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Introduction

This

paper addresses the problem of=designing elementary components for mechanical devices

.

The automatic

design

of mechanisms presents a number of interesting issues, not encountered in other domains [Dixon, 1986]

.
One

of the key issues in mechanism design is the ability to reason explicitly about the relationship between

the

geometry of objects and their function in a mechanism

.

The motions of each object and the relationships

between

these motions (i

.e .,

the mechanism's kinematic behavior) are directly determined by the shapes of

the

objects and the nature of the contacts between them

.

Unlike other domains, the basic building blocks

of

a mechanism are pairs of objects, rather than individual objects [Reuleaux, 1876]

.

Examples of elementary

components

(called kinematic pairs) are a screw and bolt, a pair of meshed gears, and prismatic joints

.

Complex

mechanisms

are designed by assembling kinematic pairs to achieve the desired behavior

.
It

is a common observation that in order to comply with a set of design requirements, new or modified shapes

of

objects in kinematic pairs need to be considered

.

In most existing Computer-Aided Design (CAD) systems,

the

decision on the creation or modification of an object's shape is the task of the human designer

;

the CAD

system

is responsible for handling and verifying the consistency of the design decision

.

Other systems are capable

of

modifying the object's shape by varying the values of predefined parameters, such as the diameter, thickness,

etc .

(routine design) [Brown and Chandrasekaran, 1986], [Mittal et al

.,

1986], [Mitchell et al

.,

1985]

.

These

systems

configure their designs from a library of existing elementary components that have been parameterized

to

reflect the important aspects of the design problem

.

When the design specifications require the consideration

of

an additional parameter, or the introduction (or modification) of a new elementary component, the design

process

fails

.

In order to modify or introduce a new component, the system must be capable of reasoning about

the

structure and the function of the, component

.

A first approach to this problem is presented in [Murthy and

Addanki,

1987] for the domain of structural beam design

.
This

paper presents a new method for designing shapes of objects that is capable of handling both incomplete

and

qualitative functional specifications of the desired behavior

.

Our method is based on previous work showing

that

configuration spaces are an appropriate representation for relating kinematic behavior and object geometry

for

mechanism analysis [Faltings, 1986

;

1987], [Forbus et al, 1987], [Joskowicz, 1987a

;

1987b

;

1988]

.

2

	

Presentation

of the Problem

Consider

the following design scenario

:

we are given a rotating disc A and a translating rectangle B (Figure

la) .

Our design goal is to modify the shapes of the objects so that for two specific orientations of A, 0 and 7r/2,

B

prevents the rotation of A

.

For all other orientations, the motions of A and B must remain independent

.

A

possible

solution is to modify the shape of A by introducing two slots that allow B to create new contacts that

prevent

the rotation of A (Figure lb)

.
In

the following, we assume that objects are two-dimensional, that their contours are formed by line segments

and

circular arcs, and that each object has at most one degree of freedom (either rotation or translation) along
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Figure 1 : A Design Example

an axis fixed in the plane . We distinguish between five design spaces, corresponding to the degrees of freedom
of each object in the pair : fixed-rotation, fixed-translation, translation-translation, rotation-translation and
rotation-rotation .
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Functional Specification of Kinematic Behavior

The kinematic behavior of a mechanism can be described in terms of possible motions or in causal terms
[Joskowicz, 1987a] . Both descriptions are functional since they specify motion relationships between objects
without referring to their actual geometry.

A possible motions description specifies all the possible motions that each object (represented by a reference
point) can have, together with the relationships between these motions . Every degree of freedom is associated
with a motion parameter. The relationships between motions are specified by a function relating motion
parameters. Functions can be real-valued or qualitative, indicating whether the motion parameters' ratio is
increasing, decreasing or constant . Each motion parameter is bounded by intervals that define its legal -tarige.`
Since we assumed that objects are two dimensional and move on fixed axes, an object A can only have one
of the following three types of motions : no motion (fixed(A, p)), rotation (p-rotation(A, O, 0)), or translation
(pJranslation(A, O, X)) .

Kinematic behavior can be described as the union of several possible motion regions . For example, all the
reachable behaviors of the pair in Figure lb are described as the union of three regions :

Ro :

	

p-rotation(A, 01, 8), p-translation(B, 02, X), for 0 E [0, 27r]mad2,r and

	

X E [Xo, oo)

Rl :

	

fixed(A, 0), p_translation(B, 02, X), for 0 = 0 and X E [Xi, Xo)

R2 :

	

fixed(A, 0), p_translation(B, 02, X), for 0 = 7/2 and X E [XI, Xo)

In a previous paper, we showed that there is a direct, one-to-one correspondence between possible motion
descriptions and configuration spaces l [Joskowicz, 1987a] . Since each object has at most one degree of freedom,
a two-dimensional configuration space fully describes the kinematic behavior of a pair of objects . Figure 2 shows
the configuration space of the pair (A, B) before and after the modification . Note the direct correspondence
between the above description and the regions of free object placements, indicated by hatched areas .

'The configuration space of a mechanism defines the set of free placements (position and orientations) of objects in a mechanism
so that no two objects overlap [Lozano-Perez, 1983], [Schwartz and Sharir, 1983).
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Configuration Space Boundaries
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Figure 2: The Configuration Space Before and After the Modification .

An alternative description of kinematic behavior is a causal description . This description states the effects
that the motion of one object has upon the others (e.g ., if A rotates clockwise then B rotates counterclokwise) .
The kinematic behavior of a mechanism can then be described by the motions of its objects resulting from a
sequence of input motions . Section 6 shows that causal descriptions can also be mapped into an equivalent
configuration space specifying the desired behavior .
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Shape Design from Configuration Space
We use configuration spaces as the basis of the design procedure . In this section, we assume that the desired
pairwise behavior is given as a two-dimensional configuration space with exact boundaries .

Initially, we are given two objects, A, B (possibly empty), and a desired configuration space R(A, B),
corresponding to the desired kinematic behavior . The actual kinematic behavior of the objects corresponds
to their actual configuration space, CO(A, B). Comparing both the actual and desired behaviors amounts to
comparing the two configuration spaces, CO(A, B) and R(A, B). The differences between them indicate where
and how these behaviors differ . For example, in the previous design problem, the desired configuration space
R(A, B) contains two regions, R1 and R2, not present in CO(A, B) (Figure 2) .

The behavior of a kinematic pair can be modified by changing the boundaries of CO(A, B) so that they
match with the boundaries of R(A, B). Boundaries of the configuration space are formed by the contact of two
object features (a vertex, an edge, or an arc) . Therefore, configuration space boundaries can be modified by
removing contacts or introducing new ones . This in turn implies that the shape of the objects must be changed
by adding and deleting edges and arcs to their contours . In the previous example, there are six configuration
space boundaries, c2, cs, c4, cs, c7, CS, that must be added to CO(A, B), and two that must be deleted (cl and
es) to allow transitions from Ro to Rl and R2 2 . The design problem consists in finding a sequence of feature
additions and deletions to the objects' contours so that the actual and the desired configuration space boundaries
match and the set of non-kinematic design constraints are satisfied .

The form of the configuration space boundaries is determined by the design space and by the features that
come in contact to create it . For example, arc-vertex or arc-edge contacts produce (when the center of the are
coincides with the center of rotation) a configuration space boundary that is a line, such as the boundary co in

2Regions RI and R2 are rectangles of width zero, and thus have four sides, two of which of zero length .



Figure 2a produced by the contact (ao, bo) . We have classified the different types of boundaries that arise from
the nine possible pairwise contacts in each of the five design spaces . The result is a table of elementary contacts
that specifies, for each type of contact and design space, the type configuration space boundary produced,
together with the set of equations that define it .

Given a desired configuration space boundary, the design task consists in finding a pair of object features
that, when in contact, will create this boundary. Note that not every contact between features can produce
a desired configuration space boundary. For example, in the rotation-translation space, a vertex-edge contact
can never be used to produce a line boundary in CO(A, B), since its boundary equation is not a line . In this
case, only a vertex-arc or an edge-arc contact can produce the desired boundary. This means that arc ao cannot
be substituted by a vertex and still produce the boundary co when in contact with bo . Thus, the type of the
configuration space boundary can be used to determine which pair of features can, in principle, produce the
boundary . Having determined the type of contact, we then find the precise coordinates of the features that
create the boundary.
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A Backtracking Algorithm for Shape Design

The design procedure starts by comparing the actual and the desired configuration spaces. The goal is to
delete the configuration space boundaries of CO(A, B) that do not match boundaries of R(A, B) and to add to
CO(A, B) the boundaries that appear in R(A, B) but not in CO(A, B) . Two boundaries match iff their form
is identical and the free object placements lie on the same region .

For each boundary difference, a pair of object features to either delete or add the required boundary is
selected . For a deletion, at least one of the features that contributed to the boundary creation must be deleted .
For an addition, one or two new features must be created to produce the boundary . The type of features that
produce the boundary in question is determined from the table of elementary contacts . For example, in order
to delete cl, either ao or bo must be deleted . In order to add c2, it is sufficient to add the edge a2 (but not an
arc) since its contact with edge bs creates c2 .

In both cases of addition and deletion, there might be more than one candidate feature pair and thus a
(nondeterministic) choice must be made. For example, c3 can be created with the existing edge bo and a new
edge a4 , or with a new arc b9 and a new edge a4 . In this case, the first choice is preferred since it introduces
fewer new features . After every object contour change, the configuration space CO(A, B) is updated. If the
new features violate a design constraint (except closed contour), the pair is rejected and a new candidate pair
is selected . This guarantees that a bad choice is rejected as soon as a violation occurs, instead of waiting until
the whole design process is completed. Note that the final designed objects might not be consistent, i .e ., their
contour might not be closed . For example, if we remove the edge bo from B, and fake'A as shown in Figure 1b,
we still have that CO(A, B) = R(A, B), although B does not have a closed contour An attempt to "fill in" the
missing contours is made, without altering CO(A, B) . If this attempt fails, the algorithm backtracks over its
previous choice . The design process is successful when all the differences between CO(A, B) and R(A, B) have
been eliminated, and both objects are consistent with the design constraints . Figure 3 shows a backtracking
algorithm that is design-space independent .

The analysis of feature contacts reveals that the equations relating a configuration space boundary c; to
the features that created it are underconstrained when only c ; is given . Thus, there is, in principle, an infinite
number of coordinate values for features to create a new configuration space boundary, leading to an infinite
number of feature choices . Nevertheless, for most of the interesting design cases, the number of choices is finite .
When one of the objects (B) is not allowed to change, the number of possible choices of features of B that can
participate in the creation of a new boundary is bounded by the number of features in B . Also, if only one new
object feature is introduced at a time (to either A or B, but not both), the number of choices is bounded by
the number of features of A and B. In both cases, the overall complexity of the algorithm is exponential in the
number of choices . The actual running time of the algorithm is improved by incorporating two heuristics for
choosing candidate features based on the adjacency properties of local object convexity .

For many special design cases, we were able to develop efficient design algorithms . For example, if we assume
that both objects must be convex, the number of choices in each step is reduced to four, and the correct choice



Procedure DESIGN(A, B, R(A, B), Design-Constraints)

1. Compute CO(A, B).

2 . DELETE := boundaries in CO(A, B) that do not match boundaries in R(A, B) .
ADD := boundaries in R(A, B) that do not match boundaries in CO(A, B) .

3 . While CO(A, B) :A R(A, B) do

3 .1 For a boundary c ; in ADD, do
a. Using the table of elementary interactions, determine the type of features that can produce the

type of boundary of c ; .
b . Choose a pair of features (a, 6) of the appropriate type that produce c; . Prefer pairs in which

one of the features is already existing and is connected to the object boundary.
c . Check whether the new feature(s) comply with the design constraints .

3.2 Update CO(A, B), ADD and DELETE .
3.2 For a boundary c ; in DELETE, choose a feature from the pair that created it and delete it from the

corresponding object . Do not delete new features .
3.3 Update CO(A, B), ADD and DELETE.

4. End

S . Complete the object contours without modifying CO(A, B). If this is not possible, return "FAIL" .

Figure 3 : Algorithm for Shape Design .

can be made in constant time . The result is a deterministic algorithm whose time complexity is linear in the
size of R(A, B) . For the translation-translation space, all the design algorithms, including those dealing with
non-convex objects, have polynomial time complexity [Joskowicz and Addanki, 1988] .
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Qualitative Shape Design

Up to now, we assumed that we either have, or can produce, an exact description of the desired configuration
space . In some cases, such a precise description is not available, or not required .

Consider the following example : we are given a disk A that can rotate around axis Ol and a rectangle B that
can translate along axis 02 . Let 0 and X be their rotation and translation parameters, respectively. Suppose
we want, for a full rotation of A, B to slide up, then down, and then stay stationary. The precise relationship
between X and 0 is not important . We only require X to increase when 0 increases for the intervals X E [0, Xo]
and 0 E [0, a/2], and X to decrease when 0 increases for X E [Xo , 0] and 0 E [a/2, 7r] . For 0 E (7r, 2a), X is
to remain constant, X = 0 . This description is not sufficient to produce an exact configuration space since the
type of configuration space boundary in the first two regions is unknown . Indeed, any boundary is satisfactory
as long as the qualitative relations between the parameters hold continuously in each region . Figure 4 shows a
solution that meets these requirements . The given boundary points are matched exactly, but also new boundary
points are introduced .

To design shapes from qualitative descriptions, we no longer require an exact boundary match between
CO(A, B) and R(A, B) . The matching requirement for qualitative boundaries is relaxed as follows : let S be a
set of boundary segments of CO(A, B) . S matches a qualitative boundary defined by two given points Pl and
P2 of R(A, B) iff:

1 . The boundary segments of S form a connected, piecewise differentiable boundary whose endpoints are Pl
and P2 .
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Causal Descriptions
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Figure 4 : An Example of Qualitative Boundary Match.

2 . Each boundary segment in S reflects the same qualitative change than the change from Pl to P2.

Qualitative boundaries broaden the number of choices for pairwise contacts in the backtracking algorithm .
The elementary contact table is augmented with additional information, indicating the value range for which
the configuration space boundary is monotonically increasing, decreasing, or constant . New boundary points
are introduced only when all other choices fail . The boundary endpoints Pl and P2 must be matched precisely.

In this section, we show how to obtain the configuration space corresponding to a given causal description . A
causal description can be represented as a a collection of state diagram ([DeKleer and Brown, 1984], [Forbus,
1984]), where each state corresponds to a qualitatively different behavior . Two kinematic behaviors are said to
be qualitatively different when they specify different possible motions, when the axes of motion are different,
when at least two motion parameter intervals are disjoint, or when the functions relating motion parameters
are different .

While possible motion descriptions specify all the potential kinematic behaviors of a mechanism, causal
descriptions might only specify a subset of these behaviors . Indeed, a causal description can be interpreted



as

either being a partial or a complete description of the desired behavior

.

Both descriptions require the

described

behaviors to take place, but the partial description allows additional qualitatively different behaviors

.
A

complete description requires that no other qualitatively different behaviors take place

.

In both cases, the

design

is considered successful when the input motion sequences applied to the objects produce exactly the

original

state diagrams

.
Let

S = {Sl,

. . .

, S

�}

be a collection of state diagrams, where each state diagram Si is a triple [ai, (Sib}, {<

sif,sik

>}]

.

o, is the input motion sequence, {sii} is the set of states describing the motion of each object,

and

{< sii, sik >} is the set of state transitions

.

The function apply(a, CO(A, B)) produces the state diagram

corresponding

to the input sequence a and the configuration space CO(A, B) (the procedure to compute apply

is

described in [Joskowicz, 1987])

.

The shapes of A and B satisfy a given collection S of state diagrams iff

:

t1Si

E S A `dvi E Si,	

apply(o-i,

CO(A, B)) = Si

i .e .,

the application of each input motion sequence to the actual configuration space produces the same state

diagram

as the one desired one

.

A configuration space that satisfies the above property is acceptable

.

For a

given

set of state diagrams, the goal is to construct an acceptable desired configuration space, R(A, B)

.
We

construct R(A, B) by composing individual configuration spaces R

;(A,

B) resulting from each Si

.

The

space

Ri(A, B) is in turn constructed by composing configuration space regions rid resulting from each state

sib .

Each state sij is mapped into a region of the configuration space by using the information contained in the

state

about object motions and their relationships

:

1 .

The type of motions determines the design space

.

2 .

The intervals of the motion parameters determine the region of the configuration space in which the

behavior

takes place

.

3 .

The boundary of the configuration space is determined either by an explicitly given relation (XA > f (XB)),

or

deduced from the causal description that defines the instigator of the movement and the direction of

change

for the motion parameters

:

motion(A) CAUSES motion(B), direction(XA), direction(XB)

The

configuration space boundary resulting from a causal description is a qualitative boundary, whose endpoints

are

determined by the intervals of XA and XB

.

The region of free placements is determined by one of the

eight

possible combinations of values for direction(XA), direction(XB) and motion(A) CAUSES motion(B), as

shown

in Figure 5

.

For example, in the first case, the qualitative configuration space boundary is defined by the

endpoints

(Xi , XB) and (XZ , XB)

.

The set of free placements corresponds to the region XB < f(XA), where

f

is the equation of the boundary line

.
The

individual regions rid are combined by taking the union of their forbidden placements

.

Conceptually,

composing

two regions amounts to requiring two behaviors to take place in the interval common to the two re-

gions,

and preserving the behaviors in the disjoint subregions

.

The configuration spaces Ri(A, B) resulting from

each

Si are composed exactly as the individual regions rid

.

This method produces an acceptable configuration

space

R(A, B) that has the least constraints on free placements

.
Once

R(A, B) is found, we apply the design procedure described previously

.

If the causal description is as-

sumed

to be complete, we require a qualitative match between the all boundaries of R(A, B) and CO(A, B)

.

Oth-

erwise,

we allow additional regions in CO(A, B) not appearing in R(A, B)

.

Then, R(A, B) matches CO(A, B)

iff

there exist a set of regions rl,

. . . .

, r

�

C CO(A, B) such that R(A, B) matches ri U

. . .

U r

� .



1 . dir(XA) = +, dir(XB)

	

A as B, or
dir(XA) = -, dir(XB) _ -, B *a .4

--
XA

0

Z. dlr(X .4) = _, dlr(XB) = _, A :* B, or
dir(XA ) = +, dir(XB) = +, B M A

3. dir( .Y.4) = +, dir(XB) = -, A > B, or
dir(XA) = -, dir(XB) = +, B

	

A

4 . dir(XA) = -, dir(XB) = 4-, A =i~ B, or
dir( .\ A ) = -1-, dir(XB) = -, B -a A

Xu~~ X

X

Figure 5 : Causal Dc,,rripticm : mil their Corresponding Qualitative Configuration
Space Regions.
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