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PRELIMINARY PAPER

The main objective of this paper is to present a formal theory of the molecular

onthology approach to the modelling of physical systems introduced by [5] and

informally described in the same paper .

In qualitative modelling of physical systems [8] the use of molecular descriptions

was introduced, but not developed, in [7] and also introduced in [2] .

A theory for molecular structures will be presented here and it will be called

"Molecular Onthology Theory" (MOT) [1] .

First an Universe U will be defined as a set of a Places endowed with a family of

adjacency relations (Ai
* : i E 1) .

The adjacency relations will be extended also on two sets of primitive elements,

molecules (M) and obstacles (O). One and unique place in U is associated to any

element of M and O and the collection of these places contitutcs a configuration of a

physical system .

In this structure, molecules and obstacles can move: a movement determines a

change of the whole configuration . The movement of molecules is local and it is

determined by the application of a set of local rules expanded by means of messages .

In this direction the specific example of the qualitative modelling of the behaviour

of liquids will be presented in a bidimensional Universe with a priviledged direction

of falling .

Finally, the semantics of expressions in a language for direct representation

[61,[91,[10],[4] will denotate the configurations and the message function will provide

the denotation of transformation expressions rules.



1 .1 Places Universe

Let P a non empty set of elements p, q, r, . . . . . e P called places .

An oriented adjacency between places is an antireflexive and antisymmetric
binary relation A+ on P, A+s, P x P. Two places p, q e P are adjacent with respect to the
orientation +, with q as the next element of p, iff A + ( p, q ) (fig.1) .

4 P

Figure 1 - The place p is adjacent to q

The adjacency relation with an orientation opposite to A+ , denoted by A" s, by
definition, the transpose of A+ . A non oriented adjacency relation A is the union of
an oriented adjacency relation and its transpose (A=A+UA -) ; in this way p and q are
adjacent iff they are in the oriented relation A+ or in its transpose A -. Notice that the
adjacency relation A is symmetric and antireflexive .

Once given a set of places P, we define a universe of places U on P as a family

{ A i+ : ie I),

	

with

	

index

	

set 1=( 1, . . .,

	

k),

	

of

	

oriented

	

adjacency

	

relations

	

iff

	

the

	

next
condition,

	

called

	

the mutual exclusivity

	

holds : Vi,j e I, ixj A+i (p, q) =* -A+j (p, q) . We
denote by a = (Ai+, Ai- iEI) in the sequel .

The dimension of an universe of places is the cardinality of I. A general adjacency
relation

	

A* c (P x P) is defined as follows: A* _ {U i ( A+ i U

	

A_
i)) .

Notice that the general adjacency relation A* is symmetric and antireflexive .

1 .2 Molecules, obstacles, positions and configurations

Let M={m, n, . . . ) and O=(o, r, . . .) be two not empty sets whose elements are
respectively called molecules and obstacles .

	

Any pair (II C , Qc) where II e (;~- M x P



and S2 c _Q_ O x P is a possible

	

configuration of the universe iff the following
conditions are satisfied (for a formal description see [1]) :

(l .m) a place cannot contain two molecules in the same configuration;
(2 .m) a molecule cannot occupy two places in the same configuration;
(Lo) a place cannot contain two obstacles in the same configuration;

(2 .o) an obstacle cannot occupy two places in the same configuration;
(l .m .o) a molecule and an obstacle cannot occupy the same place in a

configuration .
The set rI c (resp. S2 c ) is called the set of molecules (resp. obstacles) positions, the set

of all possible configuration in U is denoted by Z.
Non-comoenetrabilitv : Conditions (l .m), (Lo), and (l .m .o) respectively define

the non-compenetrability property between molecules, between obstacles and
between obstacles and molecules.

Once

	

given

	

a

	

configuration (II c ) f2 c ) E Z

	

we

	

introduce

	

the

	

set Pm c of places

occupied

	

by

	

molecules,

	

the

	

set

	

Poe of places occupied by obstacles

	

and the

	

set Pvc o f
empy places at the configuration ; in symbols (fig . 2) Pmc= {p E P 13 (p, m) E rIc ) ; Poe =
{ p E P 13 (p, o) E f2c ) ; Pvc = P\ PmcU P°c.

B

A

Figure 2 - A represents Pm c , B represents Poe and C represents Pvc

Let

	

T= f to , t l , . . . )

	

be

	

a

	

discrete

	

time

	

set

	

whose

	

elements

	

are

	

interpreted

	

as

	

time
instants, with initial instant to , i .e . a countable set endowed with a total order with
respect to which it is lower bounded by the least clement to E T .



A dynamic evolution in U is any family of pairs indexed by t e T

{(n,, fi t): t E T)
such

	

that

	

every (171 t, S2 t) is a possible configuration (and so in particular nt g_ M x P
and

	

Sg t g_ O x P) at t. In the sequel a possible configuration at t will be denoted by St .
n t (resp . Sg t ) is the set of the places occupied by molecules (resp. obstacles) at the

instant t . We set
ii = {(m, p, t) : (m, p) e nt , t E T) g_ M x P x T

S2 = Ro' p, t) : (o, p) E Sg t , t E T) g- O x P x T
and a dynamic evolution will also be denoted by (rI , S2) .

For any instant t, adjacency relations between molecules, obstacles and places can
be defined in a straightforward way, for instance, a molecule m and an obstacle o are
adjacent in an instant i iff they occupy adjacent places in the given t : At+ (m, o) iff

(m, p, t) E 171 A (o, q, t) e S2 A A+(p, q), and so on .

1 .4 Movement of molecules and obstacles

A molecule m moves in U passing from a place p at t to a place q adjacent to p at t+1
(the movement of a molecule is instantaneous - fig. 3) if and only if the following
conditions are satisfied :

i)

	

At*(p, q)

	

i.e., p and q are adjacent at t ;

ii)

	

(m, p, t) E Fl

	

i.e., the molecule m occupies the place p at t ;
iii)

	

(m, q, t +1) E rI i .e ., the molecule m occupies the place q at t+l .

Figure 3 - Movement of a molecule
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Let us consider a molecule m E M which at t is in the position p, i.e . (m, p, t) E rI ; we
say that this molecule doesn't move from p iff condition i) and iii) are not satisfied :

3 q E P, A*(p, q) A (m, q, t +l) E II ; equivalently : `dq E P, q$p -iA*(p, q) v -1 (m, q,
t+1) E rI .

The consequence of this is :
(4.m) if a molecule occupies an insulated place (i.e . a place not adjacent to any

other places) at t, then it doesn't move;
(4.o) if an obstacle occupies an insulated place at t, then it doesn't move.
Moreover, we -do require that the following conditions hold :
(5 .m) two adjacent molecules cannot interchange their positions;
(5 .o) two adjacent obstacles cannot interchange their positions.

Theorem

	

1 .1 : Let (m, p, t) E II A (n, q, t) E rI A A*(p, q) . If m moves in q in the
interval t, t+l, i.e.(m, q, t+l) E II then 3r E P I A*(q, r) and n moves in r in the
interval t, t+1, i.e . (n, r, t+1) E 11 .

1 .5 Changes of configuration in the universe

Once given
E m=( II t : t E T)
Flo=( 92 t : t E T)

E

	

=( St : t E T)

Figure 4-

	

Configuration

	

change

a dynamic evolution

	

(rI , S2) in U let us introduce the following sets :
which represents the molecules dynamics
which represents the obstacles dynamics
which represents the system dynamics
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It is possible to consider E as the representation of the dynamic evolution of the
system in T, in which configurations St are the states of that evolution . Sto is the
initial state of E. Let [to, to+n] denote the discrete time interval between to and to+n,

(t0, t0 +1, . . ., t0 +n), we define dynamic process the [t0, t0+n) - segment of the system
dynamics, i.e . the collection of states E (n) : = (Sto , St0+1' . . .' St0+n) 9- E

Let r= (g l , . . ., gn ) be a

	

fixed

	

finite

	

set

	

of configurations

	

representing desired

	

system
states, called goal . A succesfull

	

dynamic process (SDP) of a dynamic evolution
11, 0 )

	

is

	

a dynamic

	

process E (n)

	

,

	

in which the final

	

state belongs to the set of fixed
goals :

1 .6 States of molecules

SDP = E (n) I StO+n E r

S,+1,, is called
change (fig . 4) ; the configuration change is due to the application
behaviour rules which are defined once that a particular type of

considered and they give their instantiation . For any fixed initial

St0 the local behaviour rules determines, with an iterative step by step
process E depending from the choice of Sto .
general characterized by a set X=(sl, . . .,sn) of

formalized by a function
Bool = (Success, Fail) .The

change if g =Success,

The

	

passage

	

from

	

a

	

configuration

	

St to a configuration
configuration
of some local
molecules is
configuration
application, in a unique

A particular
possible individual states . The local behaviour rules arc
l .L : (M, X) x P x cc x St --> Boolx St+l, called message, where
application of this function determines the configuration
for a particular molecule .

The simulation of a process is a dynamic evolution in which an initial state, a set
of local behaviour rules and a set of goals is provided .

In the next section we will see an example for a computational model for processes
simulation for molecules of liquid, in a bidimensional
proper states and transition rules, and behaviour rules .

way a dynamic
type of molecules is in

2 . THE CASE OF LIQUIDS

universe, with

St+1

associated

Modelling liquids behaviour in a qualitative way is one of the most dealt with
example in literature [7],[3],[2] . In this section an example of liquids modelling using
MOT will be presented : it is limited to a bidimensional finite universe with a falling
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direction (gravity) .
After a brief description of the main features of this universe, the notion of state

of molecules of liquid and the set of state transition rules will be given.

The dynamic behaviour of liquids will be defined by a set of local behaviour
conditions applied by means of messages exchange expressed as a functional

application . General assumptions here assumed are :

each molecule represents an arbitrary indivisible quantity of liquid ;
in this model speed and pressure are not considered ;
viscosity and flexibility are not considered .

2.1 The universe of liquids

In this section the description of obstacles (with associated the status of "solid
molecules") and of liquid molecules will be given. The universe U of places is
bidimensional (fig .5) since two oriented adjacency relations are defined on it : (the
oriented rightwards-adjacency relation and the downwards one, denoted resp . by

	

A' ,

A'1 , whereas their transpose, denoted by A4- , A? are resp . the leftwards-adjacency and
the upwards-adjacency .

Figure 5 - Bidimensional universe

M= f m, n, . . .)

	

and O= f o, r,

	

. . .)

	

are two non empty sets whose elements are respectively
called liquid

	

molecules and solid

	

obstacles . Also in this case, 11c C_ M x P and 92c s-

O x P are the set of liquid molecules positions and of solid obstacles positions whose
elements satisfiy conditions (l .m), (2.m), (Lo), (2.o) and (l .m .o) (fig.6).



empty place

lace Occup;ed 6Y" c&sQcIe

place. occupi e,-~

	

6)' a
molecule of

	

l,d UI*caIs

Figure 6

Let Al t (fig . . 7) be the relation of downwards-adjacency at t; for instance, either
between molecules : AJ.

t(m, n), where m, n e M, or between empty places : Al t(p, q),
where p, q E P" t , or between molecules and places : AJ.

t(m, q), where m E M A q E Pvt,
and so on.

Figure 7

An aggregate of solid obstacles OAt is a maximal set of adjacent solid obstacles at

tand it is called object (fig . 8) :
tfo E OAt 3r E OAt 3p, q E P I (o, p, t) E rl

	

A (r, p, t) E rl

	

A A*t (p, q) .

Figure 8
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2.4 Notion of state of molecules of liquid

The state space of a liquid molecule m e M is a boolean set X=(L,B) where L means
free and B means bound (fig 9) .

0

	

e rr, p ry

	

place
0 OLSCacle

0

	

Free Melecc, le,
bound molect4le.

Figure 9

A molecule m E M is free at t iff an empty place downwards-adjacent to it exists
(fig . 10):

(i)

	

3P E

	

Pvt, Alt(m, P)
or if a free molecule downwards-adjacent to it exists :

(ii) 3n e M =* Al
t(m, n) A n=L.

Figure 10 - Free molecules

A molecule m E M at t is bound iff a solid obstacle is downwards-adjacent

	

to it (fib .
11) :

(i)

	

3 o E O, A ft(m, o)
or if a bound molecule is downwards-adjacent to it :

(ii) 3n E M =* AJ.
t(m, n) A n=B .

9



Figure 11 - Bound molecules

State transition rules : Liquid molecules can change their state with the
following set R=(rl, r2} of state transition rules:

r l . A free molecule at t becomes bound at t+l iff :
either

	

(i) A'1t+1(m, n) A n=B ;
or

	

(ii) Alt+i(m, o) A o E O.
r 2. A bound molecule at t becomes free at t+l iff:
either

	

(i) A t+1(m, p) A p E Pvt+1 ;
o r

	

(ii)

	

Aft+1(m, n) A

	

n=L.

2.3 Liquid molecules movement and configuration change

In the movement of liquid molecules in U the particular falling direction plays a
fundamental role : it acts at t only on free molecules and determines a vertical falling .
Bound molecules can move only if sollecited by other molecules. In this case the
falling direction directly determines the transition state rules.

Figure 12 - Molecule m is on molecule n



The message function for liquids behaviour is as expressed:
g : (M,X) x P x a x St -) Bool x St+1

where M is the set of molecules, P is the set of places, a = { A 1 , A4 , A-+ , A

	

St and
S t+j are the possible

	

configurations

	

at instant t

	

and

	

t+l,

	

respectively .
In fig.14 the mechanism of returning message is illustrated.
As in general, in the universe of liquids, the simulation of a dynamical evolution

in U where an initial and a final state are given as yield by the application of g .

Figure 1 4

t t+1 t t+1

ok fail
fail

T

t t+1 t t+1
fail

okok fail

t t+t t t+1
fail

ok
ok ® .:.x

. ..£

bQund obst=,cle



Function g (m, Tf, a, St) : Bool, St+1

1
if m=L

if Alt(m, P) and P e P't

en .
if m=B
becin

end;

end.

then m moves ; )..1. = Success, St+1 ;

if Alt(m, n) and n = L and N . ( n, Tf, Al, St ) = Success, S,+1
then m moves ; }.t. = Success, S,+1"

if Alt(m, n) &ad, n = B
fa x random ( AT, A'~, A'+ , A<- )

i_f ).1 . (n, q, x, St ) = Success, St+1
then m moves; }.L = Success, St+1 ;

	

xi ;

else m doesn't move; St+1 = St ; g = Fail, St+1 ;

if a(m, p) "p e P"t and not ON(p, r)

then m moves; 9 = Success, St+1 ;

if oc(m, n) and n = L and g (n, Tf, A', St ) = Success, St+i
hen m moves; )..1, = Success, St+l ;

if

	

a(m, n) " n = B
for xrandom ( AT, A4 , A'', A*")

Lf g (n, Tf, x, St) = Success, St+1
then m moves; )..1. = Success, St+, ;
else m doesn't move ; St+1 = St ; [t = Fail, St+l ;



3. DIRECT REPRESENTATION AND LIQUIDS UNIVERSE

As suggested in [6] we can see a class of languages larger than that in which the

unique semantic primitive is the application of an function to an argument [10] : it is

possible to introduce a general notion of representation language ( .Cr) as a language

with an associated semantic theory, a calculus which associates language expressions

to individuals, relations, actions, configurations, etc. of the world the language itself

expresses knowledge about. In this way, a semantic theory which defines the

meaning of the 'expressions as a language makes a formal language a representation

language .
A

	

representation

	

language Lr<C, G> is defined by a set C of possible configurations

on a vocabulary P of primitive symbols and by a set G of grammar rules to produce

new configurations on the basis of some given.

A model for Z r is given

	

by a finite set of entities as primitive symbols meaninigs,

an interpretation function which associates any symbol to the particular meaning

and, for each grammar rule by a semantic rule which defines the meaning of a

configuration in terms of aggregation of the meanings of its parts [12] .

This general notion of language can also be used for direct representation

languages: the most meaningful notion in a direct representation language 1,.<C, G> is
the notion of cpnfiguration : in }r a configuration represents a particular situation
where each clement is given once and all its relations with other elements are

concurrently present .
In our example primitive symbols of our language

	

J r are three:

which represent an obstacle o E O ,
s
O

which represents a free molecule of liquid m E ML

	

and

which represents a bound molecule m E MV .
Configurations transformations can be defined in terms of productions in a

contextual bidimensional grammar.

An

	

arbitrary

	

number of adjacent

	

obstacles

	

is

	

called

	

object ;

	

in

	

Ir an

	

expression

	

in

which a certain number of adjacent obstacles will denote an object .



In the implemantation of our example an object's library of meaningful tools to
deal with liquids has been built . For instance :

represents a generic container.
Each

	

configuration

	

S t e C of this symbols is an expression of b r . For instance :

represents a container with bound molecules of liquid and a free molecule going
into it . A tap represents a source [1] yielding free molecules which fall (they occupy
the empty downwards-adjacent place) :

The configuration change from Sts C to St+IE C occurs with the application of'.l, .

The simulation of a process is defined by a sequence of configurations with an initial

state and a set of final states representing desired goals . In this way an operational
semantics is associated with grammar .rules . Intermediate states can be occur in



according which general MOT conditions .

3.1 From the universe to the bidimensional array

Bidimensional universe U introduced in section 2 is represented in a computational
system by a bidimensional array called World . It is possible to establish a
correspondence between the objects of MOT: to each place p E P the pair < i, j > is
associated with,

	

i, j E N and with i e 0 .. .max

	

i and j E 0.. .max

	

j.
The set P t of empty places in a configuration is

Pvt= {<i,j>I<i,j>EPA World (i,j

	

NM).
where World is a predicate assigned to the pair (i, j) denoting an object and

retourning NIL if no objects occupy the position in the array denoted by the pair <i,j>.
Each molecule is an instance of the flavor MOLECULE (see the Object Oriented
programming techniques adopted for the implementation of the model [I]J111 in a
given

	

configuration .

	

The

	

set Pm t of molecules in a configuration is
Pmt= (< i, j >

	

I < i, j > E P A is moleculc(World ( i,j)))
where is -molecule is a predicate which asserts that the object in the position

individuated by

	

<i, j> is a molecule . The same holds for the set Pot of obstacles:
Pot = {< i, j> I < i, j> E P A

	

is obstacle(World ( i, j)))
The adjacency relation A* is so represented :

A*(< i, j >, < h, k >) a (i = h A 1(j-k)I = 1) v (j=k A ((i-h)I =1)
Molecules of liquid and obtacles are represented on a bidimensional graphic video

by pixel matrixes 4x4 as schematicly illustrated in fig. 15 .



4. CONCLUSIONS

Figure 15

On the basis of proposed Molecular Ontology Theory applied to liquids and of
representation choices of J r a program for the qualitative simulation of liquids
behaviour [11],[5] has been implemented. It is presently installed at the laboratory of
Artificial Intelligence and Robotics of Euratom (Ispra) and a set of experiments has
been successfully executed . The program allows to run the simulation of molecules of
liquids in the basis of conditions and properties of the MOT.

The system on which the program has been implemented is the LISP Machine
Symbolics 3600 which has a set of tools particularly useful for Object Oriented
programming techniques, the Flavor System.

The implementation of the example of liquids has been a very important
experience to consolidate the possibilities of proposed MOT. A generalized workstation
based on MOT, not only circumscripted to the liquids-world, is the new project we are
working on.
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