
1 Introduction

Abstract
The QSIM algorithm is useful for predicting the
possible qualitative behaviors of a system, given
a qualitative differential equation (QDE) describ-
ing its structure and an initial state . Although
QSIM is guaranteed to predict all real possibili-
ties, it may also predict spurious behaviors which,
ifuncontrolled, can lead to an intractably branch-
ing tree of behaviors . Prediction of spurious be-
haviors is due to an interaction between the qual-
itative level of description and the local state-to-
state perspective on the behavior taken by the
algorithm .
In this paper, we describe the non-intersection
constraint, which embodies the requirement that
a trajectory in phase space cannot intersect itself.
We develop a criterion for applying it to all sec-
ond order systems. It eliminates amajor source of
spurious predictions . Using it with the curvature
constraint tightens simulation to the point where
system-specific constraints can be applied more
effectively . We demonstrate this on damped oscil-
latory systems with potentially nonlinear mono-
tonic restoring force and damping terms. Its in-
troduction represents significant progress towards
tightening QSIM simulation .

QSIM [Kuipers, 1986] qualitatively reasons about systems
of autonomous qualitative differential equations (QDEs) .
Although many well known techniques already exist for
solving systems of ordinary differential equations (ODES),
they are applicable only to ODES of restricted forms. In
real applications, however, such forms are rare . On one
hand, incomplete knowledge often renders QDE models
more realistic than exact ODE. On the other hand, even
when we do have exact ODES, they are usually in unsolv-
able forms. QSIM, always predicting all real solutions to
a system of QDEs (in the form of qualitative descriptions
of the temporal behavior of parameters), has the potential
to deal with these cases .

Taking a phase space view, mathematicians have been
able to develop analyses that yield useful global charac-
teristics (such as stability) of solutions to ODES without
explicitly solving them . However, in applications such as
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monitoring and control where thresholds are a main con-
cern, such techniques are insufficient . Simulation type
techniques, such as QSIM, would be necessary . In such
cases, QSIM predictions exhaust all possible manners in
which various thresholds might be crossed.
Though apowerful algorithm, a combination of the local

state-to-state perspective and the qualitative level of de-
scription taken makes it possible for QSIM to predict spu-
rious solutions . In an analysis of the QDE for the damped
spring, Lee et al . [1987] identified various new types of con-
straints (higher derivative, energy and system property) for
tightening QSIM simulation . Using early versions of these
constraints, they were able to arrive at all and only the
correct predictions for the linear damped spring . However,
success of these early versions with potentially nonlinear
damped springs was not as complete .

Kuipers and Chiu [1987] introduced a generalized higher
derivative constraint in the form of curvature constraints .
They were able to eliminate a major source of spurious
predictions in QSIM, namely, the lack of derivative infor-
mation, sucessfully. Though a powerful and necessary con-
straint for simulating systems of second order and higher,
there are many cases where curvature constraints alone do
not suffice to make predictions tractable .

In this paper, we describe
the non-intersection constraint (short for non-intersection-
of-phase-space-trajectory constraint). It is not system-
specific in the sense that its derivation does not depend on
the specific system QSIM works on . It is derived from a
mathematical theorem that governs all systems the current
QSIM deals with and applies equally to them . It specifies
that phase space trajectories do not cross themselves and
eliminates a major source of spurious predictions. We have
developed a criterion for applying it to all second order
systems. Using it with the curvature constraint tightens
simulation to the point where system-specific constraints
(such as energy and system property constraints) can be
more effectively applied. This is demonstrated on damped
oscillatory systems.

In the rest of this paper, we first introduce the phase
space framework and how QSIM predictions fit into the
picture. Next the non-intersection constraint is described .
Then we describe our current implementation and results
of applying it to damped oscillatory systems. Its relation-
ship to previously introduced constraints and other issues
are discussed. Finally, related work by Sacks [1987] and
Struss [1987] are described.



Figure 1 : Some phase portrait of oscillatory systems.
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The Phase Space View
The non-intersection constraint is based on the stan-

dard phase space representation for systems of first-order
differential equations . An nth order equation can always
be reduced to a system of n first order equations . For ex-
ample, the linear damped spring, described by the second
order equation ma = -kx - 77v, is also described by the
following system of two first order equations :

x = v
kv
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--x - - v

	

(2)rn m
A phase space for a system is the Cartesian product of
a set of independent variables (state variables) that fully
describes the system . For second order systems, this cor-
responds to a phase plane . A point in the phase space
(phase point) represents a state of the system . Changes of
the system over time define a trajectory through the phase
space which tracks the state changes. Thus a trajectory is
a geometrical representation of a solution to a system . A
phase portrait (or phase diagram) for a system depicts its
phase space and trajectories and is a geometrical represen-
tation of the qualitative behavior of the system . Figure 1
shows some phase portraits of oscillatory systems . From
left to right, they represent solutions of steady oscillations
and diminishing oscillations, respectively. For a more thor-
ough treatment of the phase space representation, please
refer to an elementary differential equations book such as
[Boyce and diPrima, 1977] .
A QSIM prediction is a qualitative description of the be-

havior of a solution to a given system (Figure 2) . Thus it
also describes the class of trajectories in the phase space
which has the corresponding qualitative description. Us-
ing the Cartesian product of the quantity spaces of the
state variables as the qualitative phase space, the trajec-
tory of a QSIM prediction may be obtained by plotting the
qualitative states predicted in this qualitative phase space .
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The Non-Intersection
Constraint

The mathematical foundation for the non-intersection con-
straint is a theorem about trajectories of autonomous sys-
tems which states that :

A trajectory which passes through at least one
point that is not a critical point cannot cross itself

Figure 2 : A QSIM prediction and its qualitative phase
portrait .

unless it is a closed curve. In this case the tra-
jectory corresponds to a periodic solution of the
system [Boyce and diPrima, 1977, p .379-380] .

Its proof follows from the existence and uniqueness theo-
rems for systems of first order differential equations and
will not be given here .
Autonomous systems are systems whose phase space

representations do not explicitly involve the independent
variable (time, in QSIM). Since QSIM deals with sys-
tems that do not involve explicit time functions, this theo-
rem applies to the QSIM domain . The idea of the non-
intersection constraint, then, is to implement the con-
straint imposed by this theorem onto trajectories of QSIM
predictions.
The difficulty with applying this constraint within QSIM

is that the qualitative description of behaviors only speci-
fies values in terms of a discrete set of symbols, i.e . land-
mark values and the intervals between them. Therefore, we
only know where the phase space trajectory is in a loose,
qualitative sense. For example, in Figure 2, the precise
trajectory from (X190,0) to (X191,0) is unknown. We
only know that it reaches V87 before crossing the negative
v axis .

If a trajectory consists of a single critical point, it will
be a quiescent initial state and we need not worry about
constraining its simulation . If on the other hand the tra-
jectory is a closed curve, it corresponds to cyclic behavior
and an appropriate filter in QSIM takes care of the behav-
ior . Thus, we need only concern ourselves with multi-state,
non-cyclic behaviors .
Given this, the problem then is to detect intersections

between segments of a trajectory . The simplest case occurs
when a trajectory reaches a point (coordinates specified by
a pair of landmark values) it passed through before . In the
general case, however, the intersection point lies between
landmark values . We prove its existence for second or-
der systems by establishing a criterion for intersection as
described below .

Pick a trajectory segment with end points defining a
rectangle which encloses all points of the segment. Con-
sider segment ac enclosed in rectangle abcd (Figure 3a).
The segment partitions the edges of the rectangle into two
sets, lab, bc} and {ad, dc} . If the trajectory later enters
this rectangle through one edges set, say lab, bc} at b, and

Part of a QSIM Prediction
-tom

Time X V _,wee

TO (0 X190) (0 ZNF) 1 4 1 9 - -e
T1 X190 0
T2 (0 X190) V87 -VF91

T3 0 (V87, 0)
T4 X191 0
T5 (X191 0) V88 - W

T6 0 (0 V88)
T7 X194 0 MW x-1910 x-194X-19BttF

T8 (0 X194) V91 X VS V



4 Implementation
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An Example

v

Figure 3 : Intersection criterion for the non-intersection
constraint .

exits through the other, in this case lad, dc} say at d, an
intersection must occur, even if we don't know precisely
where' . Establishing this condition for a trajectory is thus
a criterion to conclude that the trajectory intersects itself.
It is general and applies to all second order systems QSIM
deals with.

The non-intersection constraint has been implemented us-
ing the criterion for intersection just described . An inter-
esting source of complication is that phase `points' can be
points, intervals or areas depending on whether the state
variables are at landmarks or in intervals . Consider the
case of Figure 3b . The state variable x is in an interval

one end of a trajectory segment and at a landmark at
_e other end, and vice versa for the variable v . In this
case, the edge sets satisfying the intersection criterion are
{af, fe} and {bc,cd}, rather than {af, fe} and Jac,ce} .
Other sources of complication are discussed in [Lee and
Kuipers, 1988] .
The non-intersection constraint is applied to all legiti-

mate phase spaces of a system . This means that for the
damped spring, the constraint is applied to each of the x-
v, v-a and a-x phase spaces' . This is necessary because of
the local point of view of limit-analysis-based qualitative
simulation methods . Simply applying the constraint to,
say, the x-v space would not ensure that the parameter a
behaves properly .

We have chosen the damped spring as an example to il-
lustrate the power of this constraint . The reason is that
the damped spring is a representative second order system

'This is a direct consequence of the Jordan Curve Theorem
which says that a closed curve in a plane divides the plane into
exactly two regions . Refer to [Christenson and Voxman, 1977]
for details .

'Normally, the x-v space is considered the phase space for
a damped spring . In fact, though, any collection of variables
+'

	

t is a linearly independent set and that fully describes the
em can be the phase space .
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Figure 4: Correspondence between relative values of km
and 772 and behavior of linear damped spring .

with versions of varying complexity (from linear to nonlin-
ear) :

These same equations also describe damped oscillatory sys-
tems in other domains (e .g . circuits and control) .
Damped spring systems have two types of behaviors,

purely oscillatory and reaching quiescence . The division
between these two types is, in the linear case, governed
by the relationship between 4km and q2 (Figure 4) . Its
behavior is purely oscillatory (underdamped) if 4km > 77 2
and reaches quiescence otherwise (overdamped and criti-
cally damped) . For purely oscillatory behaviors, different
phase relationships between x and a are possible and are,
in the linear case, governed by the relationship between
km and 772 .
Using the non-intersection constraint together with a

curvature constraint [Kuipers and Chiu, 1987] on the
damped spring systems has made predictions tractable .
Three sets of behaviors are predicted . One set consists of
strictly expanding oscillations with varying phase relation-
ship between a and x. Another consists of strictly dimin-
ishing oscillations with varying phase relationship between
a and x . The third consists of behaviors reaching quies-
cence after arbitrary number of diminishing oscillations .
Among these three sets, the expanding set is elimi-

nated when energy constraints are included [Lee el al.,
1987] . The system property constraints impose consis-
tent x-a phase relationships on the remaining two sets .
Since behaviors with overdamped and critically damped
approaches to quiescence correspond to 4km _< 77', filter-
ing the behaviors in the third set requires imposing con-
straints of a numerical nature . The quantitative reasoning
methods of Kuipers and Berleant [1988] should make it
possible to apply partial quantitative knowledge to filter
these behaviors .
The behaviors of the damped spring system that sur-

vive the combined curvature, non-intersection, energy and
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6 Discussion

Intersection in R-X portrait .

Rectangle formed by the phase
'Points' :

(R256 0]
[(B R256) X1911

Edge sets :
1 . (((X 0) (R (0 R256))]

I(R 0) (X (X191 6))])
2 . ([(R 8256) (X (X191 2))])

Reenters rectangle through
edge set 1 at [(0 R256) 0] .

Exits through edge set 2 at
[R256 (X191 0)] .A vs X

Figure 5: The non-intersection constraint at work .

system-property constraints can be classified as follows :
1 . Overdamped or critically damped approach to quies-

cence.
2 . Diminishing oscillations, with one of three constant

x-a phase relations .
3. Diminishing oscillations, with varying x-a phase rela-

tions.
4. Diminishing oscillations, reaching quiescence after an

arbitrary finite number of oscillations .
All behaviors can be accounted for for each version of

the damped spring . For the general damped spring and the
monotonic damping cases, behaviors from all four classes
are possible . For the monotonic spring force and linear
cases, behaviors from classes 1, 2 and 4 are predicted . How-
ever, only classes 1 and 2 represent possible behaviors in
the linear case . Spurious predictions are due to limitations
on the current form of the system property constraint . In-
corporating Kuipers and Berleant's [1988] quantitative rea-
soning methods should allow us to eliminate them . Output
showing the non-intersection constraint at work is included
in Figure 5 .

Although the M+ functional relationship is defined to be
time invariant in QSIM, insufficient mechanisms are incor-
porated to ensure that QSIM treats each M+ function con-
sistently . This is the reason why Lee et al. [1987] had lim-
ited success with nonlinear versions of the damped spring .
For nonlinear versions of the damped spring, the envelopes
derived for a from the corresponding energy equations are
too weak to constrain a appropriately. Thus QSIM pre-
dicts that a can behave more or less arbitrarily. This,
however, gives rise to behaviors with inconsistent M+ func-
tions which violate the non-intersection constraint . Apply-
ing the non-intersection constraint eliminates these spuri-
ous predictions.

In comparison with previously introduced constraints-
curvature, energy (Lyapunov) and system property, the
non-intersection constraint is not system-specific in that
its derivation does not depend on the particular system
QSIM works on . Its form remains the same and it applies
equally regardless of the system . The curvature constraint
is fundamental in the sense that it addresses QSIM's lack
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Related Work

of higher derivative information for performing local state-
to-state predictions central to the algorithm . It is local inub
the sense that it does not address particular global sys-
tem characteristics . In this sense, the non-intersection,
energy and system property constraints are all global .
The non-intersection and curvature constraints together
tighten simulation to the point where constraints address-
ing particular global system characteristics, such as energy
and system property, can be applied more effectively . This
represent significant progess towards tightening QSIM sim-
ulation .
The non-intersection constraint can impose, for exam-

ple, the requirement that a trajectory must spiral inwards,
but it does not guarantee that the spiral converges to the
origin . It remains possible that the spiral converges to a
limit cycle. This ambiguity can be resolved using an ap-
propriately chosen Lyapunov (energy) function .

Another possible approach for resolving this ambiguity is
to apply aggregation methods [Weld, 1986] to abstract the
decreasing oscillation to an amplitude decreasing towards
zero . This abstraction transforms the ambiguity between
asymptotically stable behavior and limit cycle to a much
simpler limit-analysis type ambiguity . We need only ask
whether a changing value (the amplitude) moving towards
a limit (zero) reaches it or stops before reaching it .

In the current paper, we have discussed only the non-
intersection constraint applied between two segments of
the same trajectory . In fact, the non-intersection con-
straint applies more generally, prohibiting intersections be-
tween any two trajectories in the same phase portrait . This
last condition raises an important subtlety. Two trajec-
tories within the same phase portrait represent different
possible initial conditions of the same system . However,
since a set of QSIM predictions may have different presup-
positions about the system properties of the system being
simulated, it is not guaranteed that two arbitrarily cho-
sen QSIM behaviors may be legitimately placed into the
same phase portrait . Thus, in order to apply the non-
intersection constraint between two trajectories, we must
be able to determine whether their presuppositions about
system properties are compatible . We plan to address this
problem in future work .

Struss [1987] has made a significant contribution to the
mathematical foundations of qualitative reasoning through
a careful analysis of qualitative algebras in terms of in-
terval algebras . Kuipers [1988] elaborates on some of
Struss' points, and clarifies a misconception about QSINL
In his appendix, Struss makes an interesting analysis of
the spring without friction (the simple spring) based on
the phase space approach . Using purely qualitative argu-
ments (symmetry) about trajectories of the simple spring,
he arrives at the conclusion that the simple spring oscil-
lates with constant amplitude . He then adds that this
would make adding further equations like conservation of
energy unnecessary.
A point to note, however, is that the conservation of

energy equation is not a further equation that needs to be
added. It is derivable from the original description of the
system . The process of deriving it would be liken to the



process of his analysis . The difference is that knowledge
algebraic manipulation is needed rather than of phase
ace trajectory analysis .
Sacks' work [1987] is impressive in automating the math-

ematician's analysis of precisely specified ODEs. Using a
bination of numerical and analytical methods (notably

cewise linear approximations), his PLR program pro-
duce qualitative descriptions of solutions, in the form of
phase diagrams, for nonlinear differential equations. His
approach is to first make a simple piecewise linear approx-
imation of the given equations and construct phase dia-
grams for them. Then he refines his approximation, con-
structs another set of diagrams and compares them with
the previous ones to look for new qualitative properties .
This process of refine-and-compare continues until no new
properties are found. His program performs well on a va-
riety of equations.
Our work addresses the problem of obtaining qualita-

tive behaviors from an incompletely specified QDE. When
key functional relations are known only to lie in the class
of monotonic functions, piecewise linear approximation is
impossible, and Sacks' powerful methods do not apply.

8 Conclusions
QSIM is a powerful inference mechanism for predicting
qualitative solutions of QDEs . However, if unconstrained,
it is possible for QSIM to predict intractable spurious so-
lutions.

Kuipers and Chiu [1987] and Lee et al. [1987] have intro-
duced various constraints to tighten the simulation process.
They are useful, but are in general unable to tighten sim-
ulation to the point where predictions become tractable .
We have introduced a global, non-system-specific con-
aint to eliminate a major source of spurious predictions .
is is the non-intersection constraint for phase space tra-

jectories which specifies that a trajectory cannot intersect
itself. Using it and the curvature constraint together tight-
ens simulation to the point where other global and system-
specific constraints can be applied more effectively . This
is demonstrated on damped oscillatory systems.

Introduction of the non-intersection constraint repre-
sents significant progress towards tightening QSIM simu-
lation . Current implementation applies the constraint be-
tween two segment of the same trajectory . Future work
includes generalizing the constraint to apply between tra-
jectroies and automating interpretation of behavior classes,
for example, by aggregation of repeated cycles [Weld,
1986], or by merging behaviors into families [Chin, 1988] .
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