TMS's.
A useful interpretation of facts in an ATMS problem solver is as statements about

individuals in all possible worlds, rather than as statements about those individuals
at some specific time . Any particular world, be it different temporally or hypotheti
cally, is defined by a particular environment . The set of consequences of the defining

='Non-monotonic justifications are irrelevant to this paper.
"Environments are combined by taking the union of the sets of assumptions involved, marking

the result as inconsistent if it subsumes an environment already known to be contradictory.



environment specify what is true in that world . This scheme avoids the complicated
pattern manipulation required to directly implement notations for temporal refer-
ence, including situational calculus [16] and histories [14] (c . f. [20,10]) . For exam-
ple, in this scheme we would simply write Left-of (Block-A . Block-B) instead of
Left-of (Block-A, Block-B, SO) or Left-of (at (Block-A, SO) , at (Block-B, SO),
assuming that the label of the fact contained an environment which is a subset of
the environment corresponding to S0 .

One has to think differently about a database organized in this way . Metaphor-
ically, consider databases as if they were physical worlds . In a JTMS or logic-based
TMS (LTMS) the world is deterministic, although perhaps not totally determined :
to find out if something is true we need only look at the appropriate TMS node . By
contrast, the ATMS database is something like a quantum mechanical wave function .
Looking at a particular node, one sees only possibilities . But probing the database
with a particular environment yields particular answers, just as taking a physical
measurement provokes the collapse of the QM wave function . Consequently, we call
this organizational scheme the many-worlds database .

While not as general as explicit temporal notations - we cannot say
Left-of (at(Block-A, SO), at(Block-B, S1)), for instance - the many-worlds
database has clear advantages for some kinds of problems . The most obvious over
head in temporal reference notations is the storage involved in making copies of
assertions, new justifications, and so forth . In the many-worlds database the same
assertions and justifications are used, only new environments are created . Less obvi-
ous, but more serious, is the additional complication required for pattern-matching,
as anyone who has implemented such schemes can attest . CONNIVER-style databases
[17] can also be used to model time implicitly, but without the composability of the
ATMS structures : Each access to a fact must work backward up the tree of con-
texts to see what the actual status of that fact is . The ATMS allows contexts to be
synthesized as needed, rather than sprouting new, monolithic contexts .

The many-worlds database - is the closest to the original conception of the ATMS
[1], and is used in de Kleer's qualitative physics programs as well as QPE . However,
it has never been adequately explained as a strategy per se, nor does it appear to
have been widely adopted . For example, it appears simpler than the Viewpoint
mechanism of ART or the Worlds mechanism of KEE [18], two current commercial
systems which use ATMS-like technology. These mechanisms are closer in spirit
to CONNIVER-style databases, using assumptions to model markers corresponding to
assertion and deletion of facts within particular named contexts . This provides the
ability to retract facts from contexts . In the many-worlds database contexts are only
identified with environments, so retraction does not make sense .

4

	

The Justify/Interpret cycle

The descriptions in a many-worlds ATMS database form the framework for casting
solutions to problems. The justifications determine the consequences which follow
from every environment, as well as weed out inconsistent environments . A solution

J



in a problem-solver organized along these lines is a particular environment and its
attendent consequences . There are a number of ways to construct such solutions
(c . f. [2,6]) . A particularly useful technique for problems where the entir, space
of solutions is sought, such as envisioning, is to organize the problem solver into
justify/interpret cycles . Given initial facts and partial solutions,

1. Until the problem is solved,
1 .1 Justify : Create justifications representing the conclusions

and constraints that follow from the current set of facts.
1 .2 Interpret: Extend the partial solutions, based on the

new conclusions and constraints .

The standard N-queens problem provides a simple example. The goal is to find all
the ways N queens can be placed on an N x N chessboard so that no two queens can
capture each other. Clearly there must be exactly one queen in each column, so each
justify phase of the cycle consists of creating statements corresponding to the possible
locations of a queen within a particular column, and installing nogoods to rule out
combinations of queen placements in the previous columns that would result in a
capture. Each interpret phase extends solutions by trying to add assumptions about
the queen's location in the current column consistent with previous choices . (The
process of extending solution environments with new choices is called interpretation
construction[2] .) After N cycles the solutions are complete .

Very simple combinatorial problems, such as the N-queens problem, can actu-
ally be solved by a single justify/ interpret cycle. More complex problems require
decomposition into several distinct justify/interpret cycles . The reason is that inter
pretation construction, left to itself, can lead to immense combinatorial explosions .
By breaking the process up into several cycles, partial solutions from each stage can
guide the construction of justifications and nogoods at the next stage .

Consider for example a program to generate feasible travel plans. The choices
in such a plan include means of transportation (such as airplane, train, bus, or car)
and routes . In principle, a set of plans can be generated by using a set of pattern
directed inference rules (as in AMORD(51 or DEBACLE[101) to construct all the relevant
justifications and nogoods, and then using interpretation construction to find all
consistent plans. This technique fails in practice because it fails to take into account
logical dependencies between the choices. Suppose the choice of vehicle was made
last, and time constraints ruled out every choice but air travel . The interpretation
construction process will have generated all possible routes by train. bus, and car
when in fact all of these choices are irrelevant . Aside from gross inefficiency, some-
times the problem is not solved at all because the environments generated during
intermediate phases of interpretation construction overflow the address space of the
computer, even though the final answer fits comfortably. We call this problem inter-
mediate interpretation bulge, by analogy with a similar problem in symbolic algebraic
manipulation systems (see [191) .



By decomposing the solution process into distinct phases the combinatorial explo-
sions plaguing a uniform problem-solver organization can be avoided. For instance,
if the mode of transport were fixed first, the number of intermediate solutions would
remain quite small in the example above. Similar dependencies appear in most kinds
of problem-solving . In QP theory, for example, there is no reason to calculate the
effects of two processes Pl , PZ taken together if they can never consistently be active
at the same time. Although it does not affect the correctness of the final answers, it
is wasted effort . Empirically, we have found careful decompositions to be essential
in envisioning.

5

	

Closed-World Tables

Closed-world assumptions are often required in problem solving . A simple but ex-
pressive form of closed--world 'assumption concerns set membership . The form is,
roughly, "the known members of the set are the only ones" . Examples from QP
reasoning include the set of active processes, the direct influences or qualitative pro-
portionalities that. constrain a quantity, and the inequalities comprising a quantity
space . Many common closed-world assumptions in other domains can be cast in this
form as well, including the possible suspects for a crime, the observations a theory
must explain, and the premises underlying a contradiction .

While clearly useful, the techniques used in other TMS's for implementing these
closed-world assumptions are unsuitable for the ATMS . Typically one implements
this reasoning as follows : At some point in the computation it becomes necessary
to know the members of a set, given the assumptions made so far . The set is closed
by first fetching the membership statements currently believed . An assertion that
these members comprise the set at this point is justified by these statements and an
explicit statement of the closed-world assumption . Since new members can be added
or removed at any time, a mechanism for retracting the closed-world assumption is
necessary. This can be done in the TMS itself (71 or by pattern-directed rules which
detect and signal such conditions (101 . Unfortunately, these techniques assume a
single, global context: directly applying this technique to an ATMS typically results
in an exponential number of (mostly irrelevant) assertions .

The organization provided by the justify/interpret cycles can be exploited to
provide a highly efficient alternative. There must be some stage in the solution
process at which all information required to determine the possible compositions of a
set is known. If the set is closed then, only sets belonging to some consistent solution
will be generated. This requires a means of determining the possible members of
each set . We introduce closed world tables to provide this information .

A closed-world table is a collection of entries whose form is

(<member> .

	

<justifying form>)

The member is a potential element of the set, such as a particular person being
a murder suspect or a quantity having a particular influence . The justifying form is



Figure 1 : Example of closed-world tables
A subproblem facing a QP interpreter is finding how the amount of water in G might
change, given the various combinations of liquid flow processes P1 . . .4 that can occur.

a statement whose belief justifies that member being in the set . The set of members
listed in the closed world table is implicitly assumed to be complete .

A closed-world table can be used as soon as the labels for the justifying forms
are complete . Finding all consistent combinations of the justifying forms yields the
possible compositions of the set . Each statement about the membership of the closed
set is justified by the union of justifying forms for members and the negation of the
justifying forms for non-members . Every combination represents the set's members
for some class of solutions .

Consider the scenario in Figure 1 . One subproblem in reasoning about this
scenario is figuring out all the ways that the amount of water in container G can
change, by calculating the sign of its derivative (the Ds value) . If the only processes
that can occur are liquid flow, then the amount of water will tend to increase when
PZ or P3 are occuring, and tend to decrease when Pl or P4 are occuring . (See i;91, for
details of influence resolution.)

To solve this subproblem we first must find all combinations of these four pro-
cesses which can be active at the same time, and for each combination calculate their
net effect . Figure 2 illustrates the consistent combinations found by interpretation
construction on the justifying forms of a closed-world table . The inconsistencies
come from shared quantity conditions; a flow in one direction implies a pressure
difference that rules out a flow in the opposite direction . Figure 3 shows the net ef-
fect on the amount of water in G calculated for each consistent combination . When
influenced in both directions the program creates alternate worlds corresponding to
each choice, installing assumptions about the relative magnitudes of rates . Since
these result only depend on the information in the closed world table, they will be
available in all situations which contain the relevant processes .



Figure 2: Generating consistent sets of active processes
Finding what combinations of processes can influence the amount of water
requires making closed-world assumptions . Justifying forms from a
table define the search space .

Step #1 : {}
Step #2: {P1}, {P2}, {P3}, {P4 }
Step #2: {P1, P3}, {P1, P4), {P2, P3}, {P2, P4}
Step #4 : Finished - all larger combinations would subsume nogoods

Figure 3 : Finding Ds [Amount-of (G) ]
The net effect of each consistent collection of processes can be simply found . Since
the results depend only on the information in the closed-world table, they will be
applicable in every relevant situation .
Active

	

{}

	

{Pi }

	

{pz}

	

{P3}

	

{P4 }

	

{pI, par

	

{p~, pa} I {p2, P3}-!-{pz, T'
De values

	

0

	

-1

	

1

	

1

	

1

	

1 -1, 0, 1

	

1

	

-1

	

1

	

1

	

-1' 0' 1

6

	

The Qualitative Process Engine

We outline QPE's algorithms only in enough detail to illustrate how these ideas can
be applied to organizing problem-solvers ; a detailed description is beyond the scope
of this paper (see [12]) .

QPE is organized as a collection of justify/interpret cycles . The processing
in five major steps:

1 . Load the domain model.

2 . Load the scenario .

3 . Find the Process and View structures

4 . Resolve influences

5 . Perform Limit Analysis

We describe each in turn .

6.1

	

Step 1 : Load the domain model.

in G
closed-world

occurs

Domain models describe types of quantities, objects, relationships, individual views
(i .e., time-varying relationships), and processes (see ;:101) . A syntaxer turns the
domain model into ADB assertions and pattern-directed rules . Given a scenario .



these rules find possible instances of processes and individual views and instantiate
definitions of predicates and relations . Unlike de Kleer's consumers, these rules are
run on all assertions matching their triggers irregardless of their current belief status .
The network of assertions, justifications, and nogoods they build are used by later
steps to prune possibilities.

6.2

	

Step 2: Load the scenario.

Next the facts corresponding to the particular scenario are asserted, causing the
domain rules to run . Aside from creating assertions and justifications, the rules
also create the necessary closed-world tables . These include potential influencers of
quantities and sets of preconditions and quantity conditions . At the end of this step
all potential occurrences of processes and views are known, but nothing is known
about whether they actually occur and in what combinations . This step ends the
justify portion of the first justify-interpret cycle.

6.3

	

Step 3: Find the Process and View structures .

In QP theory a process or individual view is active exactly when its quantity con-
ditions (inequalities, plus the status of other processes or individual views) and
preconditions (other kinds of facts) are true . Finding what collections of processes
and views can be active together is the first step in generating situations .

Situations are found by generating all consistent combinations of preconditions
and quantity conditions, using closed-world tables constructed during Step 2 . Each
environment so formed is the seed of a situation. Generally several situations can
have the same active processes and views (since negating any precondition or quantity
condition suffices to deactivate a process or view), so they are divided into equivalence
classes called sclasses. The computation of situations and sclasses completes the first
justify/interpret cycle.

6.4

	

Step 4: Resolving Influences

This step determines for every quantity in every situation the sign of its derivative
(i .e ., the Ds value, one of -1, 0, 1) . In any particular situation Ds values are
computed by gathering the set of influences for each quantity and determining their
net effect . As the example in Section 5 indicated, in qPE this process occurs in
two phases . First, the closed world tables built for each quantity and each type of
influence (direct or indirect ; see (91 for details) are used to gather all possible sets of
influences and determine their effects where unambiguous . This part concludes the
justify phase of the second Justify/interpret cycle.

Second, the environments just generated are used to determine for each situa-
tion the Ds value for unambiguously influenced quantities . Ambiguities in influence
resolution (caused by multiple effects, such as simultaneous flow into and out of a con
tainer) force qPE to create new situations by extending the affected ones with addi-



tional assumptions about relative rates4 and Ds values . The second justify/ interpret
cycle is now complete .

6.5

	

Step 5 : Limit Analysis

Limit analysis finds state transitions. A limit hypothesis (LH) concerns possible
changes in quantity conditions or relative rates from influence resolution . Limit
analysis begins by considering each consistent combination of an inequality and the
Da values of its associated quantities . Table-lookup suffices to find how these in-
equalities can change [9], yielding the initial set of LHs (the justify phase of the third
justify/interpret cycle) . Potential simultaneous changes are found by testing com-
binations of LHs to see which of them are mutually consistent . As with influence
resolution, these computations are performed once per scenario, rather than once
per situation, greatly improving efficiency .

The rest of the computation proceeds by weaving these partial results together to
find transitions between states . First, the LHs applicable to each situation are found .
Second, for each situation/LH pair the state that would result from its occurrence
is computed . The temporal inheritance algorithm employed [11] explicitly manipu-
lates sets of assumptions, which in other TMS's requires constantly changing belief
states of a substantial part of the TMS database . The ATMS ability to explicitly
manipulate sets of assumptions substantially simplifies this algorithm and improves
its efficiency .

Being local, these results must be tested to ensure they satisfy various computa-
bility and continuity constraints (see, [9) for details) . These tests can be complicated
when objects vanish, since the relevant inequalities no longer exist . In other TNIS'
these tests require reinstalling the relevant inequalities and testing the new situation
so created . In the ATMS each situation contains an explicit assumption that cer-
tain laws pertaining to quantities hold ; to make these tests simply requires testing
the environment resulting from subtracting this assumption . Finally durations are
calculated using the Equality Change Law [9J, splitting situations as required .

The third justify/ interpret cycle is now complete, and so is the total envision-
ment .

7

	

Performance Analysis
Here we compare QPE's performance against GIZMO, the first implementation of QP
theory . A caveat : GIZMO was designed as a conceptual tool to explore QP the-
ory. Every theoretical assumption and reasoning step was explicitly represented in
GIZMO'S logic-based TMS [151 . Thus a typical conclusion in GIZMO might depend
on 250 assumptions, of which only three were scenario-specific . While inefficient .
these explicit assumptions were invaluable in debugging the theory . Conversely . QPE

{ Assumptions about relative rates are added to the relevant quantity spaces so that changes in
them may be detected .



Figure 4: QPE and GIZMO performance figures
These numbers were generated using a Symbolics 3670 with 474MB Eagle disk and
4MB RAM, using Release 6 .1 Zetalisp .

is designed for speed, and thus generates as few justifications and assumptions as
possible .

Figure 4 shows comparative run times on several examples from (101 . Normal-
ization is required, since GIZMO generates all situations arising from a given initial
state (attainable envisionment) and QPE generates all situations possible from every
initial state (total envisionment), typically a much larger number . Figure 5 shows
the average rate of situation production for each program on each example . Averag-
ing these rates across examples provides a rough index of performance improvement .
The result is that QPE is, on the average, about 95 times faster than GIZMO.

On closer examination, the three containers example is clearly the most com-
plex . It has more view and process instances than the others, hence more quantities
and inequalities are involved . However, QPE is significantly faster on the four blobs
problem than on the boiling example . Two factors seem relevant :

1 . Paging : As the number of situations grows, GIZMO'S performance is page-
bound. The four blobs example nearly exhausts a 200MB swap space, and
paging in the logic-based TMS accounts for 70% of the time . qPE uses signfi-
cantly less memory and hardly pages at all (around 1-2%) .

2 . Number of quantities: The Four Blobs problem has the fewest inequalities,
since temperature is the only quantity blobs have . The other problems involve

10

Measured data

Example Time
GIZMO
#Situations Time

QPE
#Situations

Two Containers NA 2 32 6
Boiling 465 6 28 25
Three Containers 6300 14 198 66
Four Blobs 14400 86 376 1275

Figure 5: Average performance, in seconds per situation
Example GIZMO QPE

Two Containers NA 5.33
Boiling 77 .5 1.12
Three Containers 450 .0 3.0
Four Blobs 167 .4 0 .29
AVERAGE 231 .6 2 .44



liquids and gasses, and hence more quantities and inequalities . Consequently
the search space is larger, with more ambiguous influence resolutions .

8 Conclusions
This paper introduces three abstractions for organizing ATNIS-based problem solvers :
Many-worlds databases, justify/interpret cycles, and closed-world tables . The utility
of these ideas was illustrated by outlining QPE, our new implementation of Qual-
itative Process theory with substantially improved performance (roughly 95 times
faster than GIZMO) . We believe QPE will be an essential tool in building the next
generation of qualitative models: Furthermore, we believe these ideas will be useful
for any problem where generating many solutions is desirable .

Based on our experiences, we offer several observations on using an ATNIS in
building problem solvers . The advantages are :

1 . Speed: By allowing many deductions to be done independently of specific situa-
tions, the ATMS can provide significant performance improvements . Instead of
drawing conclusions once per situation, inferences can be made for sub-contexts
and woven together to form complete solutions .

2 . Program simplicity : Avoiding explicit temporal references and providing the
ability to explicitly manipulate assumptions allows programs to be substan-
tially smaller and cleaner . For example, QPE consists of just over 4,000 lines of
code, while GIZMO is just over 15,000 lines . s

However, there can also be significant disadvantages in using an ATMS :

1 . Justifications must be written carefully . Installing too few justifications causes
combinatorial explosions during interpretation construction . Conversely, re-
dundant justifications causes vast inefficiencies inside the ATMS . Unlike a
logic-based TMS, where rapid prototyping is facilitated by allowing the user
to assert arbitrary propositional logic statements, the user of an ATNIS must
very carefully decide how each kind of fact is used and which facts will be
assumptions . An ATNIS which used disjunctive normal form for justifications
instead of Horn clauses, if efficient, could overcome this limitation .

2 . Intermediate interpretation bulge : While theoretically interpretation construc-
tion is order-independent, in practice considering choices in different orders
leads to dramatic performance differences . Early experiences with QPE showed
that choosing the wrong order could slow performance by a factor of 6, or
even overflow memory . A useful heuristic is to order choice sets by logical
dependency.

sBoth figures ignore user-interface code and the underlying inference engines, ADB and DEBACLE,
which are roughly the same size .



9 Acknowledgements

Several of the reasoning techniques described here, and the ADB problem-solving lan-
guage, were developed in collaboration with Johan de Kleer . John Collins, Brian
Falkenhainer, John Hogge, Barry Smith, Gordon Skorstad have all suffered through
alpha testing of QPE, uncovered many bugs, and provided extremely useful advice,
encouragement, and in some cases, code . Hogge's ZGRAPH display system has signfi-
cantly sped the development of this program.

This research was supported by the Office of Naval Research, Contract No .
N00014-85-K-0225.

References

[11 de Kleer, J . "Choices without Backtracking", AAAI-84, Austin, Texas, August,
1984

[2) de Kleer, J . "An assumption-based truth maintenance system", Artificial Intel-
ligence, 28, 1986

[3] de Kleer, J . "Extending the ATMS", Artificial Intelligence, 28, 1986

[41 de Kleer, J . and Brown, J . "A qualitative physics based on confluences", Arti-
ficial Intelligence, 24, 1984

[5] de Kleer, J ., Doyle, J ., Steele, G ., and Sussman, G. "Explicit control of rea-
soning" in Winston, P. & Brown, R., (Eds.), Artificial Intelligence : An MIT
Perspective : Volume 1, The MIT Press, Cambridge, Mass, 1979

[6] de Kleer, J . and Williams, B. "Back to Backtracking : Controlling the ATMS"
AAAI-86, Philadelphia, Pennsylvania, August, 1986

[71 Doyle, J., "A truth maintenance system", Artificial Intelligence, 12(3) :231-272,
1979 .

[81 Forbus, K. "Qualitative reasoning about physical processes" IJCAI-7, Vancou-
ver, B .C ., August, 1981

[91 Forbus, K. "Qualitative Process theory" Artificial Intelligence, 24, 1984

[101 Forbus, K . "Qualitative Process theory" MIT AI Lab Technical report No. 789,
July, 1984 .

[11) Forbus, K. "The problem of existence", Proceedings of the Cognitive Science
Society, 1985.

[121 Forbus, K. "The Qualitative Process Engine" University of Illinois Department
of Computer Science Technical Report No. UIUCDCS-R-86-1288, December,
1986

12



[13] Forbus, K. "Interpreting measurements of physical systems" Proceedings of
AAAI-86, August, 1986 .

(,14] Hayes, P. "The naive physics manifesto" in Expert systems in the micro-
electronic age, D . Michie (Ed.), Edinburgh University Press, 1979

[15] McAllester, D. "An outlook on truth maintenance" MIT AI Lab Memo No . 551,
August, 1980.

[161 McCarthy, J . and Hayes, P. "Some philosophical problems from the standpoint
of artificial intelligence" Machine Intelligence 4, Edinburgh University Press,
1969

[17] McDermott, D . and Sussman, G . "The CONNIVER reference manual" MIT AI
Lab Memo No. 259, Cambridge, May, 1972

[18] Morris, P., and Nado, R. "Representing actions with an assumption-based truth
maintenance system", AAAI-86, Philadelphia, Pennysylvania, August, 1986

[19] Moses, J. "Algebraic simplification : A guide for the perlexed" Communications
o/ the ACM, (14)8, August 1971

[20] Simmons, R. "Representing and reasoning about change in geologic interpreta-
tion", MIT Artificial Intelligence Lab TR-749, December,'1983

[21] Stallman, R., and Sussman, G . "Forward reasoning and dependency-directed
backtracking in a system for computer-aided circuit analysis", Artificial Intel-
ligence, (9), October, 1977, pp. 135-196

[22] Williams, B. "Qualitative analysis of MOS circuits", Artificial Intelligence, 24,
1984


