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1 . Introduction
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1n this paper we describe an approach to unify the various
quantity spaces that have been proposed in qualitative
reasoning with numbers . We work in the domain of
physical devices, such as electrical circuits using lumped
parameter models . We show how changing the quantity
space can be achieved in the course of analysis and how
this is similar to dynamically changing the resolution in
analysis . We demonstrate the utility of this approach with
two examples in the domain of circuit analysis .

One of the chief aims of Qualitative Reasoning is to pro-
vide a broad picture of the functioning of the world by
taking a step back from the details . In this paper we show
that in reasoning with numbers the aim is to break the real
number line into broad, qualitatively distinct classes and
describe the working of a device in terms of these classes .

[Johag5a] defines the qualitative values a variable can
have Ao . . . A, as representing disjoint abutting intervals
that cover the entire number line . I define the set of val-
ues (A, . . . A,} as the Q-space.'

The aim of Qualitative Reasoning is to reduce the
cardinality of the Q-space while still retaining the infor-
mation available from doing the analysis using quantita-
tive values . This has two benefits .

omplete quantitative information is not always
available about the variables being analyzed . For
example in design, one may not know the exact val-
ues of all parameters in the design . Yet one has to
make decisions using this partial information . In this
case the partial information can be used by repres-
enting the variables in a qualitative form . By using
the smallest possible Q-space in which to perform the
analysis we are able to deal better with incomplete
information .

"

	

By using a qualitative description of the variables we
can form a description of the working of a device that
has a smaller number of states . Thus one can get a
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better understanding of the workings of the device,
at the desired level of detail . In essence using a small
Q-space gives a broader picture of the workings of a
device .

It is therefore intuitively clear that the best approach is to
use the smallest Q-space possible that will describe the
working of the device . Unfortunately however, the ex-
pressive power of a Q-space depends on the number of
elements it contains . This paper describes a scheme to
carry out analysis in the smallest possible Q-space .

We show that depending on the problem at hand it is
advantageous to perform the analysis in different Q-
spaces . We propose a set of 4 Q-spaces which represent
different resolutions on the number line . We show that
with this judicious choice of Q-spaces we can switch
dynamically between Q-spaces while performing the
analysis . In the process we perform each operation in the
analysis at the smallest resolution . We show how to
switch to a Q-space with a higher resolution when the
results of an operation are ambiguous .

	

Different parts of
the analysis can be carried out at different resolutions and
the final result is a description of the device that is close
to optimal .

	

This is illustrated with the help of two ex-
amples in linear circuit design .

2. Q-spaces
The following set of Q-spaces are proposed :
1 .

	

(±) (0, non-zero)

This Q-space is identical to the one described in
[Jollag5a] The following relationships between var-
iables can be expressed in this Q-space .

a>bif[a-b]=+

a=b if a-bis0

The converse of these relationships can also be ex-
pressed .

In addition we can express relationships between
quantities based on the relations =, > and <

I would have liked to use the term Quantity Space but that has a different meaning[Forbg5] .

	

1 am willing to accept suggestions for better
names .



a is increasing if

a(t2) > a(t1) and t2 > tl

The rules for arithmetic are described in [Joha85a]
It is to be noted that if [a] 0 [b] then [a + b] is
indeterminate. Magnitude information is also absent .
This ambiguity can be resolved by moving to the
next Q-space.

2.

	

(±) (0, infinitesimal, large)
This Q-space is identical to the one described in
[Raim86] All relations that can be expressed in

Q_space 1 can be expressed in this Q-space. In addition,
the' following relationships can be
expressed[Raim86].

a > b if a is large and b is infinitesimal.

a = b if a = b(1 + e) .

a - b if a and b are both infinitesimal or large.

[Mavr87] shows how to tie this Q-space to the real
number line . Thus is done by choosing a value e that
is the minimum ratio between a large and a small
number.

Q-space 2 splits the positive half of the real number
line into two halves that are separated by a threshold .
The threshold is different for different types of vari-
ables e.g . impedance and frequency . Even for the
same type of variable the threshold depends on the
particular comparison being made . For example
when we say two places are far apart it depends on
whether the journey is being made by car or on foot .

In the following a, and b, are the thresholds for a and
b. The rules for addition are' described in
[Raim86] . It is to be noted that these rules holds
only if a, = b, .

iVtultiplication in this Q-space retains the sign infor-
mation .

a x b is large if a is large and b is large
a x b is small is a is small and b is small
IIere the threshold is a, x b,
Tlle product is ambiguous is all other cases .

We run into Zeno's paradox here. This can be resolved by going
to the next finer resolution if necessary .

It is significant that the threshold changes during
multiplication . We show in the examples how the
can result in ambiguity . These ambiguities can
resolved by using Q-space 3.

3.

	

(±)(0, y') where y is the base, (e.g . 2 or 10), and z
is an integer .

	

IIcre 1 is y' .

If I a I = yZ, then log(a) = z.

In this Q-space it is possible to express all the re-
lations that can be expressed in Q-spaces, 1 and 2.
In addition it is possible to describe the logarithnuc
distance , LID, between two numbers

LD(a,b) = log(a) - log(b)

For multiplication .

[a][b] = [ab]

log(a*b) = log(a) + log(b)

For addition the rules are .

If log(a) > log(b) or ([a] = [b] and log(a) = log(b))
then'

log(a + b) = log(a)

and

[a + b] = [a]

If log(a) = log(b) and

	

[a] i6 [b] then

log(a + b) < log(a)

and [a + b] is indeterminate.

	

To resolve the ambi-
guity we need to go to a finer level of resolution, i.e .
the next Q-space.

4.

	

(±)(x * y'), y and z as before and x is a number with
n significant digits .

	

As n increases the veracity of the
description increases till at n=infinity this Q-space
approaches the real number line . The rules for ad-
dition and subtraction are similar to that in machine
arithmetic with fixed precision .

3 . Relationship to previous work.
In this section we illustrate the use of the 4 Q-spaces, with
two examples from the domain of circuit analysis .



The (±) (0, non-zero) Q-space [Joha85a, Forb85] has
the lowest resolution . It is excellent for describing the
working of the circuit in Figure 1 if we merely wish to
discover whether the current I flowing in the circuit in-
creases with V.

1= VoIRL

11 = V11R

12 = V21R

12 - I1 = (V2 - VI)IR

If V2 > VI then [V2- V1] = +

Therefore [12 - I I ] = + and I increases with V.

Other examples of reasoning in the (±)(0, non-zero)
space can be found in [.ioha85b, Wil185] 3 The main
problem with reasoning in this space is that addition of
two numbers of different signs results in ambiguity . Also
it is not possible to neglect small influences w.r .t . big ones .
.I .his is a very important part of Qualitative Reasoning in
humans . To achieve this capability we need to move to
Q-space 2 .

a

Figure 1 .

	

Figure a is a simplified model of a
voltage source in series with a load
resistance R,, . In figure b the voltage
source is represented as an ideal voltage
source in series with an output
resistance R, . In figure c the load is
represented by a resistor R, in parallel
with a capacitance C. The whole unit
is in series with an inductance L .

Using the signs of partials as the elements of an implicit Q-space
is a common technique in economics.

If we started out with a more complicated model of a
voltage source that includes an output resistance Ro as in
Figure lb we can use the (±)(0, infinitesimal, large) Q-
space [Raitn86] to reason about the quantities . To deter-
mine the current flowing in the circuit we use Ohm's law
to find

I= VI(Ro+ Rj

If R, < R,- then Ro can be neglected w.r .t RL. i .e .

Ro + RL = RL

Therefore

I = VI RL

Admittance(R,, 11 C) =coC+ I/R,.[Purc65]

Cro'r = l IRr

Rf- 101 , then 1IRi.- 10-1

If we set the threshold at 1() °, we find that

IIR I , > a>C

Reasoning in the (±)(0, infinitesimal, large) Q-space can
bring about ambiguity if two quantities are multiplied .
Consider the example of Figure Ic . Here we represent
the load by a capacitor C in parallel with the load resist-
ance R,, . The combination is in series with an inductance
L.

Each type of variable in this equation has its own
threshold . That is because different types of variables
have different units . For example, it does not make sense
to compare frequency and resistance .

	

If we know that
frequency Ilas a threshold co, resistance has a threshold
R � and capacitance has a threshold C, it is not-necessary
that

even though they have the same units . It is therefore not
possible to compare rv C, and (/R in this Q-space. It is
also not possible to compare R and col,, the impedance
of the inductance L . Hence it is not possible to know if
any of the quantities in the admittance can be neglected .
A threshold must be chosen for each comparison that is
made . In order to do this we need to move to Q-space
3 .

If we know that u)-- 10`, and (;- 10

	

then (,)C- 10 - '.
Similarly if



I /RI- + wC = 1IRr_

The impedance

	

of R,, 11 C is R, , and th
C can be deleted from tile model . Hence
flowing through the circuit is

V/(R, + wL + RL)

Here again it is not possible to compare R,, and R, . If
we move back to Q-space 3 we find that L- 10 - '" and its
impedance wL - 10-5 .
threshold at 104 .

RL > wL

and

RL > Ro

Hence these two quantities can be neglected w .r .t :t'R and a

I = VIRL.

Let us now consider an example that
nents . Figure 2 shows the circuit for
follower.
The model for the
parameters :
Bias current

	

I6 - 10 -'° A
Input resistance

	

R;- 10' 2 S2
Input capacitance

	

C;- 10- ' 2 F
Cutoff frequency

	

(u,-- 10'Ilertz
Output voltage

	

fo- 10 , Volts
Gain

	

K - 102

Output resistance

	

R� - 10-2 n
Biasing resistors

	

R, and R2 - 105 S2
Load resistor

	

R, - 103 K2 .
The voltage source has a
Voltage

	

1/,- 10° Volts,
Output resistance

	

R;, - 105-52
Frequency

	

w- 10° IIertz
On analyzing this circuit

IIR<«<nCj

V,a< > In

If R,- 10 -3 then we

operational amplifier has the following

we find that Q-space 2 is not
sufficient to remove ambiguities . We need to go to Q-
space 3 like in tile previous example . We find that

"l'uerefore R; can be dropped from tile model .

therefore 1, can he dropped from the model .

R;, " I/roCt

e capacitance
the current I

can set the

has more compo-
a positive voltage

With these simplifications to tile model, the voltage at the
input to tile operational amplifier is the same as I; Similar

reasoning; reduces tile circuit to the one shown in
Figure 3

Figure 2 .

	

A positive voltage follower. The top
figure shows the circuit using an
operational amplifier and the bottom is
the model of the operational amplifier .

cJ

Figure 3 .

	

Tire circuit alter simplifications reached
by analysis at Q-spaces 2 and 3 .

The equations for this circuit are

I! =

	

t0(RII(RI + R2))

Ir+

	

_

	

!i

1o = k(1%} - 1'-)

I Icrrcc

and
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If I', and f-'- are represented in (1-space 3, or lower, t'
the difference is indeterminate .



Therefore to simulate the circuit we need to represent all
the variables in Figure 3 in Q-space 4 with at least 3 sig-
nificant digits .

4 . Discussion.
The qualitative values a variable can have Ao . . . A . as
representing disjoint abutting intervals that cover the en-
tire number line[.Ioha85a] . I define the set . of values
{A, . . . A.) as the Q-space . In this paper we have pro-
posed a set of 4 Q-spaces that are useful in engineering
problem solving . They allow us to represent the sort of
relations that are useful in making engineering approxi-
mations .
The Q-spaces that we describe are chosen because re-
lationships that hold between quantities in Q-space with
lower resolution hold in a Q-space with a higher resol-
ution . If the results are indeterminate going to a Q-space
with a higher resolution may resolve the conflict . Thus
>, < and equal can be represented in all 4 spaces . >,
and - can be expressed in Q-spaces 2, 3 and 4 . In Q-
space 3 and 4 the logarithmic distance between two
number can be expressed . In Q space 4 with n significant
digits we can express the difference of two numbers q, and
q2 where q, - q2 -- 10-
Q-space 4 has the advantage that it is similar to the way
numbers are represented on machines . There is a calculus
for obtaining error bounds with such arithmetic . As the
number of significant digits increases this Q-space ap-
proximates the real line .

It is possible to have a different break up of the number
line . For example the temperature, We also advocate
choosing the threshold in Q-space 2 dynamically . Each
comparison involves different quantities and by moving
from Q-space 3 to 2 we are able to set our threshold dy-
namically .

There is a many-one mapping from Q-space 4 to 3 . One
just ignores the significant digits . To go from Q-space 3
to 2 one needs to compare the variable to the appropriate
threshold If

log(q) > log(threshold) implies q is large .

log(q) < log(threshold) implies q is infinitesimal .

Moving from Q-space 2 to 1 is trivial . Only the sign is
retained .
A device is analyzed at the lowest possible resolution . If
ambiguities result, we move to a higher resolution Q-
space till the ambiguity is resolved . Using this technique
we get as general a description of the device as possible .

5 . Conclusions
We describe a scheme to analyze devices at multiple levels
of resolution . We propose that 4 Q-spaces be used in
qualitative analysts . These smoothly span the range form
(±) (0, non-zero) to the real-number line . Analysis is
performed at the lowest possible resolution until ambigu-
ities occur . To resolve ambiguities in a Q-space with a
lower resolution, we move to a Q-space with a higher re-
solution . This paradigm allows us to obtain the most
general description of the working of a device .
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