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In this paper we discuss the advantages of an analogical zap: eoan-
tation for liquids evolving according to simple local rules. Tbef rules
embody the physical knowledge people use, when deducing the
differential equations expressing physical laws . As an example we show
how the phenomenon of wave propagation in liquids cAn be
represented . We also discuss the possible use of such an anal0g~cal
representation for certain types of problem solving,

l .

	

Itlttoduction .
Different approaches have. already been proposed for the repmwntation of

knowledge about liquids . Naive physics, based on common sense behavior of physical
ysterns, relies on first order logic as formalism for such a representation (Hayes
985) . Qualitative physic's constructs a representation based on the qualitative

equivalent of the quantitative physical laws which describe the system under study
(DeKleer 84),(Forbus 84) . Both approaches have their drawbacks. Naive physics daps
not always provide a correct answer to a given problem, because it relies only on
naive observations of physical systems . Qualitative physics is not able to provide a
unique answer to a given problem because, working qualitatively, otte discartla a lot
of information which guarantees the uniqueness of the solution in the qutsititative
approach .

To overcome some of these difficulties, a new approach based ori an univocal
representation, has recently been proposed (Cardin 86) . In this approach a liquid is
modelled as an ensemble of interacting liquid particles . These particles do not directly
correspond to molecules but rather to small macroscopic volumes of the Liquid . They
are made to interact according to local laws (i .e . between nearest neighbors), which
are inspired from naive observations . In this way many physical proaems involving
liquids have been simulated.

In our work we adopt this molecular approach, but we propose to construct
local interaction laws by reasoning along the sane lines as physicists do, when
deducing the differential equations of physics . They thereby rely oat very fundamen
tal ideas such as conservation laws, symmetry principles, and Newtm's laws . More-
over, this type of physical reasoning is truely local in the sense that it expreaaes all
'ie fundamental concepts and relations in terms of so-called infinitesimal quantities .
lassical physics then attempts to integrate these equations in order to obtain maerm-

,'opical information about the evolution of the system (Feynman 1964) . This mp is
aditionally approached with the help of mathematics . However, such an integration

is often not possible and if it is, the qualitative content of the solutions is tint obvi-
ous.**
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ABSTRACT



We propose to circumvent this mathematical integration procedure wd Indead
jobtain the macroscopical behavior directly from the microscopical laws through fimu-
lation with an analogical representation. Our purpose is to construct a representation
of liquids which can reproduce macroscopical qualitatively oorrocx behrvio of

liquids .
A model like ours, bused on simple local interattion laws, is well adapted to be

implemented on a parallel architecture. We have built a software system on a small
network of forty transputers, which allows experimentation with different types of
interaction laws . All our experiments are done with this system .

2 . The model .
For the time being we use a simple aaalogical reprewntsdon : a two dimcuaioeal

grid of liquid cells . These cells have to be considered as small volumes of liquid con-
taining many molecules . In fact we will not take into account the molecular t#rncttue
of a liquid . The cells in our model correspond to infinitesimal volumes is the sense
of differential calculus . This means that within such a eell we can consider all quan-
titics to be independant of the particular locadon in the cell .

In order to describe the state of a particular call at a certain instant of dmo we
introduce the following variables -
I-

	

The displacemCv of the cell as measured with respect to a given equilibeittm
position .

2-

	

The density of the liquid in a cell . It is expressed as mass per volume .
3-

	

The pressure in the cell . It is related to the density through a phenoa~eno~ogical
law which can be further explained only when one takes into account the molec-
ular structure of the liquid . For our model we simply postulate such a lxw.

These three varaibles describe the state of a cell internally . Externally a cell is cot-
nected to four neighbours which we will call top, bottom, left and right for conveni-
ence . It is only with these neighbours that a Cell can interact directly . This inroeroctioo
is of a rather simple type : the values of the variables in the neighbours inflae= the
evolution of the variables in the cell .

The second essential ingredient of our model is the dynamics governing the evo-
lution of the cells . This dynamics has to be expressed in terms of some simple local
interaction laws which implement a physical phenomenon . We have chocwn to model
one of the many aspects of liquid dynamics : wave propagation . Classically this
phenomenon is described by the celebrated wave equation, which In one dimearim
looks like -

a2X(X,t)

	

=

	

1 _az cX x,t)
8x~ c2 at2

where X (x,t) denotes the displacement of a small volurtto of liquid centered Arotuad
the point x at time t . The physical mechanism which lead to titre deducxion of this
cquation can be translated into the following three local evolution laws for liquid
cells :
1-

	

Each cell checks the displacements of its four neighbours. A diffemam betwom
the displacements of its left and right neighbour or its top and bottom neighbour
results in a change of volume of the cell . We assume Conservation of trues and
therefore this change in volume induces a change in density of the liquid .



2- The density in a given cell is related to the pressure in that cell through a
phenomenological law. We assume that there is a linear relation betwom the
excess* density and the excess pressure . The coefficient in this relation is e
parameter controlling die compressibility of the liquid .

3-

	

After the new values of the pressure have been calculaWd in all the oz11e, every
cell updates its displacement according to Newton's law . This means that a
difference in pressure in the left and right neighbour results in an acceleration, of
the cell towards the neighbour with lowest pressure and therefore in a new dis-
placement.

These three steps are then repeated to calculate the next step in the evolution.

3 . Rcaulta
Although we have only introduced local introfacdov haws between nearest neigh- ,

bours, we obtain global behavior which is in accordance with observation. Starting
from an initial equilibrium state, where all the cells have the same value for their
variables, and introducing a small perturbation in one of the cells** we observe the
propagation of this perturbation as a wave . This wave is reflected when it hits the
border, thus creating interference patterns between the incident and redacted waves .
These patterns correspond to those one can observe when dropping d stow in a
pound .

We also did a double slit experiment . This consias of creating a wlkva which
impinges on a screen with two narrow holes . Our rnoiel reproduces the Oorrect
behaviour consisting of a reflected wave and two smaller aeoondary waves behind the
screen . These two secondary waves form interference patterns similar to those one
observes when dropping two stones at the same time in a pound.

The advantage of opening up the mechanism behind wave propagation, instal
of working with the wave equation itself, becomes clear when we want to modify
this mechanism . Introducing viscosity requires no ingenuity . A simple friction terns in
Newton's law will do . It is also easy to experiment with compressibility in order to
model different types of liquids . We have observed that changing the compressibility
of a liquid has an effect on the velocity of wave propagedon . Also in this aspect our
representation is in agreement with real liquids. We want to emphasize that all dtae
properties of liquids are recovered as macroscopical features . They are so to gay
implicitly contained in the local interaction laves between adjacent liquid Cells .

In the following section we demonstrate the use of our model for problem solv-
ing . Finding the way in a maze can easily be done try exploiting a nudtaphor involv-
ing a viscous liquid .

4 . Application
Suppose we want to find the shortest route from entrance to exit in a maze of

arbitrary complexity . It is enough to now that if d maze were totally filled with a
nearly incompressible liquid and if some more liquid were introduced under pressure

" By exceu we mean the difference between the actual value and the equlllbrium value
which corresponds to no evolution .

"* e.a . a small displacement from equilibrium position



at the entrance, because of the almost incompressibility and the ConservadW of
matter, an equal amount of liquid must flow out at the exit . The liquid molecules
which moved during this process automatically trace the shortest path from source to
sink . It is as if the liquid which fills the mau, blows up the obstacles until only the
free way through them remains .

We have done this experiment using the analogical representation of liquids we
have constructed . Instead of actually tracing the moving liquid molecule: we simply
put a pressure source at the entrance of the me= and a pressure sink at the exit .
Thanks to the propagation mechanism a pressure gradient is established and this
corresponds to the path the molecules follow . We have observed that this gradient
indeed coincides with the shortest path from entrance to exit . Moreover, the system
can dynamically cope with modifications of the maze . The press= gradieat can
quickly adapt to any alteration of the arrangement of obstales. We want to
emphasize the importance of using the true physical laws. Only in this way can we
be sure that a liquid in our analogical representation behaves in accords= with a
real liquid .

This solution of the maze problem is an illustration of the tae of *zalogial
representations for problem solving in the domain of common-sense . By trdns1atf a
problem into a carefully choosen analogical reprtsentation it becomes possible to
solve the problem in a most natural way (Steels 1988) .

4 .1 . Conclusion .
Analogical representations combined with local evolution laws abtai=d from

physically well understood mechanisms, provide an alternative to symbolic koowlcd*
representation for physical systems . Most knowledge is implicit and can be made
explicit by running a simulation . These lead to physically plausible predicdms about
the behavior of the systems one wants to store knowledge about. As a consequesm,
these representations lend themselves perfectly for certain types of problem solving
by exploitation of physical metaphors, We believe this approach is a valtutb4e comple-
ment to the traditional symbolic way of representing knowledge and problem solving .
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