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1 Introduction

Current methods in qualitative physics (QP) sometimes predict behaviors of
physical systems that do not correspond to any real-valued solution .
The existence of spurious solutions and their origins have been analyzed for the
treatment of differential equations [Kuipers 86], [Schmid 88] as well as of simple
equations [Struss 87], [Struss 88a] . For the first case, the reason for the prediction
of spurious behaviors is the local nature of the criteria for determining state
changes .
This paper attempts a continuation and a refinement of this analysis and exploits
results from the treatment of differential equations by interval mathematics and
the qualitative theory of dynamic systems. The problem is : how can we
determine the possible continuations of a qualitative behavior taking into
account its complete history? Such global criteria for the elimination of spurious
behaviors are developed for 2nd order differential equations.
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The following section presents some simple questions for demonstrating limits
of the current QP approaches that are mainly used for infering qualitative
behaviors. In section 4, their common basis is formally described . Different types
of potential problems in behavior generation are identified in section 5 . A brief
introduction to the analysis of the so-called phase portrait of 2nd order
differential equations is given . These techniques are then used in the next
section to construct some necessary conditions for filtering out spurious
behaviors. The application of these methods is demonstrated by answering some
of the questions of section 3 .
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Some Questions

In order to demonstrate typical difficulties of QP, to analyze their reasons, and to
present partial solutions, we consider some examples from the problem class



"mass on a spring", which is the "Tweety of qualitative physics" . Consider a mass
on a spring without friction (Fig . 3 .1) .

Question 1 : If the mass is moved away from the equilibrium point, x = 0, given
by the rest length of the spring, to x = x0 > 0 , will the mass, after one
oscillation, return to x0, exceed it, or turn back before ?
[Kuipers 86] showed that qualitative simulation in the style of QSIM cannot
answer this question based merely on the corresponding differential equation . It
derives 3 branches of possible behavior after one oscillation, and worse

Question 2 : What can we tell about the sequence of the maxima during the
oscillation ?
Since the above argument for the first oscillation applies to each oscillation, we
get further branching in the course of the qualitative simulation (by more than a
factor of 3, because new landmarks are introduced) . The amplitude is allowed to
change arbitrarily over time .
Now, consider the mass on a surface with friction .

Question 3 : Which conclusions can be drawn about the oscillating behavior ?
[Schmid 88] demonstrates that systems like ENVISION [de Kleer-Brown 84] do
not provide criteria for the number of oscillations performed by the mass. It can
be 0 or any natural number . Moreover, there is

Question 4: Can we infer damping to equilibrium ?
No, even a solution with x approaching - - cannot be excluded, even if the
linearity of the underlying differential equation is exploited by differentiation,
and if an infinite number of the respective qualitative equations (called
confluences) is added (see [Schmid 88]) .
Finally, consider two equal masses at two equal springs, one beside the other,
moved away from their common equilibrium position x = 0 to the same x0_

position . Imagine they are connected by a thin hair that will tear at a length of
1 .5 x0.

Question 5 : If we release the masses at the same time, will the hair eventually
be torn?
It will be explained in section 5.1 why most QP systems have difficulties in
excluding this case .
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Infering Qualitative Behavior
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Figure 3 .1 Mass on a spring

By (qualitative) behavior we mean the (qualitative) changes in characteristics of a
p ysical system over time . It may imply changes in structure, changes in
characteristic parameters, or global tendencies and patterns of such changes,
such as oscillation, damping, or approaching equilibrium . Current QP systems are
weak in deriving clear statements about such global behavioral characteristics .
The general problem under investigation is :

Given a description of a system 5, and an "admissible" behavior b,
determine the "admissible" continuations of b.
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Three subtasks (which are not necessarily separate, subsequent steps) have to be
solved

1 . Determine the possible qualitative states of a system, i .e . sets of qualitative
values that satisfy the equations of its description .

2 . Determine the possible state transitions, i .e . changes from one state to
another that are in accordance with the derivative relations and continuity
conditions .

3 . Determine the possible behaviors, i .e . "correct" sequences of states (or
transitions) . The existing QP methods offer no criteria for checking the global
correctness of these sequences, and, hence, they have to assume that each
path through the state transition graph is an admissible behavior .
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Problems in Filtering Behaviors

In this section, we identify different sources of the generation of spurious
behaviors . They can essentially be reduced to
-

	

merging temporally distinct behaviors and
- merging different system instances or different behaviors of one system

instance .
Note that these sources are active independent of the presence of spurious states
or state transitions .
5.1

	

Problem 1 : The Loss of Temporal Information

A qualitative behavior specifies only a sequence of states . It does not describe
how long a system stays in each state . Hence, quite different temporal behaviors
of functions may be mapped onto the same qualitative behavior . For the
question 5 raised in section 3, this implies that arbitrary combinations of the
qualitative values for the location of the two masses are generated, including
situations where the masses may collide .

5 .2

	

Making Differential Equations Visible : The Phase Portrait

For the subsequent analysis, we briefly introduce some basic ideas from a
mathematical discipline called qualitative theory of dynamic systems (see e.g .
[Andronov 66], [Stoker 50]) . In this theory, qualitative results about the solution
space of differential equations are gained by applying topological methods. This
is possible because of a correspondence between sets of differential equations
and vector fields .

Consider again the mass on the spring . This system is described by some 2nd order
differential equation

(5 .1)

	

d2x/dt2

	

= -M o
. (x)

or the equivalent system of first order equations

(5 .2)

	

dx/dt = v
dv/dt = -Mo, (x) ,

where MO , is a monotonic function with Mo+(0) = 0 .

(5 .2) defines a vectorfield in the (x,v)-plain by mapping each point (xo,vo) of this
plain to the vector of the derivatives in this point

(dx/dtl(Xo ,vo), dv/dtl(X(,,�o)) = NO, -MO + (xo)) .



Solutions of (5 .2) then correspond to those curves ("trajectories") in the plain
that in each point have a tangent in the direction of the respective vector .
The main charactereristics of the phase portrait of System (5 .2) are indicated by
Fig . 5.4. It expresses the oscillatory behavior, but does not decide upon the
question whether the system really exhibits a cyclic behavior. Starting at an
arbitrary point (xo, 0) on the negative x-axis, the respective trajectory, to, first
stays in the quadrant x<0, v>0, then, intersecting the positive v-axis, continues
in the quadrant x>0, v>0 and leaves it by reaching some point (xi, 0) on the x-
axis .
How does this representation relate to the description of the qualitative
behaviors derived by QP methods? The quantity spaces for x and v impose a grid
on the plain . For each rectangular, its interior, each edge excluding the
endpoints, and each corner correspond to qualitative states . Each trajectory
defines a behavior in the sense of section 4, namely the sequence of states it
crosses. In Fig . 5 .4, the behavior corresponding to the arc of the trajectory to is
shown .

Sequence of states
for to

X v
so Xo 0
st (XO,0) (O,vo)
52 0 (O,vo)
S3 (0 .X1) (O,vo)
S4 (O,XI) vo
55 (0,X1) (O,vo)
S6 X1 0

Figure 5 4 Definition of a behavior by a trajectory
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5.3

	

Problem 2 : Merging Different Solutions

states

---------- ;__~

	

SzO

	

Xv(X1) (vo,t)
t' 53 (XOX1) vo

X
,

' S4 X1 (vovt),
S5

	

(X1,X2)

	

(vo,vt)
---------- ------------ -

Figure 5 .5 Merging different behaviors

Consider the pieces of the trajectories, tj and t2, in Fig . 5.5 . The

	

introduce the
admissible state transitions ~SO, SO, (s1, S2), (S2, s3), (s2, S4), ~s4, s5) . Having
constructed a behavior bl = (SO, s1, s2) (which is admissible, since it represents a
piece of t1), we have (at least) two possible continuations for bl, b2 = (SO, s1, s2,
s3) and b3 = ( so, S1, s2, s4). Neither of them can be ruled out by the step of state
transition filtering, although only b2 corresponds to a trajectory of the specific
system under consideration, whereas b3 merges two solutions of the system with
different initial conditions . This is the reason why question 1 in section 3 is
answered by QP with a branching of the behavior. It was correctly identified in
[Kuipers 86] as the merely local nature of the state transition filtering . For
question 4, it makes us unable to unambiguously. infer a damped behavior for
the occurance of friction, unless we supply additional information . Fig . 5.5
indicates that if the damped trajectory t2 returns to state s2 as the arc t1, the
existing filters do not forbid a "jump" back to t2 . This establishes a spurious cyclic
behavior .

Consider question 3 . The system with friction can be described by
(5 .3)

	

dxldt = v
dvldt = -x-f*v,

where f * v with 0 < f ( R represents (linear) friction .

We understand that, on the current basis, we have no criteria for determining
the possible number of oscillations before equilibrium is approached . For the
linear system (5 .3), however, we know that there are exactly two possibilities : an
infinite number of oscillations, if f < 2, or merely "half of an oscillation", if f > 2



5.4

	

Problem 3 :

	

Merging Distinct Systems

If we allow the parameters to vary over time, i .e . we use inhomogeneous
differential equations as our gold standard, then some behaviors may become
admissible . The problem is that we currently have no means to express our
decision for homogeneous systems and use it as a filter .

5.5

	

Problem 4 :

	

The "Wrapping Effect"
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(overdamped case) . Note, that these radically different behaviors are
distinguished by a real-valued threshold of a parameter.

Of course, we can argue that the behavior b3 = (so, s1, s2, s4) may be not
admissible for the arbitrary, but fixed system sketched in Fig 5 .5 . However, the
qualitative description covers a whole family of systems (5 .3) . Could there not be
an appropriate choice of a parameter, e.g . in (5.3), such that b3 is admissible for
the corresponding system (and b2 is not) ? Yes, this might happen, although it is
hard to prove it for a specific case. But, subsequent continuations of b3 then
probably require choices between different state transitions that again imply a
specific choice for the range of the parameter . Since these choices are only
implicit, we have no criteria for determining whether they are consistent (i .e .
have a non-empty intersection) . Hence, in combining admissible state transitions
we are not guaranteed to jump between different instances of a class of systems
and merge their behaviors thus potentially generating behaviors which are not
admissible for any single system .

Research in interval mathematics has shown that, in general, using intervals to
specify sets of initial conditions for differential equations may lead to strong
"rounding errors" . The mappings induced by the solutions corresponding to the
interval of initial conditions transform this set into sets which can only be
"wrapped" into intervals growing larger and larger . In QP, the "wrapping
effect" may increase the problems 2 and 3 stated above .
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Exploiting the Phase Portrait

In this section we construct global criteria for behaviors . We do so mainly by
taking advantage of the property that trajectories cannot intersect, because
otherwise we would get different solutions for the same initial conditions. The
filters apply to 2nd order differential equations. We have to emphasize that this
choice has not only been made for the sake of simplicity of the examples. It
mainly reflects the fact that only for this case (i .e . vectorfields in the plain), we
expect strong results (with the 3rd dimension, chaos starts) .

6.1

	

Avoidance of System Merging

Filters aiming at this goal need to identify behaviors that do not correspond to
solutions of the same system . We introduce a symmetric binary relation
exclusivecB x B . exclusive(bl, b2) means that there exists no system instance for
which both behaviors, bl and b2, are admissible . Here, we try to infer
exclusiveness using only general properties of ordinary differential equations.
The framework, however, allows us to incorporate further and probably more
specific criteria depending on the domain and the case .

We know that different trajectories passing through one point of the plain
cannot belong to the same system . The problem is how to recognize the
respective behaviors, which run through qualitative states instead of points ?
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One case is easily solved, namely if states are involved that correspond to points.
For the general case, we analyse whether a behavior b approaches another one,
b', "from the left" and leaves it "to the right", we have the relation
crossing(b,b') . Then we can make use of it by the
Proposition 6.2

Crossing behaviors are exclusive
crossing (b,b')

	

=:> exclusive (b,b') .

We may detect spurious behaviors with the obvious implication
Proposition 6.3

exclusive (b, b)

	

spurious(b) .
For example, a behavior crossing itself is spurious .

Another filter criterion is given by
Proposition 6.5

If there is no admissible continuation for b = ( . . ., sn_1, sn), sr, ;,tfinal, then b
is spurious :

	

(d b'

	

b C_ b'==~> spurious(b'))

	

==>

	

spurious(b)

Sometimes we can infer the negation of exclusiveness, i .e . for some b, b' there
exists a system allowing both b and b' (see section 6.3) . We are only allowed to
combine behaviors if they belong to the same solution . For b = ( . . ., s-2, s-1, so)
and b' = ( so, s1, s2, . . .), we define the behavior union

bUb' =( . . .,s-2,s-1, so, s1, s2, . . .) .

Proposition 6.6
Let so be a landmark state and b = (. . ., s-2, s-1, so) and b' = (so, s1, s2, . . . ),
then
- exclusive (b, b')

	

exclusive (b U b', b) n

	

- exclusive (b U b', b')

We now have some criteria for spurious behaviors and for the legal combination
or continuation of behaviors. Before demonstrating the use of these criteria, a
way to check the crossing relation is provided .

6.2

	

Detecting Crossing Behaviors

As stated above, we hope to check qualitatively whether a behavior approaches
another one from one side and leaves it towards the other side . In between, they
may share a sequence of states .

Proposition 6.7
Let b = ( . . ., s_ n , . . . Sc, . . ., sd, . . ., sn, . . .) and b' _ ( . . ., s'-n, . . . Sc, . . ., sd, . . ., s'n, . . . ) .
convergent-left(b, b', SC) n

	

divergent-right(b, b', sd)

	

==>

	

crossing(b, b').

An algorithm is presented for checking the relation convergent-left denoting
that the first behavior joins the second from the left . Since divergent-right can
be checked in a similar way, we are then able to detect crossing behaviors.
Although the filter provided by the propositions are far from completely ruling
out illegal merging of behaviors, we can demonstrate that some progress is
achieved by answering some questions of section 3 .

6.3

	

Symmetry - Infering Cyclic Behavior

Consider again question 1 of section 3 . We are now able to infer the cyclic
behavior of all solutions to (5 .2) . The idea is the following : Looking at (5.2), we
realize that the application of the transformations t' =-t and

	

v' =-v leads to

(6 .1) dx/dt' = v'
dv'/dt' = -Mo' (x) ,



which is of the same form as (5.2) . This means we are able to derive the phase
portrait in the half plain v < 0 by. merely mirroring the v > 0 half plain at the x-
axis (and reversing the orientation of the trajectories) . Hence the trajectory
continuing beyond (xl , 0) is the mirror image of the curve we started with and
therefore hitting the x-axis again at (xp, 0) and establishing a closed curve (Fig .
6.3a) . Following this curve with t -> corresponds to oscillation with a constant
amplitude .

X

Figure 6 3a Symmetry of behavior

	

Figure 6 .3b Damped oscillation

in the framework introduced in this paper, we can express this method in a
general way .

6 .4 .

	

Infering Steady Damping
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X

Question 2 is concerned with the identification of a global tendency of behavior,
namely with the problem of arbitrary changes in the subsequent maxima of the
oscillation . This problem is solved for the frictionless case by the result of the
previous section . However, it also occurs for the case with friction . Using our
filter criteria, we are now able to deduce immediately that if the the oscillation is
damped in the first period, it will always be damped : Let so= (xp,0) be one
maximum, and sp' = (xp',0) with xp' <xp the next one (Fig . 6 .3b) . Since the
maximum could only be increased again if the solution crosses itself, Propositions
6.3 and 6.4 detect it to be spurious . The return to so' is also ruled out.

7 Summary

Our approach to expressing restrictions imposed by 2nd order homogeneous
differential equations is essentially based on the uniqueness of solutions for
fixed initial conditions . The criteria can be used to discriminate behaviors that
belong to different system instances and to discover spurious behaviors. They
enable us to derive cyclic behavior for the frictionless mass-spring system and the
principle "once-damped-always-damped" for the case with friction .
Similar methods can be used, for example, to infer damping for the mass with
friction [Struss 88b] or properties of systems like the existence of limit cycles etc .
(see [Andronov 66], [Struss 75], [Sacks 87]) .
The criteria for the detection of spurious behaviors can be implemented as
additional filters in systems like QSIM . The hard task is to implement the
heuristics for the selection of the appropriate ways to analyze the phase portrait,
such as exploiting symmetric properties of the equations.
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