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The study of the qualitative physics of diffusional processes gives rise to challenging prob-
lems in cognitive modeling and in simulation. As is the case with qualitative physics in gen-
eral, when compared with the scien--e of physics, questions related to the nature of scientific
thought emerge . In particular, the issue of the difference, whether qualitative or quantitative,
between the scientific (mathematical) models of reality and the cognitive models. The formal
tools offered by mathematics to extract the knowledge which is captured in the mathematical
formulation of a process seem to be different in scope, logical economy and power from the
cognitive inferencing tools. The work reported here provides and opportunity to compare the
two approaches and gain some insight into their nature.

The physics of diffusion is close enough to everyday life physics that we can use vocabu-
lary borrowed from the latter to describe the former. At the center of our attention here is
the process of diffusional drift of particles that are enclosed by containers with irregular boun
daries and compositions . We are interested in reasoning about the effect of the size and shape
of the container and the composition of its medium on the diffusion transit time over a certain
distance. For example, in the case illustrated in the figure below, we are interested to know by
how much should the time to diffuse from a to b be influenced by the size of the opening d. Is
the dependency of the time on d linear, or is there no dependency at all? The answer is that
the diffusion transit time becomes sensitive to d only when d is less than 590 of the total cross
section of the container. 'fo grasp this argument we have to flip between levels of description
of the process and say that for a large enough d, even though the flux of particles forward to
the target is blocked, the flux of particles back, away from the target region, is blocked as
well, resulting in no real net effect on the overall diffusion time . However, if d is "very"
small (the exact figure has to be determined from a quantitative model), the particles will
have hard time finding the small opening during their random search, and the diffusional flow
will be inhibited.
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This should remind us that the physics of diffusion is different from the physics we encounter
in everyday life in one important sense. Its underlying dynamics is governed by random
movements of particles. Although to the naked eye there may be an observed flow fo particles
from regions of high concentration to regions of low- concentrations, there is no real driving
force behind it, and its only fuel is the thermal energy of particles. Coincidently, an elegant
derivation of some of the fundamental features of diffusion was aided by the introduction of a
virtual force that is responsible for the drift (Einstein 1906). This derivation was rejected by
the physicists community at the time and then later re-proved by others using a more "realis-
tic" mental model. This example may serve as a clue to the power of imagination that is going
on and which gives intuitive-physics its computational effectiveness .

The mathematical formulation for the process of diffusion is known for centuries . It is
based on the division of the diffusion medium into infinitesimal volume elements and the mon-
itoring of the change of concentration as a function of time in these elements (see for example
Lin and Segel 1974 and Hardt 1980b). This results in the diffusion equation which is a second
order partial differential equation, which in the case of diffusion along one dimension has the
form :
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with the fundamental (point release at, the origin into an infinite space) solution:

P(x,t) = (1/4 nD t Pe -I°`

Initial and boundary conditions do not affect the equation, they only affect the solution . these
conditions are formulated as equations that have.to be solved simultaneously with the original
diffusion equation. This fact implies that in order to reason about the effect of boundary
geometry on the, solution, one has to solve a different set of equations . for each unscaled varia-
tion in the size and the shape of the system . This an exceedingly difficult task for irregular
boundaries and inhomogeneous compositions .

Here we are after a different formulation of the model of the process which will facilitate
the estimation of the pace of diffusion and of other features of interest . Such model has to be
based on a set of concepts that are not visible in the classical mathematical formulations but
that can be viewed as combinations of behavioral and structural features of the system . A
clear distinction between structure and behavior, such as the one made in the mathematical
formulation above, is not too effective in supporting inferences because the dynamics of the
flow process is not simply related to the geometry of the system. Part of the problem solving
expertise in this domain is to determine the structure which is relevant for a particular prob-
lem set-up . Namely, to know which regions in the system should be ignored since the diffusing
particles get in and out of them quickly, and which regions have a strong effect on the time it
takes the diffusing particles to approach their target . The above observation implies that in our
case, the problem domain has no natural structure and therefore, a structure has to be imposed
by the problem solver . Hence, a major part of the problem solving task is to invent a structure
which can be appropriately imposed upon the domain. We have developed an expertise in
manipulating relevant structures for problems in this domain. To illustrate some of the expert
knowledge used to answer questions about diffusion times consider the following:

'Molecules released from the surface on the left diffuse to, and are trapped by the surface on
the right . The molecules are slightly soluble in water, and highly soluble in oil . In case (a)



they diffuse through the layer of oil before reaching the layer of water. In case (b) the thick-
ness of each layer is unchanged but the order is reversed so the molecules diffuse first through
the water and then the oil . Compare the transit times.

The same in both
Much longer in (a)
Much longer in (b)

The following relations will suffice to answer the above question . These relations are part of a
larger set of rules that have been formulated for this domain (Hardt 1987b). In all these rela-
tions the following is true :
(and (is-region ?a) (is region V (is-homogeneous ?a) (is-homogeneous ?b) (is-particle ?p) (is-
position ?x) (is-position ?y) (is-source ?source) (is-target ?target) (is-time ?t) (is-time ?ta) (is-
time ?tb) (is-time ?ti) (is-interface ?interface))

Relation 7: Symmetry
This relation states that the transit time between two points in an homogeneous space is
independent of the direction of the motion .
IF

	

.
((equal (transit-time of ?p from (?x in ?a) to (?y in ?a)) ?t)
THEN
(equal (transit-time of ?p from (?y in ?a) to (?x in ?a)) ?t))
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Relation 8: Accessibility
This relation states that the transit time is inversely proportional to the accessibility of the
target.

	

-
IF
((greater (accessibility of ?p to ?a) (accessibility of ?p to ?b))
THEN
(greater (duration of ?p at ?a) (duration of ?p at ?b)))

Relation 9: Interference
This relation states that the time spent going back and forth before being captured by a target
in one region is inversely proportional to the duration spent at that region .
IF
(greater (duration of ?p at ?a) (duration of ?p at ?b))
THEN
(greater (interference-time of ?p from (?source in ?a) to (?target in ?b))
(interference-time of ?p from (?source in ?b) to (?target in ?a))))

Relation 10: Time Decomposition
This relation states that the transit time across two regions is the sum of the times to cross
each region separately plus the interference time.
IF
((and (equal (transit-time of ?p from (?source in ?a) to (?interface in ?a)) ?ta)
(equal (transit-time of ?p from (?interface in ?b) to (?target in ?b)) ?tb)
(equal (interference-time of ?p from (?source in ?a) to (?target in ?b)) ?ta))
THEM



(equal (transit-time from (?source in ?a) to (?target in ?b)) (plus ?ta ?tb ?ti)))

Affinity
Given that all geometrical parameters are the same for the two regions, this relation states that
the accessibility of a region to a particle is proportional to its affinity to that region .
IF
((greater (affinity of.?p to ?a) (affinity of ?p to ?b))
THEN
((greater (accessibility of ?p to ?a) (accessibility of ?p to ?b))

	

.

To answer the question we realize that in case b, the sink is more accessible to the particles
and hence the transit time in this case is shorter . Consider now another problem:

Molecules released from one spherical surface diffuse to, and are .trapped by a second, concen-
tric, spherical surface. The radius of the inner surface is much less than the radius of the
outer surface . Case (a} the molecules are released from the outer surface and diffuse inward.
Case (b) : the molecules are released from the inner surface and diffuse outward . Compare the
transit times.

Longer in (a)
The same in both

	

~>

This problem can he ansvwered using. the relations mentioned above and by adding a rela-
tion that states that tfie ~uter target has the greater accessibility . Also, this problem can be
solved using a more campleft Jescription of sink parameters and their influence on sink acces-
sibility . The problem of' recognving problem features that are relevant for computing high
level features such as acceSMhihty is addressed by this reseach but will not be discussed here
(see Hardt 1986c, 1987b).

It becomes apparent from looking at these relations that the knowledge captured in them
provides a way to structure the diffusion domain, estimate the diffusion time in each part of
the structure, and combine the individual times . A mathematically exact solution method
which is based on a model which is a combination of the mathematical and conceptual models
presented above is given in (Hardt 1980a,b).

The work discussed here is related in many interesting ways to work done by other
researchers working on qualitative physics. The list of references at the end of the paper men-
tions some of them. Also, it may be mentioned that the problem solving task which concerns
us here may be consider as an example of a more general class of cognitive processes where the
processor has to impose its own (biased) structuring on the stream of inputs it has to deal
with. In very few cases the chunking that appears in the pre-processed input such as single
words in a sentence, individual objects in the visual field, sequence of events in a fixed time
period etc ., correspond in a one-one fashion to meaningful conceptual units .
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