
A PROCESS ORIENTED APPROACH FOR QUALITATIVE MODELING AND
ANALYSIS OF DYNAMICAL SYSTEMS

1 . Introduction

Agnes Janson-Fleischmann and Gerhard Sutschet
FhG - IITB, Sebastian-Kneipp-Str . 12/14, 7500 Karlsruhe 1, FRG

Abstract : The representation of dynamical systems according to the principles of
qualitative modeling and analysis has two main aspects : The structural model
representing the structure of real world objects in the system, and the description
of the processes that run on the system . The second is content of this paper. We
introduce a formal qualitative description language for processes based on QP-
Theory of Forbus . Important extensions have been made in order to represent
processes not just in a mainly continuous domain like physics. They concern the
introduction of discrete processes, temporal relations between processes, and the
description of processes at different levels of abstraction in form of a hierarchical
process model . The possible behaviors of a system can be determined by qualitative
reasoning about processes, which is performed in the behavior analysis .

When building a deep model of a dynamical system, i .e . a changing physical,
biological, chemical or economical system, we have to distinguish two parts :

the description of the structure of real world objects, called the structural
model . This model contains the description of all components of a system,
their arrangement and properties;
the description of the changes occurring in the structural model . These
changes are modeled in processes. The set of all processes in a model form the
process model.

We do not want to give the details for description of the structural model in this
paper, but we present an interface from the process model to the structure model
for referencing the necessary objects for the activity of a process . The structural
model can be described in a component oriented description language, e.g .
COMODEL [DiKi, Kipp], which is developed at our research institute .

CAPAS (CAlculus for Process Analysis and Simulation) is an approach for deep
modeling and analysis of real processes using a formal, qualitative process
description . The behavior of a dynamical system is described in a set of
asynchronous processes with temporal restrictions that correspond through
changes of parameters, existence or geometrical arrangement of objects . Up to
now we have considered only changes of parameters . The modeling is charac-
terized by the following features :



Representation of causal relationships .

Representation of temporal relationships :
Not all dependencies between processes can be expressed as inherent

dependencies such that one process activates another. We also need a
temporal calculus for explicit representation of temporal relationships that
are known at modeling time .

Representation of continuous and discrete processes :
Former approaches in Qualitative Physics have shown that continuous
processes are an adequate entity for describing change in physical systems .
Moreover there exist changes that are discrete in nature, e .g . in catastrophe
theory, or that can be seen as discrete at a certain level of abstraction, e.g . the
description of electronic circuits at level of digital logic . It is a non-trivial
problem to handle both entities at the same time .

Description of a hierarchical process model :
The behavior of a system can be represented at different levels of abstraction .

After modeling a system, the behavior analysis can be performed . It results in a
behavior graph, which describes all possible behaviors at a certain level of detail
that is predefined by the user . In real systems the processes always start in an initial
state and run in a special scope, i .e_ relationships that hold in the initial state and
that remain unchanged during the whole process. Therefore behavior analysis
takes regard to a scope and initial state . Behavior analysis can be viewed as a
translation of the process description to a state-transition diagram (the behavior
graph) by analyzing the inherent and temporal dependencies between
subprocesses_

The approach described in this paper is an extension of the QP-Theory of Forbus
[Fort] . The differences are that QP-Theory can not handle discrete changes,
temporal relations between processes, and hierarchical process models. In
opposition to the QP-Theory approach, Weld [Well,We[2] sees the necessity for
discrete processes. The main disadvantages of this approach for a general use are
that there are no atomic continuous processes, that the automatically aggregated
processes are usually not logical coherent, and that the user can not define
aggregated processes as logical coherent sets of subprocesses .

With regard to qualitative analysis the work of De Kleer, Brown [DKBr], Kuipers
[Kuip] and Voss [Voss] are also relevant . De Kleers IQ-Analysis is useful for
describing the structural model and functional dependencies between parameters,
but not for describing the changes themselves as separate entities . The HIQUAL



system of Voss allows structural modeling and modeling of causal and temporal

relationships, but here also the description of change in separate units is not

possible . Kuipers restricts himself to a direct qualitative interpretation of

differential equations which are used in conventional simulation systems.

Chapter 2 defines processes as entities for modeling dynamical change . The syntax

and informal semantics of a process formalism are defined and a detailed example

is presented . Chapter 3 gives a method for predicting all possible behaviors of the

system model by means of qualitative reasoning .

2 . The Process Formalism

2 .1 Definitions

In general a process is a change of a system over time. In the case of CAPAS we can

define a process as a change of the structural model . In our first approach we

concentrate to changes of parameter values .

The changes affected by a process are called influences of the process . A process

always has a status ; it is either active or inactive . Influences of a process operate if

and only if the status of the process is active .

Parameters are to hold characteristic properties of objects (object parameter) or

processes (process parameter) . From an epistomological point of view object

parameters are to be defined in the structural model and process parameters in the

process model . This is not essential for the operation of CAPAS but should be done

in view of adequateness and explainability of the model .

One characterization of qualitative modeling is that parameters have qualitative

domains consisting of symbolic values . A parameter is described by two values :

- the amount, called A-value, denoted by A(<parametername>) or in short

<parametername>,

-

	

the derivation, called D-value, denoted by D(<parametername>) .

Changes of parameters may be described discretely or continuously . The domain of

the A-values of a continuously changing parameter has to be at least partially

ordered (we assume a total order), while the domain of a discrete changing

parameter may be unordered . Furthermore in order to test the equality change

law [Fort] we have to distinguish points and intervals in the domain of a

continuously changing parameter . The convention is that interval symbols are to

be enclosed in parenthesis .



2 .2 A Formalism for Describing Processes

2.2.1 A Syntax for Processes ( in BNF )

<objectreference>

	

<object> I <constituent>

The D-values of parameters will always be interpreted in the ordered, qualitative

domain [ -, 0, + 1 .

Allowing to specify temporal relations between processes explicitely we use the

interval based logic introduced by Allen [All 1,A1121 . The 13 relations defined there

are called Allen relations_ The temporal relations between two processes J and K

are denoted by

J {arl, are, . . ., ar r, } K, ar ; E Allen relations, with the semantics :

3

	

1 :5 i :5 n : J {aril K = tt

	

A

	

b 1 <_j_n,j ;t i : J {arj) K = ff .

In this section we will define a syntax for describing processes . We will introduce

the semantics informally by explaining the meaning of the different slots. The

semantics is given in chapter 3 by mapping the syntactic description into a set of

state-transition diagrams .

<process> : : =
process

	

<processname> ;
[objects

	

<objectreference> { , <objectreference> } ; 1
[params

	

<parametername> : <domain>
{, <parametername> : <domain>) ; 1 O

[subprocesses

	

[<processname> {, <processname>}1 ;
[<processname> <AR> <processname>

{, <processname> <AR> <processname>}1 ; 1 0
conditions

	

[dog-expr> { , <log-expr> }1 ; O
[relations

	

dog-expr> { , dog-expr>} ; 1
influences

	

[<influence> { , <influence> l1 ;

<object>

	

: . = is-of-type (<objectname>, <objecttypename>)

<constituent>

	

: . = constituent-of (< objectname>, <constituentname>,
<objectname>) o

<domain>

	

: . _ '[' <value> {, <value>l'F o

<value>

	

<valuename> I (<valuename>) o
<AR>

	

: . _ '{' <allenrelation> {, <allenrelation >}'}'O

<allenrelation>

	

: :=m I miI >I<I = ~ dIdiIsIsiI fI fiI oIoi



<log-expr>

	

<parameter> <rel> <parameter>
<parameter> <rel> <constant>
<constant> <rel> <parameter>
( OR ( <log-expr> ) ( <log-expr>) {( dog-expr>) })
( AND ( <log-expr> ) ( dog-expr>) {( <log-expr>) })
( NOT ( <log-expr> ) )

<rel>

	

: . _ <

	

-

<influence>

	

: . _ <dir-cont-infl> I <indir-cont-infl> I <discr-infl>

<dir-cont-infl>

	

: . = D(<parameter>) _ + I D(<parameter>) _ -

<indir-cont-infl>

	

<parameter> <prop> <parameter>

<prop>

	

: . _ >>+ I >> -

<discr-infl>

	

: . _ < parameter> = <constant>

Remarks :

O The condition T is assumed, if no entry exists .

O Non-terminal symbols with the extension 'name' are identifiers defined in the

usual way (e .g . like in PASCAL [JeWI]) .

O The characters in quotes

	

and ']' respond to the notation of processes,

i .e . they are no meta constructors of the BNF.

® In the example later on we also

	

use arithmetic operands within

	

logical

expressions . Strictly speaking we have to define the arithmetic operation

extensional in case of symbolic domains or have to introduce a general interval

arithmetic based on qualitative domains with real values as points and interval

ranges . These extensions have been developed but are not treated in this paper.

2 .2.2 The Meaning of the slots

process :

	

The name of the process is specified . For further explanations this

process is called P .

objects :

	

Connection to the structural model . References to all objects,

which are necessary for P to run . The parameters of the object

defined in the structural model get inherited to P .

params :

	

Definition of process parameters together with their qualitative

domain . Overdefinition of the domains of object parameters.



subprocesses :

	

Definition of the names and temporal relations of subprocesses.
The declaration of the temporal relations is optional . They
constrain the number of possible behaviors of the system and
make the analysis of behavior (chapter 3) more efficient .

conditions :

	

Activity conditions for process P .
There are two necessary (and also sufficient) conditions to be
satisfied for a process being in status active during time-interval J :

1 .

	

The conjunction of all activity conditions evaluates'true' .

2 . The status active is possible w.r .t . the temporal relations
declared in the subprocesses-slot of the father process.

relations :

	

Relations that hold during the activity of P . They act as additional
constraints on the possible values of parameters . They are not used
for automatic derivation of further influences on parameters, like
in De Kleer, Brown [DKBr] where confluences are derived from
equations_

influences :

	

Changes of parameters induced by the process. The changes are
described either discrete (X = b, where X is a parameter and b a
constant) or continuous . For continuous changes we distinguish
direct influences of a process to a parameter X (D(X) =+ or D(X) =-)
and indirect influences from one parameter X to another Y (X >>+
Y or X >>- Y) .

2 .3 Example : Preparing Espresso

This apparatus for preparing espresso may be structurally modeled like in Fig . 2 .3 .

To explain the operation of the system we will start from the following state :

1 . The cooker is turned off, the heat .source is cold .

2 . The espresso .machine is filled, i .e . :
- there is water in the water.pot,
-the pressure in the water.pot is low,
- the coffeepot is empty, and
-the powder container isfilled up with coffee powder.

3 . The espresso . machine is on the cooker .

When switching on, the heat .source will become hot. A heat .flow from heat .source
to water.pot is started . Heating up the water will effect the generation of steam .



Fig . 2.2 : Espresso Machine

process preparing-espresso;

This increases the pressure in the water.pot, what in turn will cause the hot water
to be pressed through the stand-pipe and coffee powder into the coffee .pot. The
process ends when neither the water.pot nor the stand-pipe contain any liquid .

With regard to the limited extent of this paper we will confine us to one
aggregated process preparing-espresso with the following four subprocesses:

1 . switching-on and switching-off :
We assume an ideal heat .source, i .e . after switching on the heat.source is
immediately hot, in the moment of switching off it is immediately cold .

2 . boiling-water :
This process models the generation of steam and pressure in the water.pot.

3 . transporting-liquid :
Transport of liquid from water.potto coffee .pot .

We do not care about the process of heating the surroundings of the system, the
chemical process of transmuting the water into espresso, and some other processes
one can imagine .

We give a pictural instead of a verbal description of the structural model in Fig .
2 .3 ., because we have not introduced the description language for objects.
Therefor the domains of the object parameters are defined under the slot params
in the process description .



Fig . 2 .3 : Structural Model of the System

component ( lowlevel units ofstructural description)

aggregates (highlevel descriptions combined of components or aggregates)

N

	

: name ofthe unit
subs

	

: subaggregates or components
params

	

: parameters

objects

	

is-of-type (?espr.mach .on .cook, espresso . mach In e .on .cooker),
constituent-of (?cooker, cooker, ?espr.mach .on .cook),
constituent-of (?espresso . mach in e, espresso.machine,

?espr.mach .on .cook),
constituent-of (?switch, switch, ?cooker),
constituent-of (?heat .source, heat .source, ?cooker),
constituent-of (?water .pot, water .pot, ?espresso . machine),
constituent-of (?coffee .pot, coffee .pot, ?espresso .machine) ;

params

	

position (?switch) : [on, off],
temp(?heat.source) : [cold, hot],
total .amount.of.Iiquid(?espr .mach .on-cook)

[0, (0-total .amount),total .amount,
(total .amount-max.amountl), max .amountl],

amount(?water .pot)
[0, (0-total .amount), total .amount,
(total .amount-max .amount2), max .amount2],



amount(?coffee .pot)

[0, (0-total .amount), total .amount,

(total .amount-max .amount3), max .amount3],

steam(?water .pot) :

	

[0, greater.than0],

pressure(?water .pot) : [low, (low-rising-pressure), rising .pressure,

(rising .pressure-high), high] ;

subprocesses switching-on, switching-off, boiling-water,transporting-liquid ;

switching-on {m} boiling-water,

switching-on {<}transporting-liquid,

transporting-liquid {m,<} switching-off,

boiling-water {m,<} switching-off ;

conditions

	

total .amount.of.liquid > 0 ;

relations

	

amount(?water .pot) +amount(?coffee .pot) _

total .amount.of.liquid ;

influences

	

D(amount(?water.pot)) _ -,

amount(?water.pot) >>- amount(?coffee.pot) ;

process switching-on ;

conditions

	

position (?switch) = off;

influences

	

position (?switch) = on ;

temp(?heat.source) = hot ;

process switching-off ;

conditions

	

position (?switch) = on ;

influences

	

position(?switch) = off;

temp(?heat .source) = cold ;

process boiling-water ;

conditions

	

temp(?heat .source) = hot,

amount(?water .pot) > 0;

influences

	

D(steam(?water.pot)) = +,

steam(?water.pot) >>+ pressure(?water . pot) ;

process transporting-liquid ;

conditions

	

(OR (pressure(?water . pot) > rising .pressure)

(pressure(?water . pot) = rising .pressure)),

amount(?water.pot) > 0 ;

influences

	

D(amount(?water.pot)) _ -,

amount(?water.pot) >>+ pressure(?water . pot),

amount(?water.pot) >>- amount(?coffee.pot) ;



The specified temporal relations between the subprocesses are demonstrated in

Fig . 2.4 .

Process

switching-on

	

I--

boiling-water

transporting-liquid

switching-off

	

I

Fig . 2.4 : Temporal Behavior of the Subprocesses

3 . Analysis of Behavior

3 .1 Temporal and Inherent Dependencies between Processes

Section 2.2 presented a formalism for process modeling, which allows to describe

the behavior of a dynamical system in distinct levels of abstraction (or inverse levels

of detail) by a hierarchy of processes, see Fig . 3 .1 . The subprocesses Pi, . . ., Pn of the

P

Fig . 3 .11 : Hierarchy of Processes

Interval

aggregated (root-) process P all together describe the behavior of Pin a higher level

of detail, where each Pi describes a partial aspect of P . The same mechanism is

valid for all processes in the hierarchy and their direct or indirect subprocesses . For

performing the behavior analysis, the level of detail in the hierarchy must be

defined . In words of graph theory this means, that a cut through the tree must be

specified . Informally, a cut is a subset of nodes such that it contains exactly one

node of every path from the root to a leaf node . So, for example, the root is a

trivial cut and all nodes surrounded by the closed line of Fig 3 .2 form a cut . Every

cut describes the complete behavior of the system at a fixed level of detail . The set

of all processes in the cut is called focus . It is the input for behavior analysis .

A number of precomputations concerning the scope of slots of predeceasing

processes are to be made before starting the actual behavior analysis . Only one of



Fig . 3 .2 : Hierarchy of Processes with a Focus

them is discussed here : The computation of temporal relations between processes

in a cut, which are not brothers . In CAPAS only the temporal relations between

brothers may be known and can be fetched from the fatherprocess . But not all

processes in a cut are brothers . For two non-brothers the temporal relations can be

determined in a way described in [All1] . It is based on the implicit assumption, that

by default all subprocesses are {s,d,f} to their fatherprocess . So, by transitivity, the

temporal relations between each pair of processes in the hierarchy can be

computed . See for example Fig . 3 .3 with the assigned time diagram . The cut

consists of P2, P3, P4 . By transitivity we get P3 { <) P2 and P4 {<} P2

P1

{m}

Fig 3 .3 : Example for Determining Temporal Relations in a Cut of a Process Hierarchy

The goal of the behavior analysis is to analyse the dependencies between the

subprocesses in a cut {Pj, ._Pm) starting from an initial state . The analysis results in

a behavior graph that describes all possible behaviors at level of detail specified by

the cut . Nodes of the behavior graph are system configurations (in short :

configurations) . A configuration is a set of processes, which are active in the same

time-interval (subsets of {Pj, ._Pm}) . The graph is connected by directed edges,

which are interpreted as possible transitions between configurations . They

describe the activation and deactivation of processes . The startnode is a



configuration in which no process is active . Each path from the startnode to
another node describes one possible behavior .

There are two kinds of dependencies between subprocesses :

1 . Temporal dependencies :
By temporal reasoning it is possible to infer sets of processes, that can
simultaneously be active and the possible sequences of system configurations,
i .e . the configurations and transitions between them that are possible under
the temporal restrictions .

Example :
Let Pi and P2 be the only subprocesses of P, and P1 {o} P2 a given
temporal relation . The behavior of P can be described by

{P1} - {P1,P2} - {P2}
i .e . at first P1 is active, then both subprocesses are active, then P2 .

2 . Inherent dependencies :
Processes interact by shared influences along common parameters . Different
active processes can affect the same parameter directly or indirectly or a
process can affect a parameter mentioned in the activity condition of another
process : the condition of an inactive process can become valid or the
condition of an active process can become invalid (change of status) . The
analysis of this kind of interaction is called limit analysis [Fort] . It is performed
in two steps . The order of the steps is essential, because the results of step I )
enter step II ) .

I )For system configuration SC determine the induced changes of parameters
as follows :
Direct influences of one process :

All expressions that are listed under slot 'influences' ;
Indirect influences of one process :

Only possible for continuously influenced parameters;
Q1 »+ Q2 : D(Q1) = q

	

D(Q2) = q
Q 1 > >- Q2

	

D(Q1) = q

	

D(Q2) = q
+

	

if q = -
where q E {-,0,+}, q =

	

0

	

if q = 0
-

	

if q = +
Multiple influences on the same parameter X are combined as follows :
Let D1(X) and D2(X) be single influences or intermediate results . The
table specifies their concatenation

	

D1(X) o D2(X) :



The table shows the non-determinism caused by contrary influences.

Sometimes a conflict may be resolved by the previously known temporal

relations . It may also be possible (but is not done in this approach) to

make a refined subdivision of the domain of the D-values. Nevertheless,

a conflict resolution is not always possible .

Example :

Assume the process definition of section 2 .3 .

Let SCI = {boiling-water, transporting-liquid} be a configuration .

The following changes of parameters are caused in SC1

D(amount(?water.pot)) _ -, D(amount(?coffee .pot))

D(steam(?water . pot)) = +,

D(pressure(?water . pot)) E {-,0,+}, because boiling-water has positive,

transporting-liquid negative influence on pressure .

Let SC2 = {switching-on} be a system configuration consisting of a

discrete process .

Changes of parameters :

A(position(?switch)) = on, A(temp(?heat .source)) = hot.

11)For a system configuration SC determine, which processes can change their

status due to the parameter changes determined in i ) . If more than one

process can change its status, it is not realistic to assume that they all do it

in the same moment. Instead, all temporal sequences in change of status

are to be considered . By this you get all successing configurations

SC1, . . .,SCn, which are possible under inherent dependencies.

Example :

Let {Pl,P2} be a system configuration . Assume that the result of the

limit analysis is that P2 becomes inactive and P3 active . The following

transitions are possible :

Here an essential advantage of the use of previously known temporal

relations can be seen : it is possible that some transitions can bee

excluded because they are not valid under temporal restrictions .

D 1 (X)

D2(X
0 +

- - -,0,+

0 - 0 +

+ +



{P1,P2}

{Pt} {P1,P2,P3} {Pl,P3)

The analysis of behavior is based on two fundamental assumptions :

- all changes are caused directly or indirectly by processes ;

- beyond the influences induced by the processes defining a system, there are

no further influences ('closed world assumption') .

These assumptions imply that the D-value of all non-influenced parameters is 0 .

The analysis of the temporal and inherent dependencies are essential steps in

generating the behavior graph . For a system configuration SC, the allowed

successor configurations SSC are determined as follows :

1 . TSC = successor configurations, that are possible under temporal dependencies

2 . ISC =

	

successor configurations, that are possible under inherent dependencies

3 . SSC = TSC n ISC .

This is illustrated in the next section by means of the espresso-example .

3.2 Example : Preparing Espresso

For the process preparing-espresso, its subprocesses, and the initial state, which has

been specified in section 2 .3, we get the behavior graph of Fig 3 .4 .

As an example, the determination of the successing configurations of * and ** is

discussed in detail :

Successing configurations of * :

	

SC = {boiling-water}

A-values known : position (?switch) = on, temp(?heat .source) = hot,

water-pot. amount > 0

Changes in parameters : D(steam(?water.pot)) = +, D(pressure(?water.pot))

TSC= {{boiling-water,transporting-liquid},{transporting-liquid}}

ISC = {{boiling-water, transporting-liquid), {boiling-water, switching-off},

{switching-off, boiling-water, transporting-liquid}}

SSC = {{boiling-water,transporting-liquid}} .

Successing configurations of ** : SC = {boiling-water, transporting-liquid}



{boiling-water}

{switching-off}

{switching-on}

{boiling-water,

	

{transporting-liquid}
** transporting-liquid}

Fig 3 .4 : Behavior Graph for Process Preparing-Espresso

SSC =

	

{{boiling-water), {}, {switching-off}}

4 . Conclusion and Open Problems

no possible transition ;
eliminated by limit analysis

A-values known : position (?switch) = on, temp(?heat.source) = hot,

amount(?water .pot) > 0

Changes in parameters:

D(amount(?water.pot)) _ -, D(amount(?coffee.pot))

D(steam(?water . pot)) = +, D(pressure(?water . pot)) E {+,0,-}

Possible changes in status :

switching-off can become active,

transporting-liquid can become inactive, because pressure is decreasing,

transporting-liquid and boiling-water can become inactive simultaneously,

because amount(?water.pot) becomes 0 .

TSC =

	

{{boiling-water), {transporting-liquid}, {}, {switching-off}}

ISC =

	

{{boiling-water), {}, {switching-off}, {switching-off, boiling-water),

{switching-off, boiling-water, transporting-liquid}}

In this paper an extended calculus for qualitative modeling and analysis of

dynamical systems has been introduced_ It allows to represent the behavior of



processes, including references to the structural model . The first version of a

syntactical specification of CAPAS has been presented . A kernel algorithm is

implemented . In the last year we have developed a complex example process

model for the alcoholic fermentation in a wine-cellar, an example from the

biochemical domain [BIJa] . This led to further extensions, namely the introduction

of user-defined qualitative relations and functions, and a syntactical specification

of influences with different intensity on one parameter. Also we have stumbled on

some known problems, e.g . qualitative arithmetic [Stru] and handling changes in

existence of objects [Fort] .

Further open problems are :

The description of the geometrical arrangement of objects and their change-

ment

The integration of discrete and continuous processes :

It leads to the problem that the same parameter can be manipulated by discrete

and continuous processes simultaniously, or by more than one discrete process

simultaniously .

Focussing in more general process structures :

In this paper we assumed the process hierarchy to be a simple tree, where the

focus was defined to be a cut through the tree . Unfortunately case studies, e .g

[BIJa], have shown, that the structure of a simple tree is too specialized . We

need more general structures such as AND/OR trees or trees with typed edges

etc . The problem is to define the focus in the more general structure analogic to

the cut in the simple hierarchy . For a detailled discussion see [Suts] .

Cyclic behavior

Aliens approach is unable to deal with cyclic and reentrant time structures . We

need an extended time calculus for describing and handling cyclic behavior .

Acknowledgments

This work is sponsored by the BMFT (Ministery of research and technology of the

Federal Republic of Germany) . It is done in the project called TEX-B (Technical

EXpert systems Basis) .

References

[All1]

	

J .F . Allen, Maintaining Knowledge aboutTemporal Intervals,

Communications of the ACM 26 (11), 1983, 832-843 .



[All2]

	

J .F . Allen, Towards a General Theory of Action and Time, Artificial

Intelligence 23 1984, 123-154 .

[BIJa]

	

M. Blasius /A . Janson-Fleischmann, Qualitative Model lierung der Wein-

bereitung mit CAPAS, TEX-B Memo 18-87, FhG-IITB Karlsruhe, FRG, 1987 .

[DKBr] J . De Kleer/J .S . Brown, A Qualitative Physics Based on Confluences,

Artificial Intelligence 24, 1984, 7-83 .

[DiKi]

	

W. Dilger / J . Kippe, COMODEL : A Language for the Representation of

Technical Knowledge, Proceedings of the 9th IJCAI, Los Angeles 1985,

353-358 .

[Fort]

	

K.D . Forbus, Qualitative Process Theory, Artificial Intelligence 24, 1984,

85-168 .

[Fort]

	

K.D . Forbus, The Problem of Existence, Proceedings of the Cognitive Science

Society, 1985.

[JeWI] K . Jensen / N . Wirth, Pascal User Manual and Report, Springer-Verlag, 1974 .

[Kipp] J . Kippe, COMODEL : Ein Reprasentationsformalismusfurtechnische

Expertensysteme . GWAI-86 and 2 . Austrian AI-Conference,

Ottenstein/Austria, 1986, 349-360 .

[Kuip] B . Kuipers, Qualitative Simulation, Artificial Intelligence 29, 1986, 289-338 .

[Stru]

	

P . Struss, Mathematical Aspects of Qualitative Reasoning, Fruchtenicht(ed),

Technische Expertensysteme : Wissensreprasentation and Schlu(3folger-

ungsverfahren, Oldenbourg Verlag, 1987 .

[Suts]

	

G. Sutschet, Putting Structure on the Process Models in Qualitative Physics,

Proceedings of the 12th IMACS World Congress'88 on Scientific Computa-

tion, 1988 .

[Voss]

	

H. Voss, Representing and Analyzing Causal, Temporal, and Hierarchical

Relations of Devices, Dissertation, Fachbereich Informatik, Universitat

Kaiserslautern, 1986 .

[Well] D .S . Weld, Combining Discrete and Continuous Process Models,

Proceedings of the 9th IJCAI, Los Angeles 1985, 140-143 .

[Welt] D.S . Weld, The Use of Aggregation in Causal Simulation, Artificial

Intelligence 30, 1986, 1-34 .


