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Abstract

Many potential uses of qualitative physics, such as robot planning and intelligent
computer-aided engineering, require integrating physics with actions taken by agents .
This paper proposes to augment qualitative simulation to include the effects of actions
to form action-augmented envisionrnents . The action-augmented envisionment incor-
porates both the effects of an agent's actions and what will happen in the physical
world whether or not the agent does something . Consequently, it should provide a
richer basis for planning and procedure generation than any previous representation .
This paper defines action-augmented envisionments and an algorithm for directly com-
puting them, along with an analysis of its complexity and suitability for different kinds
of problems . We describe work in progress on an implementation, and discuss potential
extensions, including incremental algorithms .
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1 Introduction
Many tasks require predicting both the effects of changes in the physical world and the
consequences of taking actions . A robot which makes tea, for instance, must enlist physical
processes such as liquid flow and boiling to carry out its plan . An intelligent CAD tool for
power plant design must be able to reason about the effects of actions taken by operators of
the plant, in order to design a safe system. Yet little work to date has addressed the issue
of integrating a qualitative physics with representations of actions .

One way to integrate physics with action is to move the physics into the planner . Hogge
[9] has developed an operator compiler that takes OP domain models and produces rules and
operators suitable for a temporal planner . Given a goal like "Increase the water level in this
container", his planner can use the knowledge of actions, combined with rules and "opera-
tors" representing what the physical world will do derived from the QP model, to figure out
that it should place the container under a faucet and turn on the tap . Unfortunately, many
oversimplifications are required to keep the compilation tractable' . Furthermore, adding
more "run-time" knowledge to overcome this and other problems makes the temporal plan-
ner bog down [10, 11] . For example, it could figure out how to get water into an empty pot
and how to make water in a full pot boil, but without adding run-time transitivity rules,
it could not compose these plans to fill an empty pot with boiling water . With transitiv-
ity rules, the planner would exceed machine limitations before finding the solution . While
worth continued exploration, the difficulty of reconstructing the entire framework of qualita-
tive simulation into rules suitable for efficient planning makes alternatives worth examining .

Here we explore the dual approach: Moving actions into the physics. The next section
introduces a new representation, the action-augmented envisionment (or AS), which inte-
grates the results of qualitative simulation with the effects of an agent's actions . Section 3
describes an algorithm for computing AS's directly, and Section 4 analyzes its complexity
and potential suitability for two tasks, robot planning and procedure generation in engi-
neered systems . Section 5 describes the state of our implementation . Finally, we describe
our plans for future work.
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Action-Augmented Envisionments
Let us re-consider what qualitative states are . We will use Hogge's problem of figuring out
from first principles how to boil water as an example in the rest of this paper. Informally, a
qualitative state describes a class of particular behaviors for a physical system . Qualitative
states are linked by transitions, which describe how these gross behaviors can change . For
instance, if we have a pot of water on an operating stove, one state is that the water is heating
up, and another state is that the water is boiling . These states have a transition between
them, whose condition is that the temperature of the water reaches its boiling temperature.
Qualitative simulation consists of computing these states and transitions .

Every qualitative simulation leaves some "background information" unchanged . We do
not, for example, consider what the world would look like if the stove suddenly vanished in the

'For instance, if you influence a quantity it will actually change that way . Thus the planner would think
it possible to bail out a sinking ocean liner with a teaspoon .



Figure 1 : QP descriptions can be sensitive to the effects of actions
In the description of heat flow below, the truth of HEAT-ALIGNED depends on the
of the objects involved . Actions which change location indirectly affect whether or
process can occur, as illustrated by the laws on the bottom .
Process Heat-Flow(?src,?dst,?path)

Individuals : ?src, Quantity(heat(?src))
?dst, Quantity(heat(?dst))
?path, Heat-Path(?src,?dst)

Preconditions : Heat-Aligned(?path)
Quantity Conditions : A[T(?src)] > A[T(?dst)]
Relations : Quantity(flow-rate)

flow-rate = T(?src) - T(?dst)
Influences : I+(heat(?dst),A[flow-rate])

I-(heat(?src),A[flow-rate])

d ?c,?s Contained-Stuff (?c) n Location(Container(?c))=On(?s) =:> Heat-Path(?s,?c)
b' ?c Contained-Stuff(?c) => Heat-Aligned(?c)
Knob(Stove)=0N =t, Heat-Aligned(Stove)
b ?x,?y Heat-Path(?x,?y) n Heat-Aligned(?x) n Heat-Aligned(?y)

Heat-Aligned(Heat-Path(?x,?y))

scenario above . In fact, qualitative simulations focus on just those changes predictable solely
within whatever physics is being used., The complete set of states and transitions for some
fixed set of background assumptions is the envisionment for that scenario . (When needed,
we will use the conventions of [8, 2, 13, 14] to describe envisionments and their components .)
To capture the effects of actions, we must allow at least some of the background assumptions
to vary. In the scenario above, for instance, we would like to capture the fact that switching
the stove on will initiate the heat flow, and that moving the pot to a table will break thermal
contact, and thus end the heat flow .

A necessary prerequisite for this extension is that the qualitative physics be sensitive to
changes in background assumptions . Qualitative Process theory [4] provides two forms of
explicit representation of, and hence dependence on, background assumptions . First, QP
descriptions specify the kinds of individuals they apply to . Heat flow, for instance, can
occur between any two objects which are modeled as having thermal properties, and which
have some kind of thermal path connecting them. Second, QP descriptions can depend
upon explicit preconditions that further restrict their applicability. For instance, one might
consider the burner of a stove to be a heat path which is usable only when the stove is
switched on (see Figure 1) . Consequently, we use QP theory as our basis .

As indicated above, we do not typically consider every possible change in background
assumptions . Call the set of background assumptions for a scenario P . The subset of P
which should be varied is exactly that part which could be changed, directly or indirectly, by
the action of some agent . We call these the manipulable assumptions of P, or P, . Clearly,
P, will depend on the set of operators used to model an agent's actions, and the laws which
allow the effects of those operators to be inferred .

In typical qualitative physics systems, P� , is empty. That is, the envisionment F is taken
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with respect to fixed P, which we can denote £(P) . Let Pm be the consistent combinations
of P,,, and Pf be the set of fixed background assumptions (i .e ., P - P� ,, ) . Then the set of
states in an action-augmented envisionment A£ is just

1 . Consistency: P' holds in S, .

States(A£) =

	

U

	

£(p U Pf )
PEPm

Since standard envisionments contain transitions due to changes predicted within the
physics, we assume the collection States(AS) constructed so far inherits them intact . Now we
must extend the set of transitions to include the occurrences of actions . We do this by analogy
to the QP definition of state transitions . In QP theory, state transitions are represented as
instances of limit hypotheses, potential changes in inequality relationships brought about by
the direct and indirect effects of physical processes . The hypothesis that, for instance, the
temperature of the water in the pot might reach its boiling temperature would be applicable
to any situation where the water is being heated, regardless of the heat source involved .
Similarly, we call an action hypothesis the conjecture that a particular action occurs . In
thinking about the stove, for instance, the operator instance Move-to (Potl, On (Stove))

might occur in a number of states . Each conjectured occurrence is an action hypothesis .
We place several restrictions and constraints on transitions caused by action hypotheses .

For simplicity, we make the following restrictions :

1 . Single action assumption : At most one action can be taken at a time .

2 . Sepe-ration assumption : Actions do not coincide with state transitions introduced by
the physics .

The single action assumption loses no generality, since the vocabulary of operators could
always include compound operations . An important consequence of the seperation assump-
tion is that actions cannot occur in states which the dynamics predicts will only last an
instant . Unfortunately, it does potentially restrict the expressibility of Ass . To hold, actions
must be considered to occur quickly, relative to physical changes . For many circumstances
this assumption is not onerous ; for instance, the temperture of water in a kettle doesn't
drop appreciably in the time it takes to move the kettle from the stove to a teapot . Also,
in many cases where actions do take appreciable time (such as slowly opening a valve in a
heating system) this limitation can be surmounted by modeling the action as a sequence of
instantaneous actions or reifing it as a continuous changes in the physics triggered by actions .

An action hypothesis Axcan be viewed as a function whose domain and range are P;~ .
Let Pm = Ax (P~) . Given a qualitative state Sl in which P,1� holds, for SZ to be a possible
result of A h on Sl , it must satisfy the following restrictions :

2 . Continuity : When possible, no violations of continuity occur between Sl and S, .

3 . Closeness : No state also considered to be a possible result of Ax on Sl has more in
common with Sl than Sz does .



The consistency restriction is obvious . The continuity and closeness restrictions express
the desiderata that, besides the necessary indirect consequences of the action, nothing else
should change as a result of it .' All reasonable interpretations of closeness imply continuity,
but. i t is worth mentioning explicitly because it is a useful filter . Unfortunately, continuity
cannot always be satisfied . Consider a situation where the pressure in a boiler is rising
dangerously, and safety valve is popped open to bleed off excess steam . The result of opening
the valve can most easily be modeled by a discontinuous change where the pressure in the
boiler is dropping' . There are several ways to define closeness, depending on the details
of the qualitative physics and simulation strategy . A particular measure of closeness for
envisioning in QP theory is described in the next section .
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An Algorithm for computing ,ASs
This algorithm for computing ASs is based on the representations used in the Qualitative
Process Engine QPE [i] . Since QPE is based on an ATMS [3], and the formulation of AEs is
based on describing different sets of assumptions, our algorithm will be particularly simple .
In what follows we exploit the fact that a particular situation in QPE is defined by a set
of assumptions SA = Q, U P� where Q, are drawn from the set of possible inequality
assumptions and P, are drawn from P . Explicit temporal notations, such as situation
markers or slices, are not used . Rather, the temporal scoping of facts is implicit in their
AT NIS label . Thus we would determine if Location(Potl) = On(Stove) held in a situation
by checking to see if it was implied by the assumptions defining the situation . This allows
us to compactly represent a large number of situations, and apply consequences of rules as
widely as possible .

For simplicity we choose the STRIPS representation for actions . While less expressive
than other action representations (e .g . [1, 15, 16] ), it easily satisfies the single action and
seperation assumptions . To adapt this representation to QPE, we require all facts mentioned
in the add lists and delete lists of operator instances to be in P�, .

Given a domain model, which specifies the particular physical theory to be used, and
a scenario, specified by Pf, QPE expands the scenario by applying the abstractions of the
domain model. This creates instances of views, processes, and derived objects (such as
"water in the pot") . It is easy to extend this process to include finding operator instances,
and to automatically accumulate P�L . Since QPE can search variations in P, as well as Q�
States(AE)is computed via the standard envisioning procedure . Furthermore, since we have
the operator instances we can create the set of Ax's . All that remains is (1) to ascertain
when these Ax's are applicable and (2) to determine their effect in each case .

Consider again the operators in Figure 2 . We will refer to the assumptions corresponding
to the delete list and add list of an operator instance as A~and A~, respectively . To
determine if an operator instance Oi can apply to a situation S 1 ,

1 . Unless Individuals(O i ) are implied by S1 , fail .

'The existence of indirect consequences of actions are why generally S2 - P2

m

	

Sl - P,1� .
3 It would be possible to preserve continuity by introducing another state where Ds [P]

	

= 0,
state serves no other purpose it seems inefficient to do so .
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Figure 2: Operators for the kitchen
def0perator Move-To(?from,?thing,?to)

Individuals : ?from, Place(?from)
?thing, Mobile(?thing)
?to, Place(?thing) n ?from ~6 ?to

Delete-List : Location(?thing) = ?from
Clear(?from)

Clear(?to)
Add-List :

	

Location(?thing) = ?to
Clear(?to)

Clear(?from)

def0perator Flip(?switch,?from,?to)
Individuals : ?switch, Switch(?from)

?from, Has-Setting(?switch,?from)
?to, Has-Setting(?switch,?to) n ?from

Delete-List : ?switch = ?from
Add-List :

	

?switch = ?to

2 . Let P3= P,- A~+ A;t . If P; is inconsistent, fail .

To complete the test we must find out if P; can be extended into a
SZ E States(AS) . Otherwise, we consider the action inapplicable .

Since we already have States(AE), finding the results of Oi on
filtering problem whose result is the set C . One algorithm is :

1 . Let Ci = {S; E States(AS) I P; C S;}

3 .

	

Let C = {S; E Cz

	

l~Sk E Cz s .t .1 Sk n Si I > I S; n Si 1 }
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domain

:~L_ ?to

consistent situation

Sl can be viewed as a

2 . Let CZ be the subset of Cl which do not violate continuity, when viewed with respect
to Sl . If CZ is empty, C2 = Cl .

The first step provides our initial candidates by enforcing consistency, and the second
uses the same continuity pruning used for limit analysis in QPE (see [7] for details) . The
final step provides a precise definition for the notion of closeness described before - in this
algorithm, it is literally the number of assumptions shared with the previous situation . For
each S; E C, the set Transitions(AE) is extended to include a transition from Si to S;,
justified by Oi .

Typically an action will result in a unique next state . Unfortunately, this will not always
be the case due to the ambiguity of qualitative models . Consider again the boiler with relief
valve . Once the relief valve blows there will be ambiguous influences on the pressure - the
flow out through the relief valve will act to decrease it, while the generation of more steam
will act to increase it . Consequently, the pressure could continue to increase, decrease, or
remain constant, and so unless extra knowledge can disambiguate them, each is a legitimate
consequence of that action .



4 Analysis

Our analysis addresses three questions : (1) What is the complexity of explicitly generating
AE? (2) Under what circumstances would explicit generation make sense? (3) Could AS be
generated incrementally?
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Complexity of the algorithm
The first question can be divided into two parts : (1) Given that the standard envisioning
process can compute States(AC), how complicated is the additional step of generating Ax 's
and determining their consequences, and (2) How much does it cost to generate States(AC)
relative to a standard envisionment E (i .e ., where P�, is empty) .

Finding operator instances is easy . The worst-case complexity is O(it ) , where t is the
number of specifications in the operator's individual field and i is the number of individuals in
the scenario . Clever indexing on individual types, along with the fact that t is small (around
3), makes this step trivial . Notice that does not depend on the number of situations, an
advantage conferred by the implicit temporal reference scheme.

We assume the ATMS is arranged so that tests for logical implication and consistency of a
set of assumptions are constant-time operations (they typically are) . Let n = I States(AE) 1 .
Then finding whether or not operator instance Oi may apply in a particular situation takes a
constant-tune test for implication, and time linear in the number of assumptions to produce
P; . This cost is roughly constant over all situations, and depends on the average number
of assumptions in a situation . This number is relatively small compared to the number of
situations which can be generated from them, hence we consider it constant . Finding the
initial candidate set C1 is also linear in n, so we are now bounded by O(n 2 ) . The continuity
computation and the computation of C from C, are combinations of linear time operations,
so the cost of adding action transitions is 0(n2) .

What is the cost of computing States(AE) relative to C? The complexity of QPE's algo-
rithm is still being established, so we must content ourselves with asking about the size of
States(AF) relative to States(C), which depends on the size of Pm . Suppose P�, consists
of pairs of propositions p and -p, and these assumptions are independent . Then an upper
bound for the worst-case increase in the number of states is a factor of 21 Pm I -1 . So the
signficant cost lies not in temporal inheritance, but in generating the states in the first place .
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When would explicit generation make sense?
It is generally foolhardy, and typically impossible, to explicitly generate an entire problem
space . Yet that is exactly what envisioning does, and the algorithm above relies on it . How
close we come to worst-case performance depends on the interactions between the operator
vocabulary and the rest of the domain model . If the operators are completely irrelevant to
the domain model, then I States(AE) ; _ P* !, x States(C) 1 . But generally they interact,
and only a small subset of the cross product is consistent . A domain where the dynamical
behavior is complex, but the number of actions which can be taken is small, would be the
best case .
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The problem of procedure generation for engineered systems may be just such a problem .
Consider a power plant (either stationary or onboard a ship) . Its dynamical state can be
complex, and a badly-timed action can result in disaster . But the kind of actions an operator
can take are generally limited to flipping switches and opening or closing valves . Since an
A£ compactly represents the result of executing all possible plans, it could be invaluable
in generating operating procedures and safety analyses . To deal with realistic systems will
require the same decomposition stratagies as traditional engineering . Procedures for a system
are typically generated by combining procedures for subsystems, which suggests computing
AE's for subsystems independently and combining their results .
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Incremental generation

Typical "robot planning" domains are the worst task for explicit A£ generation, since P;,
includes each location for each moving object, and thus could be huge . Incremental algo-
rithms would be better, and appear both possible and feasible . The A£ is just a problem
space, whose operators are the actions which can be taken plus the set of limit hypotheses .
Incremental temporal inheritance algorithms for QP theory exist [6, 5], and could easily be
extended to Axs . The entire panoply of AI search strategies could then be used to generate
plans . However, since some transitions will occur whether or not the agent desires them, a
seperate verification phase will be required .
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State of the implemenation
We have implemented the algorithm described in Section 3, and have tested it on one example
at this writing . Here is the scenario : Consider a kitchen containing a table, a faucet, a stove,
and a movable pot . The faucet is an infinite supply of water, and the stove is an infinite
supply of heat, when their knobs are ON (viz . Figure 1) . Our goal is to have boiling water
in the pot . The process vocabulary includes heat flow, liquid flow, and boiling [4], and the
actions are those shown in Figure 2 .

Here are the highlights of the A£ created for this scenario . There are 244 situations,
with 1054 transitions between them (78 due to dynamics, the rest due to actions) . QPE
automatically divides situations into equivalence classes for summarization, and in this de
scription there are only 21 states, with 76 transitions between them (10 due to dynamics) .
The summaries for the standard envisionment, action transitions, and full A£ are plotted
in figure 3 . In terms of the analysis presented earlier, this result is encouraging - this is a
"worst-case" problem, after all . For this problem, I States(£(Pf)) I = 25, and there are 12
binary choice sets, and one set with three choices (i .e ., the location of the pot) . Thus the
worst case would have been

States(AS) I = 25 x 21 ' x 3 = 307, 200

This ilustrates that simple combinatorial analyses can be misleading in highly constrained
situations - the classic. AI "small infinity" phenomena .

This A£ does indeed contain many correct plans for boiling water (see figure 4), and
careful examination has revealed no unexpected oddities . Currently we are developing a
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Figure 3: An Augmented Envisionment for the Kitchen
The top left shows a summary of States( .4S) with only the limit hypotheses, and the topright shows the A,vs . The bottom shows the combination, with a reasonable plan marked .
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Figure 4: A sample plan from the AS
a sample plan generated by graph search of AS .

MOVE-TO(ON(COUNTERI),POT,UNDER(FAUCET1)) .
FLIP(KNOB(FAUCETI),OFF,ON) .
Wait until A[AMOUNT-OF-IN(WATER,LIQUID,POT)I=ZERO - > .
FLIP(KNOB(FAUCET1),ON,OFF) .
MOVE-TO(UNDER(FAUCET1),POT,ON(STOVEI)) .
FLIP(KNOB(STOVE1),OFF,ON) .
Wait until A[TBOIL(WATER,POT)I>A[TEMPERATURE(C-S(WATER,LIQUID,POT))I
Wait until A[AMOUNT-OF-IN(WATER,GAS,POT)I=ZERO -a > .
FLIP(KNOB(STOVEI),ON,OFF) .
MOVE-TO(ON(STOVEI),POT,ON(COUNTERI)) .

series of test cases to ensure our closeness requirement is sufficient . If it is not, then we
suspect that ultimately p-components [4] will be required to narrow the subset of the situation
in which violations of continuity are allowed .

6 Discussion
This paper proposes a method for integrating qualitative physics with models of action. It de-
fines the action-augmented envisionment, which compactly represents all predicted changed
due to a physics and possible actions within a scenario . An algorithm for explicitly gener-
ating augmented envisionments was presented, along with an analysis and a report on our
implementation . In addition to further tests of the current system, we are also designing pro-
grams for generating procedures, drawing subsystem examples from Navy propulsion plants
(e .g ., [12]) and NASA's planned Space Station .

We believe this idea is an important step towards interfacing qualitative physics with
planning . Such understanding could lead to important new applications, such as increased
automation of procedure generation and safety analyses . We suspect that for some engi
neering applications, the cost of explicit generation of AS's may be offset by the increased
confidence in the quality of the answer, particularly as we discover how to build "layered"
domain models. However, even if AS's turn out to be infeasible to explicitly compute for all
but the simplest systems, we expect this framework will be useful for developing incremental
planning techniques .
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