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Abstract

This paper examines qualitative simulation (QS) from the phase space perspective of
dynamic systems theory. QS consists of two steps: transition analysis determines the
sequence of qualitative states that a system traverses and global interpretation derives
its long-term behavior . I recast transition analysis as a search problem in phase space
and replace the assorted transition rules with two algebraic conditions . The first con-
dition determines transitions between arbitrarily shaped regions in phase space, as
opposed to QS which only handles n-dimensional rectangles . It also provides more
accurate results by considering only the boundaries between regions . The second con-
dition determines whether nearby trajectories approach a fixed point asymptotically.
It obtains better results than QS by exploiting local stability properties . I recast global
interpretation as a search for attractors in phase space and present a global interpreta-
tion algorithm for systems whose local behavior determines global behavior uniquely.
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for Computer Science. It was supported (in part) by National Institutes of Health Grant No. R01 LM04493
from the National Library of Medicine .



1 Introduction

Qualitative reasoning seeks to automate the analysis of dynamic systems whose exact work-
ings are unimportant to the problem task, complicated, or unknown. For example, a com-
puter chef should be able to infer that turning up the flame under a pot increases the
temperature of its contents without solving heat conduction equations. Current qualitative
reasoning programs derive the abstract behavior of a system by simulating qualitative ver-
sions of its governing equations. This paper examines qualitative simulation (QS) from the
phase space perspective of dynamic systems theory.

The next section translates the qualitative reasoning terminology of AI researchers into
the phase space representation . QS consists of two steps: transition analysis determines
the sequence of qualitative states that a system traverses and global interpretation derives
its long-term behavior . Sections 3 and 4 recast transition analysis as a search problem in
phase space and replace the assorted transition rules with two algebraic conditions . These
conditions are more general and more accurate than the original transition rules . Section 5
recasts global interpretation as a search for attractors in phase space. It presents a global in-
terpretation algorithm for systems whose local behavior determines global behavior uniquely.
The final section contains conclusions and plans future work on global interpretation .

This paper addresses a generic form of QS, couched in terms of abstract differential
equations that contain arbitrary constants and functions . The ideas apply to every formalism
in the qualitative reasoning literature as well . The discussion pertains solely to input/output
behavior and efficiency, not to cognitive or philosophical issues . It makes no claims about
human reasoning methods or about the putative causal ordering that QS imposes on systems.
See de Kleer and Brown [4, 5] and Iwasaki and Simon [9, 10] for a discussion of these issues .
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Qualitative Reasoning in Phase Space

The phase space for a system of first-order differential equations

x; = fi(Xi, . . .,xn); i = 1, . . .,n

is the Cartesian product of the xi's domains. One can convert higher-order equations to
first-order ones by introducing new variables as synonyms for higher derivatives. Points in
phase space represent states of the system . Curves on which equation (1) is satisfied, called
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trajectories, represent solutions . A phase diagram for a system depicts its phase space and

trajectories graphically. The topological and geometric properties of trajectories characterize

the qualitative behavior of solutions . For example, a point trajectory, called a fixed point,

indicates a constant solution, whereas a closed curve indicates a periodic solution . A fixed

point is stable if every nearby trajectory approaches it asymptotically, repellent if every

nearby trajectory diverges from it, and unstable otherwise .

For example, the motion of a block attached to a track from below and to an elastic band

from above (Figure 1) is typically modeled by the abstract equations

x' = v

v- g(x) + h(v)

where x and v denote the location and velocity of the block . The functions g(x) and h(v)

decrease monotonically and vanish at zero, but are otherwise arbitrary . They represent the

elastic and frictional forces . (I ignore static friction for simplicity.) Figure 2 shows a typical
phase diagram for equation (2) . The system has a single stable fixed point, (0, 0), toward

which all other trajectories spiral . The fixed point represents the steady state in which the
block lies at rest directly beneath the ceiling . The spirals represent the decaying oscillations
that arise when the block is displaced from the steady state .

Figure 1 : A block attached to an elastic band .

The QS representation translates directly into phase space terminology . QS manipulates
abstract versions of numbers, called qualitative values, organized in quantity spaces: ordered

sets of alternating intervals and points. One useful quantity space, called IQ, consists of

the interval (-oo, 0), the point 0, and the interval (0, oo) . These abbreviate to -, 0, and

+ . QS models systems with sets of quantities: functions from an independent variable

(usually time) to quantity spaces . Define the qualitative state of a system to be the vector

of the qualitative values of its quantities. QS characterizes the behavior of a system by the



Figure 2 : Phase diagram for the block equation (2) .

sequences of qualitative states that it can go through. It represents this information with a
transition graph whose nodes and links denote qualitative states and possible transitions .

(qualitative values correspond to intervals and points on the real line . (quantities corre-
spond to phase variables . Let Qi denote the quantity space for quantity qi . Each qualitative
state of a system with quantities qi, . . . , qn maps to an n-dimensional rectangle in the Carte-
sian product Qi x . . . x Q,, . QS cannot represent non-rectangular regions, such as circles,
because the components of qualitative states are independent . Qualitative state transitions
correspond to transitions between regions in phase space, so transition graphs specify the
sequences of regions that trajectories traverse . The qualitative behaviors of a system are
isomorphic to the paths in its transition graph.

For example, the simplest QS formulation of the block example represents x and v as
IQ-valued quantities . Figure 3 shows the transition graph that QS derives for these values .
The phase space representation of the system appears in Figure 4. The nine qualitative
states map into four rectangles

	

four line segments ((±,O)), and one fixed point
((0,0)) . The phase space interpretation of the transition graph is that every solution either
remains at (0,0) forever, cycles clockwise through the outer eight regions forever, or cycles
for a while and then approaches (0, 0) from within (-, +) or (+, -) . In fact, all trajectories
are eventually trapped in every circle centered at the origin, but one cannot represent this
information as a sequence of transitions between rectangular regions .

The next two sections examine transition analysis in
involving fixed points are different from those between
the term region denote regions other than fixed points .
transitions between regions and transitions from regions
fixed points cannot occur by definition .

a phase space setting . Transitions
other regions. From here on, let
There are two cases to consider:

to fixed points . Transitions out of



Figure 3: Transition graph for the block.
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Figure 4 : Phase space representation of qualitative states for the block .

(-, +) (o, +) +)
T

(- 10) (0,0) (+10)

T '~ 1



3

	

Transitions Between Regions
QS calculates the successors of a qualitative state from the signs of its derivatives . It derives
the signs from the governing equations and infers the transitions from the intermediate value
and mean value theorems . (It assumes that solutions are piecewise smooth.) For example,
given the state y < 0 and y' > 0, it concludes that y may enter the state y = 0, but cannot
enter y > 0 directly. The QS transition rules map directly to phase space. Let regions R
and S be adjacent along the boundary xi = k with x i < k for x E R and x i > k for x E S.
QS derives a transition from R to S unless the governing equations imply xi < 0 for every
x E R and one from S to R unless the equations imply xz > 0 for every x E S. In the
block example, x' > 0 on (-,+) and (0,+) by equation (2) . Hence, there is a transition
from (-, +) to (0, +), but not from (0, +) to Figure 5 depicts this example as well
as symmetric transitions between two regions .

- - k(-, +)

	

(01+) R

Figure 5 : Sample transitions . Arrows indicate x's direction of change. (a) from (-, +) to
(0, +), but not from (0, +) to (-, +) . (b) from R to S and from S to R.

The QS transition analysis algorithm only applies to regions whose boundaries have the
form xi = k. This prevents QS from reasoning about regions such as u > v and u2 + v2 < k
that have slanted and circular boundaries respectively. Also, the QS algorithm can produce
spurious transitions when a derivative takes on positive and negative values within a single
region. For example, given the equation y' = y - y 2 , y' is positive for y E (0, 1) and negative
for y E (1, oo) . QS derives a transition from (0, oo) to 0 even though y moves away from 0 in
(0, 1), as shown in Figure 6 . In this case, one can solve the problem by including the critical
points of y, 0 and 1, in its value space. This solution becomes cumbersome for systems
with many critical points and impossible when the critical points of one variable depend on
another variable .

A phase space perspective generalizes transition analysis to regions bounded by smooth
curves and eliminates the spurious transitions discussed above . For a trajectory to cross from



Figure 6 : Phase diagram for y' = y - y 2 . All solutions in (0,1) move away from 0.

region R to S via boundary u, its tangent t at the intersection point with u must form an
acute angle with the normal n, as shown in Figure 7 . In algebraic terms, the inner product
t -n must be positive . Hence, a transition exists from R to S unless t -n < 0 everywhere on u .
This condition applies to any smooth boundary. It reduces to the QS transition condition,
xi < 0, in the special case where u has the form xi = k .

Figure 7 : Trajectory crossing from R to S via u . The tangent t at the crossing point must
form an acute angle with n, the normal to u that points into S .

The condition t - n < 0 is evaluated on the boundaries between regions, making it in-
sensitive to changes in the signs of derivatives within a region. In our example, y' = 0 at
the boundary, 0, between (0, oo) and 0, ruling out a transition to 0 . In the block example,
x' > 0 on the boundary, (0, - I- ), between (-, -}-) and (0, -}-) . This result agrees with the QS
prediction because x' > 0 throughout (-, +) . The general case of regions R and S adjacent
along xi = k and governed by equation (1) is analogous . A transition from R to S occurs
unless

lim fi(xi, . . . , xn) < 0

for all xi , . . . , xi_i , xi+1, . . . , xn in R.

	

The limit reduces to fi(xi, . . . , xi_Y) k, xi+i, . . . , xn)
when fi is continuous from below or when R has zero width in dimension i . Conversely, a



transition from S to R occurs unless

lim fi(xi, . . . , xn) > 0
Xilk
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Transitions between Regions and Fixed Points

for all xi, . . . , xi_i, xi+1, . . . , xn in S .

	

The limit reduces to fi(xi, . . . , xi_i, k, xi+i, . . . , xn)
when fi is continuous from above or when S has zero width in dimension i . These reductions

apply to all current QS systems because all researchers have assumed one-sided (but not two-

sided) continuity.
The accuracy of these transition conditions depends on the specificity of the system

equations and on the power of the inequality prover . If only sign equations are available, as

in de Kleer and Brown [4], one must evaluate the above inequalities by qualitative arithmetic,

a special case of interval arithmetic [15] . Better results are possible when algebraic equations

are available, as in the models of Forbus [6] and Kuipers [14] . Powerful inequality provers
can rule out impossible transitions that qualitative arithmetic endorses, perhaps at the cost

of increased computational complexity . I discuss the tradeoffs between power and efficiency

in existing inequality provers elsewhere [16] [17, Ch . 7] . These tradeoffs are orthogonal to
the improvement over QS obtained by examining the boundaries between regions.

Some QS researchers, including Kuipers, derive transitions from regions to fixed points in
the same manner as transitions between regions . Others, including de Kleer and Bobrow

[3], rule them out altogether . An analytic function can be constant on an interval only if

it is always constant ; hence, a moving trajectory cannot come to rest . Neither approach
accurately describes the underlying phenomena. Moving trajectories cannot, in fact, reach
fixed points in finite time, but they can approach fixed points asymptotically. Moreover,
the stability characteristics of fixed points govern the transitions from adjacent regions .

Programs that apply the inter-regional transition rule to this case can overlook important
inferences . This section describes an algorithm, called FPA (for fixed point analysis), that

derives the transitions into fixed points from their stability characteristics .

FPA calculates the fixed points of a system of differential equations



v=0

g(x) + h(v) = 0

A = (ail - a22 )2 + 4a,Z a2i < 0

by setting all derivatives to zero and solving the resulting equations . In the block example,
it solves

to obtain the unique fixed point : (0, 0) . The solution follows from the constraints on g and
h. Sufficiently complicated systems can cause any equation solver to fail . This should rarely
be a problem for FPA, given the simplicity of the equations in the qualitative reasoning
literature .

FPA tests whether each fixed point that it calculates is stable or repellent . If a fixed point
p is stable, every trajectory that passes near p converges to it . Transitions exist from each of
p's neighbors to p because each neighbor contains points arbitrarily near p. If p is repellent,
every trajectory that passes near p diverges from it . Hence, there are no transitions into p.

A fixed point p of (1) is stable (repellent) exactly when all the eigenvalues of the n-by-n
matrix

A(x) = (aii) with aij =

	

a

	

fi(xl, . . . , xn)ax;
have negative (positive) real parts at x = p [8, Ch. 9] . To determine stability, FPA first
ignores the magnitudes of the aij and tests whether their signs alone imply stability. This
condition, called sign stability, is easier to ascertain than the weaker condition of stability,
but rarer . The sign pattern of A expresses the direction of influence between variables in the
neighborhood of p . The jth variable influences the ith variable positively if ai.7 > 0, not at
all if ai .7 = 0, and negatively if aij < 0 . A sign stable matrix is one in which this qualitative
information implies stability.

Sign stability is the strongest condition derivable in formalisms, such as de Kleer's, where
the magnitudes of the ai3 are unspecified . If -A = (-aij) is sign stable, there are no
transitions into p. If not, there exists an unstable instance of -A, hence an instance of A
with a negative eigenvalue . For this instance, every neighborhood of p contains points whose
trajectories approach p asymptotically [7, Ch. 1] . The transition graph must include links
into p from each adjacent region to cover this case .

Sign stability does not distinguish between spiral and nodal approach to a fixed point
(Figure 8) because the magnitudes of the ail determine these properties . In the two-
dimensional case, for example, trajectories spiral for



and are nodal otherwise . Given only the signs of the ai9, QS can do no better. I discuss
constraints on the magnitudes of the ail at the end of this section .

inequality reasoner [16] . In the block example (2), the matrix

E={(i,j)j2~4 3Aaii :~ 01 .

Figure 8 : Spiral versus nodal approach to a fixed point .

FPA calculates the ai9 from the system (1) and derives their signs with the BOUNDER

v v

	

0 1A(x v) =

	

aX

	

av

	

=

	

(8)
ax (9(x) + h(v))

	

av (9(x) + h(v))

	

g'(x)

	

h'(vI

	

[

has the sign pattern [° +] at (0, 0) . The bottom two entries are '-'because g and h are mono-

tone decreasing functions. The signs of the aid are also derivable in all the QS formalisms
described in Bobrow [2] .

Jef£ries et al . [11] derive necessary and sufficient conditions for sign stability. Define
R = {ilaii ~4 0} . Let G be an undirected graph with vertices V = {1, . . .,n} and edges

1 . aii < 0 for all i and ajj < 0 for some j,

2 . ai9a9i < 0 for all i :A j,

3 . akikzakzks * * , ak._l kmakrnkl = 0 for any m > 3 distinct indices kl , . . . , k�i,

4. the only R-coloring of G is all black, and

5 . a V - R complete matching exists for G.

9

An R-coloring of G partitions V into black and white sets such that each vertex in R is
black, no black vertex has exactly one white neighbor, and each white vertex has some white
neighbor . A complete matching in G for Z C V is a set of edges satisfying : (1) no two edges
touch the same vertex and (2) an edge touches each vertex in Z. A is sign stable iff:



Conditions 1 and 2 rule out positive feedback from a variable to itself and between pairs of
variables . Klee and van den Driessche [13] present an algorithm that tests conditions 1-5 for
an n-by-n matrix A with e nonzero elements in O(max{n, e}) time .

The sign pattern of the block example is [° +] at the unique fixed point : (0, 0) .

	

This

pattern is sign stable, implying that the oscillations predicted by simulation die down for
small initial displacements . Conditions 1-3 are immediate. The graph G has vertices V =
{1, 2} and edges E = {(1, 2)} . R is {2} . Every R-covering of G paints 2 black by definition ;
hence 1 must be black to prevent 2 from having a single white neighbor, implying condition 4.
The edge (1, 2) satisfies condition 5.

A redundant system contains a set of variables that can be expressed in terms of its
constants and remaining variables. Redundancy prevents a stable system from being sign
stable . For example, the following system describes the (inertia-free) flow of liquid through

v monotone increasing functions that vanish atwith p, r, u, and
redundant because either of the variables volume-x and volume-y can be expressed as the
difference between the constant total-volume and the other variable .

1 0

Figure 9: Fluid flow through a U-shaped tube.

zero . The system is

Redundancy is primarily a modeling issue: flabby models produce weak conclusions . Nev-
ertheless, FPA can ameliorate the problem by eliminating linear dependencies . It derives de-
pendent sets of derivatives, Ei a;vi = 0, and integrates them into dependent sets of variables

the U-shaped tube shown in Figure 9 :

level-x = u(volume-x)
pressure-x = p(level-x)

level-y = v(volume-y)
pressure-y = p(level-y) (10)
flow-rate = r(pressure-x - pressure-y)
volume-i = -flow-rate
volume-y' = flow-rate



has A = (all ) with

yI = r(F(y)) with F(y) = p(u(k - y)) - p(v(y))

Ei aivi = k. Next, it derives a maximal independent set of variables and eliminates he re-
maining variables by substitution . In the U-tube example, it obtains volume-x'---volume-y' =
0 from the last two constraints, integrates the result into volume-x+ volume-y = k, and sub-
stitutes k - volume-y for volume-x. Abbreviating volume-y to y, the reduced equation

all = yr(F(y)) = -r'(F(y)) [p'(u(k - y))u'(k - y) +P(v(y))v'(y)]~

	

(12)

The derivative terms in all are positive because the corresponding functions increase mono-
tonically. Hence, all is negative and A satisfies the sign stability conditions . Small height
differentials between the arms of the U-tube always disappear over time .

If neither A nor -A is sign stable at the fixed point p, FPA tests whether constraints on
the magnitudes of the ai.1 imply stability. For example, given a > b > 0 it determines that

(13)

is stable even though M violates condition 2 for sign stability and -M violates condition 1 .
FPA also determines that the fixed point is nodal from equation (7), since A = 4b2 > 0.

Stability of an n-by-n matrix is decidable in O(n3 ) time with the Routh-Hurwitz algo-
rithm [1, Ch. 3] when the ai.7 are numbers. That algorithm depends solely on inequalities
involving terms in the determinant expansion of A . Hence, it can also handle symbolic ail,

providing the signs of the determinant terms remain derivable . FPA tries to resolve the
inequalities with the BOUNDER inequality reasoner . If it succeeds, as in the case of M above,
the Routh-Hurwitz algorithm determines the stability of A. If BOUNDER cannot resolve
some inequality, the algorithm fails . Either the problem is too hard for BOUNDER or the
inequality is indeterminate, implying that some, but not all, instances of A are stable . FPA
maintains the completeness of the transition graph by constructing transitions from every
adjacent region to p.

The Routh-Hurwitz algorithm must resolve O(n3 ) inequalities . The full BOUNDER pro-
gram takes exponential time in each inequality, making the overall algorithm exponential .
FPA can also use an O(n) subset of BOUNDER that performs interval arithmetic, making
the overall algorithm O(n4 ), but sacrificing some predictive power. The restricted algorithm
suffices for many matrices, including M above .
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Global Interpretation
The task of global interpretation is to determine the long-term behavior of a system, as
opposed to transient behavior. For example, the block asymptotically nears its rest position
and the height differential in the U-tube asymptotically vanishes . The phase space equiva-
lent of asymptotic behavior is an attractor: a connected subset of phase space that nearby
trajectories approach . The fixed points of the U-tube and the block are point attractors.
Other possibilities include limit cycles, separatrices, and strange attractors .

The global interpretation capabilities of QS are quite limited . It can detect possible
point attractors by identifying sink regions in transition graphs, such as (0, 0) for the block
(Figure 3) . However, it cannot tell whether all, some, or no neighboring trajectories actually
approach such sinks. Similarly, QS can recognize cycles in the transition graph as possible
limit cycles, but cannot tell whether nearby trajectories spiral inward, spiral outward, or
wobble around .

Dynamic systems theory provides tools for determining the attractors of many extremely
general equations. The simplest case, called monostability, is where all trajectories approach
a single fixed point . A sufficient condition for monostability, proved by Kalman [12], is that
the matrix A(x) be stable for every x . FPA tests this condition with the Routh-Hurwitz
algorithm. If A(x) has a fixed sign pattern, it first tries the sign stability algorithm, which
takes less time and avoids symbolic algebra and inequality reasoning. For example, the
matrix

A(x,v) - 19nx)

	

h.(v)

	

(14)

for the block equation (2) has the sign pattern [° +] for every x and v . The system is monos-
table because this pattern is sign stable, as proved in the previous section. This confirms
the intuition that the block's oscillations die out as friction dissipates its initial energy. The
U-tube equation (11) is also monostable, implying that arbitrary height differentials between
the arms of the U-tube always disappear over time .

6 Conclusions
This paper recasts the terminology and algorithms of qualitative reasoning into the phase
space representation . It simplifies transition analysis from many rules to two algebraic
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conditions . The first condition determines transitions between arbitrarily shaped regions in

phase space, as opposed to QS which only handles n-dimensional rectangles . It also provides

more accurate results by considering only the boundaries between regions . The second

condition determines whether nearby trajectories approach a fixed point asymptotically.

It obtains better results than QS by exploiting local stability properties . Both conditions

apply to equations at all levels of abstraction: sign constraints, symbolic constraints, numeric

values, and combinations thereof. The more information exists, the better they perform.

Qualitative reasoning includes more than transition analysis . Identifying attractors,

which determine long-term behavior, is the next key problem . The monostability test of

the previous section provides a method for deriving global fixed point attractors . Some ad

ditional methods for identifying attractors appear in my thesis [17], but many remain to be

developed . Mathematicians, scientists, and engineers explore many properties of dynamic

systems beyond transitions and attractors, including boundedness and periodicity of trajec-

tories, the existence of unstable limit cycles, and the location of separatrices . Incorporating

their techniques into qualitative reasoning is a topic for future research .
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