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Abstract

The SEt Reasoning Facility (SERF) integrates mechanisms for propagating
membership propositions, deriving relations between sets, and reasoning about
closure and cardinality into an efficient utility package for reasoning about sets .
Assertions about relations between sets are compiled into a constraint network
defined entirely in terms of union, complement, and emptiness constraints . The
constraint network supports multiple modes of inference, such as local prop-
agation of membership propositions and graph search for set relations . SERF
permits closure assertions of the form "all members of set S are known" and
utilizes this capability to permit selective applications of closed-world assump-
tions . Cardinality constraints are handled by a general quantity reasoner . An
example from geologic interpretation illustrates the value of mutually constrain-
ing sources of information in a typical application of reasoning about sets in
commonsense problem-solving .
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1 Introduction

Sets play an important role in representing and reasoning about the commonsense
world . Many attributes of real-world objects are naturally represented as sets, for
instance, the set of objects on top of a table, the set of rock formations along the
surface of the Earth, and the set of parents a person has. Reasoning about such
attributes, especially about the changes that occur to them, requires mechanisms for
reasoning about relationships between sets, such as subset and disjoint ; combinations
of sets, such as union and intersection ; and elements of sets, including cardinality and
closure.

We have integrated these types of reasoning into the SEt Reasoning Facility
(SERF) . SERF records facts about the sets of interest and answers queries as di-
rected by the user or problem-solver . A powerful feature of SERF is its integration
of knowledge, in particular, ordinal relationships (such as C) and set membership
information . The various types of information are mutually constraining, for in-
stance, SERF computes ordinal relationships from knowledge about membership and
vice versa. SERF draws relatively weak conclusions when little information is known
about the members of a set but gives more precise answers as more detailed informa-
tion becomes available. For example, knowing only that C = AU B we can infer that
ICI _< JAI + JBI, but given all the members of A and B we can determine the exact
membership and cardinality of C .

Reasoning about sets is important in simulating and interpreting physical situa-
tions (5, 7] . For example, in interpreting the sequence of events that could form a
geologic region, one must often reason about how the set of rock formations along
the surface of the Earth change as a result of the action of geologic events, such as
deposition and erosion .

The effect of erosion on the set of formations along the Earth's surface can be
represented by the equation S2 = (Si -TE) U EX, where Sl is the set of formations
on the surface before erosion, S2 is the set after erosion, TE is the set of formations
totally eroded away, and EX is the set of newly exposed formations that were under
Sl (see Figure 1) . In addition, we know that TE is a subset of Si and EX is disjoint
from Sl .

In interpreting a geologic region, we are often interested in the relationships be-
tween the various sets of rock formations, such as between S2 and Sl, the new and old
surfaces, and between S2 and the underlying rocks EX. From the above description
of erosion, SERF can infer that S2 is a superset of EX and that EX and TE are
disjoint . That little else can be derived is to be expected since the general descrip-
tion indicates nothing about the extent of erosion . As we add more constraints SERF
infers more detailed relationships . For example, if we assert that TE and EX are
both empty (Figure 1, case a), SERF infers that Sl is equal to S2 and disjoint from
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Figure l : Geologic interpretation example . The dashed lines represent hypothetical
erosion patterns .

EX . When we assert that TE is empty but EX is not (case b - rocks are partially
eroded, exposing some underlying formations), SERF infers that S2 is a proper super-
set of both Si and EX. Finally, asserting that Sl C_ TE (case c - all formations
currently on the surface are eroded away) causes SERF to infer that S2 = EX .

Alternatively, SERF can reach these conclusions using constraints on the member-
ship of sets . If, in conjunction with the general description of erosion given above, we
assert that Ri is the only member of Sl , that R2, R3, and R4 are the only members
of EX and that Ri is a member of TE, SERF will conclude that S2 = {R2, R3, R4 }
and thus is equal to EX.

We have also applied set membership reasoning to the problem of unifying terms
involving set variables . URP, a program for reasoning about preferences represented
as utility functions (9), performs goal-directed inference from a collection of utility
decomposition proof rules similar to the following :

A,BCCAUI(A,C-A)AUI(B,C-B)AAnB :~ 0

F- GUI (A - B, C - (A - B)) .

For our current purposes, it is sufficient to note that UI and GU,I are utility-theoretic
predicates describing the possible preference interactions among sets of utility at-
tributes . Given a goal formula such as GUI({x i , x2 }, {x3, x4 , X'S}), the unification
problem is to find values of A, B, and C to instantiate the premise . To help reduce
the combinatorial search required to find unifiers, SERF is used to constrain the mem-
bers assigned to set terms. For example, after URP identifies A - B with {xl, x2}
and C - (A - B) with {x3, x4, x5 }, SERF determines that C = {xl , . . . , x5} and that
x l and x 2 must be contained in A but not in B .
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Set Constraint Networks

SERF represents assertions about sets in a constraint network [8] . Nodes in the
network are set objects, encoding such information as the elements that are known
to be members and bounds on the set's cardinality. Constraint links enforce relations
among the sets they connect .

Each set object is associated with four types of information : 1) propositions about
membership of various elements in the set, of the form x E A; 2) whether the set is
empty ; 3) whether the set is closed, that is, all of its members are known ; and 4)
cardinality of the set . All facts about sets are recorded in a truth maintenance system
(TMS) [2] to provide for dependency-directed updating upon addition and deletion
of assertions .

The two primitive set operations supported in SERF's constraint network represen-
tation are union and complement . These are sufficient to represent the standard
boolean set operations. For example, the_intersection operation AnB can be rendered
in terms of our primitives according to A U B, where S denotes the complement of a
set S (see Figure 2) .

A_.J A

B-0--&
A U B --o-A n B

Figure 2: A constraint network representing the intersection of A and B, built from a
union constraint (the OR gate) and three complement constraints (the "inverter"
circles) .

The constraint network is used to propagate assertions about set membership .
Given the proposition x E A (or its negation, x ~ A), the constraints determine
whether x is an element of sets related to A . The complement constraint ensures
the equivalence of x E A and x ~ A . The union constraint encodes that (x E A V x E
B

	

x E A U B) . In Figure 2, for example, asserting x

	

A implies that x E A,
which implies x E A U B, which, in turn, implies that x

	

A fl B. As evidenced
by this example, we can show that our canonicalization of set operations into union
and complement constraints preserves the membership inferences derivable from a
direct implementation of the boolean set operations .

SERF's membership reasoning is incomplete, in part due to the locality of con-
straint propagation . Suppose, for example, we assert that x E B U C, x ~ A, and
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that sets A UB and A U C are equal. A global analysis of the constraints reveals that
x E B and x E C, since all elements not in A must be in both or neither of B and C.
This conclusion does not follow, however, by considering each constraint individually .

3

	

Relations Between Sets

SERF uses the same constraint networks to encode relations between sets and infer
new set relationships . For example, we can assert that one set is a subset of another,
or try to deduce whether two sets are disjoint. By using the same representation
for reasoning about both membership and relations, SERF can exploit the mutual
constraint between the two types of information.

Our inference mechanisms support the four binary set relationships : subset (C),
superset ( ;?), disjoint (11), and total (T) and their respective negations : 9=', 2, j{,
and T. SERF compiles assertions about set relations into networks of union and
complement constraints augmented by assertions about the empt iness of sets . For
example, SERF translates A il B into an assertion that the set A U B (the intersection
of A and B) is empty. Using the membership proposition clauses of Section 2 in
conjunction with the knowledge that nothing is a member of the empty set, SERF
propagates membership in A to membership in B in accordance with the disjointness
definition. If we retract the disjoint assertion (by retracting the emptiness constraint),
SERF automatically withdraws support from any membership propositions derived in
this manner.

3 .1

	

Deriving Relations through Network Search
SERF derives set relations by composing paths of relations in the constraint network
using Table ? . For example, if A is disjoint from B and B is a superset of C, A
must be disjoint from C as well . To determine the relations holding between a pair
of sets, SERF performs a breadth-first search in the constraint network, combining
the relations found on different paths. The method is similar to that employed by
Allen [1] for deriving temporal relations by transitivity. For example, in the simple
relation network of Figure 3, the derived relation between A and D is the conjunction
of those found on the two paths : T o ;~ = ~ and D o T = T. Combining each of
these with 11 yields A g E and A D E, that is, A is a proper superset of E.

As described above, SERF encodes the basic binary set relations using only union,
complement, and emptiness constraints . In searching this network, SERF computes
the local relations by inspection of these constraints . A complement constraint
expands into 11 and T. A union constraint implies that both A and B are subsets of
AUB. Degenerate sets gain some relations automatically : 0 is a disjoint subset of any

46 IP
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Table 1 : The set relation transitivity table .

Figure 3: A network of relations . Graph search using the transitivity table reveals
that A D E.

set, and 0 is a total superset . Non-degeneracy constraints also restrict the possible
combinations of relations that can hold between sets . SERF enforces the following
constraints :

A

	

0 ~ [A

	

B V AJ B],

A

	

O ~ [A

	

B V A TB] .

For example, if A is nonempty and A C B, SERF uses A ,f B in its transitivity search .

3 .2

	

Deriving Relations through Membership Comparison

SERF also derives relations between sets by comparing their members . This mecha-
nism enables SERF to deduce relationships even between sets that are not connected
in the constraint network . For example, if A contains x l , x2, and x3 as known ele-
ments and B contains x2, x4, and xs , SERF concludes that A and B are not disjoint,
since they have an element in common .

Table 2 presents the set of conditions needed to derive relationships by membership
comparison . In the table, some means that at least one of the elements of the first
set is a member of the second set . All means that all of the known members of the

o 19 !g ;? 2 II N T T
C I g 2 II

1

T

II T II

T T D 9=1
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Relationships between set A and set B

Table 2: Using membership comparison to derive ordinal relationships .

4 Closure

first set are members of the second and that the first set is closed, that is, the set has
no members other than those explicitly enumerated .

The complexity of the membership comparison algorithm is O(N log N), where N
is the number of known elements in the sets, while the path searching algorithm is
O(R), where R is the number of relations asserted between sets . In the problems we
have encountered, the membership comparison mechanism is more efficient than the
path search mechanism since N is typically much less than R. Hence, our strategy
is to use membership comparison first and try path search only if more information
remains to be derived.

Asserting that a set is closed means that the only members of the set are those
currently known to the system . When a closure assertion is made, SERF counts the
number of currently known elements and creates a closure assertion of this form. The
assertion is justified by each element currently a member of the set, so that it is
retracted if any of the membership propositions are retracted.

The knowledge that a set is closed adds significantly to the range of inferences
SERF can perform . For example, in comparing the members between two sets (see
Section 3.2), relations such as subset or disjoint cannot be determined unless it is
known that one of the sets or a relative is closed . Similarly, the membership propa-
gation constraints make use of set closure . If B is closed and x is not known to be a
member of B, SERF infers that x E B.

A further use of closure is in detecting inconsistencies . In particular, it is incon-
sistent to assert that an element is a member of a closed set (unless, of course, it
already is a member of the set) . For example, asserting A = 0 and x E A causes
the constraint propagation mechanism to assert that x E 0 then flag an inconsistency

Comparison I Some All l I Comparison I Some All
A with B C B with A
A with B 11 B with A
A with B T B with A T
A with B B with A ,T C
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because 0 is empty and closed .'
Selective application of closed-world assumptions is a useful technique in com-

monsense reasoning. SERF enables users to make closed-world assumptions over the
members of sets through a simple extension to the closure mechanism described above
- whenever an element is added to or removed from such a set, SERF retracts the
current closure assumption, modifies the membership propositions, then imposes a
new closure assertion .

5 Cardinality
SERF provides mechanisms for describing and reasoning about the cardinality of sets .
The mechanism uses the Quantity Lattice [6] to reason about inequalities, addition
and subtraction, and numeric interval constraints . The cardinality reasoning mecha-
nism is a separable component of SERF in that none of the mechanisms described above
depend on cardinality information. This gives the user the option of not utilizing the
cardinality component if the added power (and added computational complexity) is
not required .

The cardinality of a set is implemented as a quantity in the Quantity Lattice.
The value of a quantity is constrained by its ordinal relationship (<, <, >, >, =, :~)
to other quantities or numbers . Using this mechanism, one can constrain the number
of elements in a set without specifying its exact elements.

SERF ensures that the cardinality of a set is consistent with its membership,
emptiness, and closure constraints . Whenever a member is added to or removed from
a set, an assertion is made that the cardinality is greater than or equal to the number
of currently known elements. The assertion that a set is closed implies that the upper
and lower bounds on the cardinality of the set are equal. Conversely, if the upper
bound on cardinality is constrained to be equal to the number of known elements,
the set is asserted to be closed .

The use of cardinality increases the range of inferences that SERF can perform.
For example, if we assert that the size of the set of John's parents is two and assert
that Mary and Joe are members of the parent set of John, their SERF can infer that
for George to be a parent of John would violate the cardinality constraints .

6 Summary
SERF is a utility for generic set reasoning that integrates mechanisms for propagat-

'When an inconsistency is detected, the THIS presents the user with the option of removing it
by retracting one of its underlying assumptions .
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ing membership propositions, deriving relations between sets, and reasoning about
closure and cardinality . The central constraint network mechanism supports multiple
modes of inference, such as local propagation and graph search . We have found a
comprehensive set reasoner to be useful in several domains and expect these tech-
niques to be applicable to the wide variety of commonsense reasoning tasks involving
sets .

Acknowledgment

Yishai Feldman, Alex Yeh and Brian Williams contributed helpful comments on an
earlier draft. This work was supported in part by Schlumberger, National Institutes
of Health Grant No. R01 LM04493 from the National Library of Medicine and the
Advanced Research Projects Agency of the Department of Defense under Office of
Naval Research contract N00014-85-K-0124 .

References
[1] James F. Allen. Maintaining knowledge about temporal intervals . Communica-

tions of the ACAf, 26(11) :832-843, November 1983.

(2] Jon Doyle. A truth maintenance system . Artificial Intelligence, 12(2) :231-272,
1979.

[3] David A. McAllester . ONTIC: A Knozvledge Representation System for Mathe-
matics . TR 979, MIT Artificial Intelligence Laboratory, 545 Technology Square,
Cambridge, MA, 02139, 1987.

(4] Raymond Reiter . On closed world data bases . In H . Gallaire and H. Minker,
editors, Logic and Data Bases, pages 55-76, Plenum Press, 1978.

[5] Reid Gordon Simmons. Representing and Reasoning About Change in Geologic
Interpretation . TR 749, MIT Artificial Intelligence Laboratory, 545 Technology
Square, Cambridge, MA, 02139, 1983 .

[6] Reid Simmons. "Commonsense" arithmetic reasoning. In Proceedings of the Na-
tional Conference on Artificial Intelligence, pages 118-124, AAAI, August 1986.

[7] Reid Simmons and Randall Davis . Generate, test, and debug: Combining associ-
ational rules and causal models. In Proceedings of the Tenth International Joint
Conference on Artificial Intelligence, pages 1071-1078, 1987.



REFERENCES

[8] Gerald Jay Sussman and Guy Lewis Steele Jr. CONSTRAINTS-A language for
expressing almost-hierarchical descriptions . Artificial Intelligence, 14:1-39, 1980.

[91 Michael Paul Wellman. Reasoning about preference models. TR 340., MIT Lab-
oratory for Computer Science, 545 Technology Square, Cambridge, MA, 02139,
May 1985 .


