
QUALITATIVE PHYSICS APPLIED TO A DEPROPANIZER IN PROCESS CONTROL

1. Introduction
The debate about deep/shallow knowledge has
been identified in the AI community
[HAR82] . In the context of process control,
cognitive ergonomists draw a similar
distinction . Operator's activity can . be
classified in three layers [RAS83] : skill-
based, rule-based and knowledge-based
behaviours . The knowledge-based paradigm
implies a deep understanding of how physical
systems work [JAK86] .
Recently, Qualitative Physics (thereafter
called QP) theories [DeK84] (FOR84]
[KU184] have endeavoured to simulate human
understanding and to produce causal accounts
of many physical systems behaviours.
The examples given in QP literature are often
"toy problems" : the devices are simple and
well understood, e.g . a bath-tub or a coffee
machine. Using the QP representation for a
real world problem is a challenge :
" An important problem with QP is indeed to
formulate a set of qualitative relations
involving an appropriate set of parameters of
the device to be represented . When the
device-topology approach of DeKlecr seems
partly inapplicable, and when the physical
equations are unavailable or unusable,
knowledge elicitation becomes a key issue .
" Another unsolved problem with QP is to
generate from raw data (especially numerical
data taken across time) a qualitative
understanding of how a physical system
behaves, in order to disclose internal
evolutions .

This paper presents how QP knowledge
representation can provide a helpful model of
an industrial process. Section 2 describes this
process : a depropanizer in a refinery, and the
operator control activity . In section 3, we
explain why and how we built this QP model
on the basis of an existing pedagogical
model . Section 4 is concerned with using the
QP model for both prevision and diagnosis,
two fundamental activities in process
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monitoring .
2. Study of a Real Case
The depropanizer
Depropanization (fig. 1) is a continuous
distillation process . A flow (Fl) of C3/C4
mixture with an unknown quality (A1) enters
the distillation tower where the pressure (P1)
conditions produces a flash (split between
liquid and vapor phases) . Heat (Qr) is
provided at the bottom of the column by a
reboiler and extracted at its top by a
condenser (Qc) . Bottom product (flow F4)
and head product (flow 175) must meet quality
criteria (A4 A5) . The liquid/vapor equilibria
on the tower trays are modulated by the
reflux (F2) which regulates the "sensitive
tray" temperature (T3) .
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Figure 1 : the Depropanization process

Data on the depropanizer are obtained
through a set of sensors (called the Sensors
Set) . Qualities are known with such a delay
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that they must be considered unavailable for
short-term analysis . Other parameters such as
the condensing power (Qm) or the reboiler
efficiency factor (KB) are unknown .
There is a set of possible causes (called the
Perturbations Set) of behaviour changes .
Some of these parameters can be controlled
by valves (e.g. operator's action on the input
flow in the reboiler F3), others cannot (e.g . a
change of temperature T4 in the input
mixture) . It must be stressed that some
parameters are not even measured, e.g . Al or
KB. So their variations are difficult to
diagnose .
These perturbations do not lead monotonically
from an initial state of the tower in stable
equilibrium to a final stable state : According
to the experts, these transitory variations are
difficult to analyse (delays in disturbance
propagation and controller responses) .

We had the opportunity to use a numerical
simulator, (designed and used for -training
purposes), as a valid approximation of reality .
The simulation is dynamic and not of a
black-box type. Hence careful experiments
have been possible by monitoring the
evolution of all physical parameters of the
process, measured or not .
Operators activity
Operators are required to control this type of
process which cannot be fully automated.
This control activity consists of reading and
interpreting sensors in order to globally
understand a given situation : what is
happening, what are the causes of the
disturbance and what are the proper actions.

This is why operators are taught the physical
phenomena underlying the distillation process .
It helps them to justify the rules which can be
applied in well known situations, and also to
cope with more difficult ones.
This teaching is essentially qualitative .
The following explanation is a description of
the depropanizer disturbed by an increasing
temperature in the rcboilcr. The reader is not
expected to understand the details of this
explanation but should just get a feel for the
style of reasoning involved (see fig . 1) :
When the input temperature in the reboiler 718
increases, the amount of energy transfered to

the bottom of the column Qr increases . The
pressure in the tower P1 staying steady, the
reboiling flow VO increases . There is no
change in the flash zone, so the vaporized
part of the feed Va stays steady and the vapor
in the top of the column B! increases. That
should lead to an increase of the "sensitive
tray" temperature T.? which is controlled, so
the refux F2 increases . . .

The attempt to formalize this type of
reasoning led us to use QP to modeLze the
depropanizer.

3 . Knowledge elicitation and modelization
The QP model developped is made of forty
constraints and fifty parameters. We used
Kuipers formalism to represent the qualitative
relations between parameters [KUI84]
[GAL86]. The constraints net is represented
on fig.2 1 .
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Figure 2 : the qualitative model
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t FUNK wont on dynamic behaviour might imply
QSIM-like simulation. However, our model, involving just
tendencies of the parameters, could also fit the confluences
equations paradigm (DeK84].



Knowledge available
In order to build this QP Model, different
sources of knowledge about the process were
available:
* The pedagogical model (henceforth called
P-model) taught by domain experts . It
connects some measured parameters with
other synthetic and operational parameters, as
internal reflux (LO) or the "separation index"
(PS) . They enable the operator to understand
a situation and use control rules . The relations
are material balances and oriented influence
rules between parameters, based on naive
physics (i .e. everything else being steady, if
parameter x increases, then parameter y
decreases) .
* The model of the numerical simulator, that
gives, for each time step, the values of every
physical parameter. It predicts their evolution
by iterative resolution of differential
equations involving material and energy
balance on each tray of the tower.
* Physics which provides equations, as for
instance heat exchange in the reboiler, or
thermodynamic knowledge about liquid-vapor
and constituents concentration equilibria (P T
V diagrams) .
Inadequacy of the simulator model
In contrast with what is done in QP literature,
the model cannot be extracted directly from a
functional diagram (as with electric circuits
[DeK84]) . If we represent the depropanizer
as a distillation process with two trays, the
component inflow/outflow analysis gives three
types of equations (which are fundamentaly
those used for the numerical simulation) :
-material balance which involves the flows
-energy balance which involves the fluids
enthalpies
-the balance of each constituent (C3 and
C4)
The later, when mapped to qualitative
equations were found inherently ambiguous
and therefore useless . For instance, in the
case of a stable feed for simplification (no
flash change), they give qualitatively :

caA5 = VO * M(A4) - (F2 + F5) * A5
DA4 = VO * M(A4) + F4 * (1 - A4) - F2 * A5
where M is a monotonic fonction
These equations do not enable any interesting
deduction on the evolutions of A4 and A5,

(qualities of extracted flows) . For instance, if
VO increases then F2 increases and there is a
first ambiguity for each equation . Besides,
tendancies on A4 and A5 produce crossed
effects upon each other .
Use of the P-model
Qualities are the parameters to keep under
control according to some production
objectives. The P-model refers to operational
parameters representing ill-formalized notions.
For instance the parameter called "cut point"
PC helps to infere the way the qualities
evolve . The P-model describes the link
between PC, the quality of the feed Al, the
flows Fl and F5 (definition of PC); and the
link between PC and the controlled "sensitive
tray" temperature T3 (tower design) .
Our approach has been to focus on this P-
model, developped by engineers who truly
understand distillation physics and distillation
tower design . It provides useful (operational)
and consistent explanations to the operator .
Improvement of the P-model
Unfortunately, the influence rules it relies
upon are oriented relationships which must be
analysed . The knowledge they emcompass
must be captured into constraints, to take into
account the "every thing else being steady"
precondition . Other sources of knowledge had
to be used

" Some physical knowledge has been
introduced to refine the P-model, as in the
flash zone :
The flash is a good example of the way
influences have been eliminated with the help
of physical and thermodynamical knowledge .
The flash splits the feed (with parameters
flow:Fl ; temperature : T4 ; quality : Al) into a
liquid (La) and a vapor (Va) flow under
pressure condition (Pl) in the tower. The
material balance :

F1 = La + Va
is used and the other relations in the P-model
are effects of T4, A1, P1 upon Va.
We studied the deep thermodynamic
phenomena (shown in fig .3) . A mixture of
quality Z (here Z--Al), which temperature is
raised at T (T=T4) under pressure P (P=P1),
splits in liquid and vapor phases with
concentration X and Y respectively . Thus, for
the feed flow Fl :
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Figure 3 : representation of the flash

Va = FI z-x
y-x

We assumed y-x remains steady, because at
the flash zone, the liquid/vapor lense of fig .3
is rather large compared with possible
perturbations on z-x due to Al, T4 or P1 .
This approximation holds in the P-model. A
last constraint links P (which induces the
vertical position of the lense), T (which
induces the level at which the flash split is
done) and y .

" When available and useful, physical
equations have been translated to qualitative
ones . In the reboiler, the following equations
describing the part of the efficiency factor and
the energy transfer were mapped to
qualitative constraints (see fig.2) :

4. Using the model
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Qr = l.t F3 (T8 - 79)

The QP model has been successfully
validated in forecasting by comparison with
the numerical simulator outputs . It is also a
good tool for diagnosis: the key point in
process control, according to experts and
teachers .

0 The prevision procedure consists of two
steps :

[1] Initialization : values of all the
Perturbations Set parameters are first set to
"steady" . Then, the disturbed ones are
changed according to the direction of
perturbation . Active controllers are taken into
account by setting the controlled parameters
value to "steady" .
[2] Propagation : the qualitative variations are
then propagated through the constraint
network using the qualitative algebra.

The trace of the propagation is a justification
for the final qualitative state . The program
produces a chain of inferences until further
propagation becomes impossible .

An important point was to make multiple
perturbations prevision always consistent:
although some parameters may be ambiguous
(i .e . .stay unknown), the constraint network is
never inconsistent. Ambiguities correspond to
truly contradictory effects of different causes .

The prevision can only be performed from a
stable state to another stable state . Qualitative
simulation of transient evolutions remains a
difficult problem, due to controllers
behaviours and delays.

0 Diagnosis is detecting which parameters
among the Perturbations Set have changed
and in which direction . Remember that not all
these parameters are measured .

According to the temporal perspective,
diagnosis can be used in two different
situations:

*past diagnosis, between two stable states,
can use global balance equations . It is
therefore more powerful, but the stability
condition implies long spans of time before
this diagnosis can be performed . The idea is
that it can also be used for slow perturbations
(e.g. reboiler loss of efficiency) when the
equilibria are maintained .

"present diagnosis, between a transient state
and a reference state, which must be stable
relatively to hydrodynamic equilibria only .
Global balance equations (encoding
thermodynamic equilibria which are slower)
cannot be used in that case. This allows the
diagnosis to be obtained "sooner" but it is
less precise .

The diagnosis procedure involves four steps :

[I] Data acquisition and translation : values of
all the Sensor Set parameters are read from
the simulator, then compared with a



convenient reference. A fixed threshold gives
the qualitative translation of the quantitative
variation .
[2] Propagation : as in prevision ; this is one
use of constraints .
[3] Consistency-checking: The values
assigned to the parameters of the network in
the propagation step are not necesserily
coherent. Constraints must be checked for
consistency; this is another use of constraints .
[4] Causes finding :
- if the previous step is successful (i .e . all
constraints consistent), parameters among the
Perturbations Set which have been assigned a
variation value are suspected .
- if not, the entire chain of data acquisition
(real value -(1)-> mesured value -(2)->
qualitative value) can be suspected : (1)
because of a sensor failure, (2) because of a
false quantitative/qualitative translation . This
problem is a crucial issue for operational use
of QP.
Diagnosis modules have been tested using the
simulator as an approximation of the real
process . They can generate new
perturbation(s) hypotheses and validate past
hypotheses in a continuous loop .

5 . Conclusion and perspectives
A QP model of the depropanizer has been
designed. It is the formalization and
improvement of a pedagogical model used for
operators training. Depropanization is one of
the simplest distillation process but, according
to experts, this QP model can be generalized
to other kinds of distillation towers .
Different packages (prevision, present
diagnosis and past diagnosis) have been built
around the QP model. Their integration in a
monitoring system of the process is under
development. Managing several hypotheses of
diagnosis and their validation through time is
the way to use operationally the QP model
and especially to deal with numerical data
interpretation.
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