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1 INTRODUCTION

One central problem in (qualitative Physics is the qualitative prediction of long-time
behavior of physical dynamic systems . The machinery developed for qualitative
reasoning - qualitative state vector, quantity space, and limit analysis - are largely
applicable to systems which are piecewise well-approximated by low-order linear
systems or by first order nonlinear differential equations [3,4,13,12,9] . Nonlinear
systems, in general, exhibit a far richer spectrum of dynamical behavior . Simple
equilibrium points, periodic and quasiperiodic motion, limit cycles, chaotic motion
as unpredictable as a sequence of coin tosses - these are some of the behavior found
in a typical nonlinear system .

In this research, I therefore propose to look at dynamical systems - those typi-
cally encountered in Physics - to provide a new source of examples for investigation
into the fundamental issues of descriptive language, style of reasoning, and repre
sentation techniques in qualitative reasoning about nonlinear dynamical systems ..
Specifically, I will consider two-dimensional discrete dynamical systems defined by
area-preserving maps containing a single control parameter. The study of area-
preserving map - transformation of the plane which preserves area - began with
the venerable problem of the stability of the solar system. I choose to investigate
this simplest non-trivial type of conservative system because many important prob-
lems in physics - the restricted 3-body problem, orbits of particles in accelerators,
and two coupled nonlinear oscillators, just to mention a few - can be reduced to
the study of area-preserving maps.
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THE TASK

Given an one-parameter area-preserving map defining a discrete dynamical system,
I am interested in describing the the complete qualitative dynamics of a nonlinear
system over a large region of the phase space and parameter space. This is a
fairly common problem in the physics literature. A good illustration of this task
is provided by Henon's well-known paper, "Numerical Study of (quadratic Area-
Preserving Mappings" [7] . The goal of Henon's paper is to provide a description of
the main properties of the quadratic snap :
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where x and y are the state variables, and a is the control parameter. The main
results of Henon's paper are shown in Figures 1(a)-(f), which display the output. of
many numerical simulations.

Figure la represents a number of trajectories (sequences of points) for cos a =
0 .4 . . . a regular structure in a. neighborhood of the elliptic fixed point at the
origin, and farther away a chaotic zone . In many places the plotted points are
so dense that they give the illusion of a continuous curve. Near the origin .
the "curves" are almost circular . As we move outward . the curves become
distorted . Just inside the outermost regular curve lies a chain of six closed
curves, or "chain of islands" . Successive points of a trajectory jump from one
island to another by application of the mapping. Finally, as the curves become
more distorted, there is a sudden break-up and the set of points no longer lies
on a curve, but seems rather to fill a two-dimensional region .

Figure 1 : A partial list ofphase portraits from numerical experiments. (a) a = 1 .16
(b)a=1.33(c)a=1.58 (d) a=2.0(e) a=2.04 (f) a=2.21 . Dashed line : axis
of symmetry.

To illustrate the vocabularies that a physicist. uses to describe the qualitative be-
havior of nonlinear systems, we examine the following description of one of the phase
portraits obtained from the results of numerical experiments with the quadratic map
(see next section) :



What is striking in this description is that the language is entirely geometric : it
contains terms like feed point, continuous curve, chain of islands, two-dimensional
region etc . A goal of this research is to develop a clear understanding of the geomet
ric language displayed in the above description. In particular, I want to understand
how representation and reasoning techniques based on the geometric language can
be used as a basis for a program to perform automatic numerical experiment control
and interpretation .

WHAT IS THE KNOWLEDGE
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Qualitative Dynamics and their Geometry

Restricted to a constant energy surface, a conservative system of two degrees o¬
freedom has a 3-dimensional phase space . A torus is called invariant if an orbit.
starting at a point on the surface of the torus stays on it forever . (qualitatively, three
special types of motion are important: (1) periodic motion lying on aij invariant
torus, (2) quasiperiodic motion that densely covers an invariant torus, and (3)
chaotic motion that wanders in a 3-dimensional volume of the phase space .

If we take a 2-dimensional cross-section of the 3-dimensional flow, we have the
following correspondence between special types of motion and their geometrical
manifestations on the cross-section :
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Bifurcations : Qualitative changes in the phase portrait

Two phase portraits are qualitatively equivalent if there exists a homeomor-
phism between them which preserves fixed points, periodic points, invariant curves,
and their stability . Bifurcation is said to occur when the dynamical system goes
through a qualitative change in its phase portrait as the control parameter is varied .
I will focus on one important type of bifurcation : appearance and disappearance of
periodic orbits .

periodic motion periodic points
quasiperiodic motion invariant curve
chaotic motion t~ chaotic region



Meyer [101 gives a complete classification of the generic bifurcations of periodic
points for one-parameter area-preserving maps. There are five types of generic
bifurcation : (1) extremal, (2) transitional, (3) phantom 3-kiss, (4) phantom 4-kiss,
and (5) emission . Because of space limitation . I only discuss the case of phantom
3-kiss as an illustration of what the bifurcation geometry is, and how it can help
solve the control and interpretation problem.

Figure 2 : Bifurcation Geometry of Phantom 3-kiss .

Phantom 3-kiss occurs when the multiplier \ of the map' is a cube root of unite .
The region of stability of the elliptic fixed point shrinks to zero as the hyperbolic
points of an unstable period-3 cycle "kiss" at the origin . After the "kiss", the
fixed point turns elliptic again, and a new unstable period-3 cycle is emitted . Note
the change in orientation of the triangular region around the elliptic point . The
phantom 3-kiss is often preceded by extremal bifurcations in a region a bit further
away from the original elliptic fixed point, resulting in the formation of a pair of
elliptic and hyperbolic period-3 points .
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APPROACH TO THE CONTROL PROBLEM
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The Control Problem consists of three sub-problems : (1) How to start the nu-
merical experiment? (2) How to decide what experiment to try next? and (3) How
to decide when to terminate the experiments?

Elliptic fixed points are good places to start . We expect that. the orbits near
an elliptic fixed point, where the linear terms of the map dominate, will be mostly
invariant curves . Knowing the generic bifurcation patterns is valuable for controlling
numerical experiments . Once a given flow pattern is found to match some parts



in our library of bifurcation geometries, it will give us strong evidence that the
corresponding bifurcation exists, and we should be able to locate the rest of the
flow patterns as given by the generic bifurcation . The pre-stored knowledge about
these bifurcations gives us the complete information about what geometric objects,
and approximately where in the control parameter space to look for .

To take an example, consider the phantom ,3-kiss seen in figure Id . According to
the bifurcation pattern, the regular region around the stable fixed point will shrink
in size, becoming an unstable fixed point ; eventually, a new stable fixed point is
born . So, we should expect to see figure if at some a slightly greater than two .

Besides imposing a strong constraint on what can be expected to happen in
the phase portrait, the generic bifurcations also provide answer to the problem of
termination : a simulation experiment is incomplete unless all the major qualitative
features in the phase portrait can be explained by this finite list of local generic
bifurcations .

5

	

SOLVING THE INTERPRETATION PROBLEM

The Interpretation Problem consists of the following sub-problems :

l . Orbit Type. How can one recognize the orbit type - a 0-dimensional finite
point set whose elements are encountered repeatedly, a 1-dimensional smooth
curve, or a 2-dimensional region - of a set of iterates?

2. Clustering . How can one determine the number of islands in an island chain?
This number gives the period of the enclosing periodic point .

3 . Area and Centroid . How can one estimate the centroid and area enclosed
by the curve? The centroid is a good approximation of the location of the
enclosing periodic point . The area gives a measure of saliency of the island
chain .

4. Shape . How can one recognize the shape of the curve?

In the following, I will show how these four problems can be solved by applying
techniques from computational geometry and computer vision . Euclidean minimal



spanning tree (EMMST) [11], and scale space image [14] - these are the two important
data structures used by the interpretation program . The main processing steps are
as follows .

Step 1 . The program computes a EMST from the input point set using the
Prim-Dijkstra algorithm .

Step ? . The program detects clusters in the EMST by looking for edges in
the tree that are significantly longer than nearby edges . Such edges are called
inconsistent [15] . The criterion of edge inconsistency suggested by Zahn is used
to detect inconsistent edges . Inconsistent edges are then deleted, breaking
up the EMST into connected sub-components . These sub-components are
collected by ,a depth-first tree walk .

Step 3 . If the clustering procedure detects inconsistent edges in a given point
set, the program concludes the point set represents an island chain . If, instead,
no inconsistent edge is found, then the program examines the degree at each
node of the EMST . For a smooth curve, the EMST consists of two terminal
nodes of degree one; the rest, degree two. For a point set that fills an area, its
corresponding EMST consists of many nodes having degree three or higher .

e Step !, . To compute the area and centroid of the region bounded by a curve .
the program generates an ordered sequence of points from the EMST, and
spline-interpolates the sequence to obtain a smooth curve. The smooth curve
is encoded using chain coding [5] . Straightforward algorithms are then applied
to compute the area and centroid .

Step 5 . A curve is parametrized by C(s) = (x(s ), y(s)) where s is the arc length
along the curve . The two functions x(s) and y(s) are computed from the chain
code representation. Then, x(s) and y(s) are smoothed by the Gaussian and
its first two derivatives of multiple spatial scales . Finally, the zero-crossings of
the curvature function rc(s), and the signs of K(s) are computed to determine
the locations and type of the extrema.



Appendix

The appendix is included as a reminder for some of the concepts and definitions of
Dynamical Systems Theory. It should not be necessary for most of the reviewers to
labor through this section .

A dynamical system consists of two parts : (1) the system state, and (`?) the
evolution law . The systerh state at any time to is a minimum set. of values of vari-
ables {xi, . . . , x, } which, along with the input to the system for t > to , is sufficient
to determine the behavior of the system for all time t > to . The variables which
define the system state are called state variables . The conceptual n-dimensional
space with the n state variables as basis vectors is called the phase space . A state
vector is a- set of state variables considered as a vector in the phase space . As the
system evolves with time, the state vector traces out a path in the phase space ; the
path is called an orbit or a trajectory . Finally, a phase portrait is a partition
of the phase space into orbits .

The evolution law determines how the state vector evolves with time . In a
finite dimensional discrete time system, the evolution law is given by difference
equations . The difference equation is specified by a function f : X - X where X
is the phase space of the discrete system . The function f which defines a discrete
dynamical system is called a mapping, or a map, for short . The multipliers of
the map f are the eigenvalues of the Jacobian of f . An area-preserving snap is a
map whose Jacobian has a unit determinant .

The set of iterates of f, { f' °(x) I n E Z }, is called the orbit of x relative to
f; it. captures the history of x as f is iterated .

Two types of point have the simplest. histories - fixed point, and periodic point .
The point x is a fixed point of f if f(x) = x. A fixed point. x is called stable, or
elliptic, if all the multipliers of f at x lie on the unit. circle ; it is called unstable, or
hyperbolic, otherwise . The point. x is a periodic point of period n if f"(x) = .r .

The least positive n for which fn(x) = x is called the period of x . The set of all
iterates of a periodic point forms a periodic orbit .
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