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ABSTRACT

Exaggeration is a technique for solving comparative analysis problems by
considering extreme perturbations to a system. For example, exaggeration
answers the question "What happens to the output temperature of a heat
exchanger if fluid flow rate increases?" by simulating the behavior of an
exchanger with infinite flow rate. This paper explains the three phases of
the exaggeration algorithm: transform, simulate, and scale. The transform
phase takes a comparative analysis problem and generates the description
of an exaggerated system . The simulate phase predicts the behavior of the
transformed system. Finally, the scale phase compares the original and ex-
aggerated behaviors to answer the original comparative analysis question .
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1 Introduction
The symbolic analysis of real-world systems is central to many problems in
artificial intelligence . In order to cope with a changing world one must be
able to understand its behavior . Many types of analytic activities have been
investigated, for example qualitative simulation [3,6,15,9], measurement in-
terpretation [5], and diagnosis [2,4] . Recently, a new qualitative reasoning
task has been isolated : comparative analysis [6,13] . Whereas qualitative
simulation takes a description of a system and predicts its behavior, com-
parative analysis takes as input this behavior, the original description, and
a perturbation, then describes how and why the perturbation changes the
behavior.

For example, given a description of heat exchanger in which hot oil passes
through a pipe surrounded by cold water, a qualitative simulator would say
that the oil will exit from the pipe cooler than when it entered. Comparative
analysis, on the other hand, takes this description of cooling and evaluates
the effects of perturbations . For example, it might be asked to deduce what
would happen to the oil output temperature if the oil moved more quickly
through the heat exchanger.

Previous discussions of comparative analysis have dealt with a solution
method called differential qualitative (DQ) analysis [6,13] . This paper intro-
duces exaggeration, a technique which solves a larger class of comparative
analysis problems than DQ analysis [12] . For example, DQ analysis generates
the following answer to the heat exchanger question :

Since the rate of cooling is dependent only on the initial tem-
perature and thermal conductivity and these are unchanged, the
rate of cooling is unchanged as a function of time . Since the oil
will spend less time in the pipe, it will exit with a higher temper-
ature.

Exaggeration's approach to comparative analysis is very different from
that of DQ analysis . Instead of tracing the effect of a perturbation through
the causal structure of the system, exaggeration considers the behavior of a
system in which the perturbation is taken to a limiting value. If this new
system has a qualitatively different behavior from the original, then exagger-
ation postulates a general trend caused by the perturbation . Exaggeration
produces the following explanation:



If the fluid flow rate was infinite, the oil would spend negligible
time in the exchanger . Since the rate of cooling is finite, the
oil would lose negligible heat and exit hotter than oil moving
at finite speed . Thus any increase in oil flow rate will cause a
corresponding increase in output temperature.

Exaggeration changes a comparative analysis question into a simulation
problem about a system with infinite or infinitesimal valued parameters .
Figure 1 provides an overview of the program, EXAG, that implements the
theory of exaggeration in three parts . Given a perturbation and a descrip-
tion of the system including initial values, the TRANSFORM PHASE produces
a new model in which the perturbation has been taken to an extreme. The
SIMULATE PHASE (denoted HR-QSIM in the figure) simulates this exagger-
ated model to produce an exaggerated behavior that is qualitatively different
from the behavior QSIM [9] produces using the original model : in one case
the heat has dropped a finite amount, in the other it has fallen negligibly . Fi-
nally, the SCALE PHASE compares the two behaviors and predicts the answer
to the original comparative analysis question .
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Figure 1 : Overview of the Exaggeration Algorithm

Although exaggeration handles a larger class of comparative analysis
questions than DQ analysis, it does not always answer them correctly. If the
system does not respond monotonically to the perturbation, then exaggera
tion may generate false predictions . For a comparison of the two techniques,



including an explanation of exaggeration's limitations, see [12] . This paper
explains the details of the exaggeration algorithm ; the transform, simulate,
and scale phases are discussed in turn with an emphasis on the HR-QSIM
implementation of the simulate phase. In particular, HR-QSIM is critically
dependent on two temporal reasoning innovations : predecessor-persistence
and successor-arrival filtering .
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Transform Phase
The transform phase converts a comparative analysis problem into a simula-
tion problem by creating a model of the system that has an exaggerated initial
value for some parameter . The trick is to produce a description which, when
simulated, generates a behavior qualitatively different than the original's . To
do this, the parametric perturbation in the comparative analysis question is
amplified : an increasing perturbation is transformed into an infinite initial
value while a decreasing change results in an infinitesimal value .

The critical requirement is a qualitative representation that can express
infinitesimal and infinite values . The QUALITATIVE HYPERREAL REPRESEN-
TATION (14] meets the requirement by extending Kuipers' QSIM quantity
space using the hyperreal numbers of nonstandard analysis [11,8] . As in
QSIM, parameters are continuous functions from time into a value space,
but both time and the value spaces are abstractions of the hyperreal num-
bers . In this extended representation, the qualitative value of a parameter has
two parts . The HR-QVAL encodes magnitude information, and the HR-QDIR
abstracts the parameter's derivative . Suppose a parameter P has landmark
values po < . . . < Pk . For any time t, the following qualitative hyperreal
values are possible :

inf,

	

if P(t) is infinite, and > 0 ; minf if < 0
Pi

	

if P(t) = landmark pi
(HALO pi +)

	

if P(t) - pi is infinitesimal and > 0
(HALO p, -)

	

if P(t) - pi is infinitesimal and < 0
~Pi,Pi+1>-

	

if P(t) - p; and pi+1 - P(t) are
both non-infinitesimal > 0

-<Pk, inf>-

	

if P(t) is finite and P(t) - Pk is
non-infinitesimal > 0
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Every finite landmark, p, has a halo of numbers that are infinitesimally
close ; the two halves of these halos are denoted (HALO p +) and (HALO p -)
respectively . The positive infinitesimals, for example, are represented (HALO 0 -1-) .
The QSIM expression for an open interval, (pi, p2 ), is not used since it over-
laps with (HALO pl +) and (HALO p2 -) . This explains the definition of
-<P1, Ps >- -

It also proves useful to extend the representation of qualitative deriva-
tives . QSIM uses a simple description of the sign of the parameter's deriva-
tive : inc, dec, or std. The qualitative hyperreal representation supplements
this representation with information on the order of magnitude of growth. A
hyperreal number, x, has four possible orders of magnitude:

inf

	

if Jxj > every finite number
fin

	

if Ixl, = a positive standard real number
negl if Jxj = negligible, i.e . a positive infinitesimal
0

	

if x=0

Qualitative derivatives are represented as a pair of the direction and order
of magnitude of change . Thus (dec inf) denotes the HR-QDIR of a parameter
that is decreasing infinitely fast . If a parameter's HR-QDIR is (std 0), then
it may be abbreviated std since 0 is the only possible order of magnitude of
std.

Thus a parameter P may be qualitatively described at a point of time, t,
by its HR-QVAL and HR-QDIR ; square brackets denote this abstraction :

[P(t)] - (HR-QVAL(P(t)), HR-QDIR(P(t)))

If the same qualitative description is valid for an interval, A, of time, then it
can be written [P(A)] .

As described in (141, the transform phase uses this representation to de-
scribe an exaggerated system. Suppose that the original heat exchanger is
described in terms of two independent parameters, thermal conductivity K,
and fluid velocity through the pipe V (both assumed constant), and three
dependent parameters : heat Q, heat flow F, and position of a unit volume of
oi12 X. The parameters obey the following constraints : V = ' X, F = de Q,

'For simplicity, the 'liquid-individual' model offluids is used here ; see [7] for a discussion
of the problems with this model . In addition this model does not distinguish between
temperature and heat .



and F = KQ. The transform phase modifies the initial conditions to produce
a description of a heat exchanger with infinite flow rate (xo, ko , and fo are
standard, finite negative landmark values, but qo is positive.) :
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Simulate Phase

Since the advantage of exaggeration is that it reduces a comparative analysis
problem to a problem of qualitatively simulating a transformed system, it
should be no surprise that the simulate phase is the most difficult of the three .
The trick : is to demonstrate a qualitative simulation technique which can
handle parameters with infinite and infinitesimal values. Because Kuipers'
QSIM [9] is simple, precisely defined and widely available, I chose it as basis
for the simulate phase .

The addition of infinite and infinitesimal values requires a number of
modifications . The fundamental problem is the strong reliance that all qual-
itative simulation algorithms place on the order topology of the standard real
numbers [15] ; QSIM, for example, assumes that the value spaces of time and
the various parameters alternate between open intervals and closed points.
The presence of infinitesimals in the hyperreals results in a more complex
topology where this is no longer the case .

I call my implementation of the simulate phase HR-QSIM, to acknowledge
its ancestry. The next section explains its overall control . Then I present
two of HR-QSIM's most interesting technical innovations : the predecessor-
persistence filter and the successor-arrival filter .

3.1

	

HR-QSIM Control
HR-QSIM has essentially the same control structure as QSIM . They take as
input a set of parameters, a set of constraints, and a set of initial qualitative
values . As output, they produce a tree of states ; each path through the tree

[V (0)] = (inf, std)
[X(0)] = (x o , (inc inj))
[K(0)] = (ko, std)
[Q(0 )] = (qo, (dec fin))
[F'(0)] = (fo, (inc fin))



represents a possible behavior of the system. To generate a state's succes-
sors, they use continuity information to predict the possible next values of
each parameter independently. Conceptually, the space of possible successor
state values is the cross product of the parameter values . Waltz filtering
efficiently prunes this space of states without explicitly representing it . After
Waltz filtering, the states are constructed to represent the remaining tuples
of parameter values . Global filters may prune some of these states ; the rest
are marked as successors to the original state and pushed on the control
queue. Space considerations preclude treatment of the many difference be-
tween QSIM and HR-QSIM ; see (141 for a discussion of additional next-value
tables used to generate parameter values, and of extended constraint filters
used in Waltz filtering . Instead the next sections focus on two global filters
based on predecessor-persistence and successor-arrival times .

3.2

	

Persistence and Arrival Times

QSIM's temporal representation is simple ; states persist for either an instant
(a closed point of time) or a finite open interval . Furthermore, QSIM can
easily tell how long any state will last ; if the predecessor state lasted for an
instant, the successor will persist for an interval and vice versa. For HR-
QSIM the qualitative hyperreal representation allows derivatives to have a
negligible order of magnitude so a state might last for an infinite time before
a parameter transitions to a new landmark value. If some parameter has
an inf derivative, then the state might persist for only a negligible time .
Since the original QSIM cases are also still possible, I distinguish between
the following four qualitative lengths of time: 0, negl, fin, and inf. HR-QSIM
uses two techniques, predecessor-persistence filtering and successor-arrival
filtering (section 3 .4), to deduce the temporal extent of qualitative states
and to prune inconsistent successors .

The difference between the two techniques results from the following ob-
servation about transitions in the qualitative hyperreal representation :

It may take longer for a parameter to transition to a new
qualitative value than it spends in its old value.

Lest this sound confusing, consider the following concrete example. Let
I be a parameter, in other words a function from the hyperreals to the hy-
perreals, defined as the identity function 1(t) = t. Consider the length of



the interval, A, in which [I(A)] = ((halo 0 +), (inc fin)), termed the PERSIS-
TENCE of the qualitative value [14] . I claim that 1 persists in (halo 0 +) for
negl time. For example, if I persisted in the halo for a standard finite time,
to , then that would imply that to E (HALO 0+), in other words that to is
an infinitesimal . Since 0 and inf persistences also lead to contradictions, I
persists in (HALO

	

0 +) for negl time .
Now consider the time it takes for I to reach the qualitative value ~0, inf>-

(formalized as SUCCESSOR-ARRIVAL TIME [14]) . I argue that 1's successor-
arrival time is fin. By definition of -<0, inf>-, when I reaches this qualitative
value it must be greater than some standard real value, ro. Thus ro time must
have elapsed since I left 0 . Since only negl time passed reaching (HALO 0 +)
from 0 [14], I takes fin - negl = fin time to arrive at its new qualitative
value. In other words, even though there is no intervening hyperreal value
sandwiched between (HALO 0 +) and --<0, infr, I takes longer to reach its
new qualitative value than it spends in its original value.

Several benefits result from considering persistence and arrival measures
separately . The unintuitive topology of the hyperreals is made clear, exposing
the relationship between the time when one value ends and another starts .
The result is a powerful algorithm for temporal reasoning in qualitative hy-
perreal simulation . Section 3 .3 discusses the filtering of successor states based
on persistence times while section 3 .4 deals with the successor-arrival filter .

Both techniques use a common mechanism, the DISTANCE-RATE-TIME
TABLE (figure 2) to compute temporal values . This table is indexed by rate
and distance values and returns the time required to traverse the distance.
In both cases, the rate values come directly from the parameter's qualitative
derivative . The difference between persistence and arrival times comes from
the distance used to index into the table. To calculate the time a parameter
can persist in a qualitative value, the `width' of the value is used as a table
index.

Formally, the width of a qualitative value is the order of magnitude of the
maximum distance between any two members of the set of hyperreal points
that underlie the qualitative value [14] . From this definition, the following
characteristics can be derived. The width of a landmark point is 0, the width
of a landmark's halo is negl, the width of a finite interval (e.g ., -<pi,pi+1>- or
-<p.i, inf>-) is fin, and the width of inf or minf is inf. By using these width
values as an index to the distance-rate-time table, HR-QSIM calculates how
long each parameter can persist in its current qualitative value. An entry of
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`?' in the table indicates that inf, fin, negl, or 0 time may elapse

Rate

Figure 2: The Distance-Rate-Time Table

3.3

	

Predecessor-Persistence Filtering
HR-QSIM calculates persistence values for two reasons . From the persis-
tences of each parameter, one can determine how long a qualitative state is
a valid description of a system. Secondly, by comparing the persistences of
all the parameters in a system, one can often filter inconsistent transitions
that were not eliminated by HR-QSIM's other techniques .

For example, suppose the two parameters, A and B, are both increasing at
the same fin rate, and this rate is held constant . In state S;, A = (0, (inc fin))
and B = ((HALO 0 -), (inc fin)) . After Waltz filtering, three sets of possible
next values remain. Either A leaves 0 before B reaches 0, or B reaches 0
before A leaves 0, or they both transition at the same time . The question is,
which of these successor states is possible? The answer comes from analyzing
the persistence of the predecessor state, Si . The width of A's qualitative
value is 0 and A is moving with fin speed, thus the distance-rate-time table
lists A's persistence as 0 . B has the same rate and has negl width, so B's
persistence is negl. This means that B must persist in its qualitative value
for longer than A. In other words, A must transition before B. .

3.4

	

Successor-Arrival Filtering
Like persistence values, arrival times are useful as a means for eliminating
inconsistent transitions . Calculating the time that a parameter takes to
arrive at a new qualitative value from an old one requires a notion of the
distance between the two different values .

Distance
inf fin_ negl 0

inf ? negl negl 0
fin inf fin negl 0
negl inf inf ? 0



The distance between two qualitative values is defined as the order of
magnitude of the minimum distance between any two points in the hyperreal
sets underlying the two qualitative values [14] . For example, the distance
between a landmark and its halo is negl, the distance between a halo and
a neighboring finite interval is fin, and the distance between inf and any
different value is inf.

The predecessor-persistence and successor-arrival filters are implemented
together . The inputs are parameter values for the predecessor and proposed
successor states . Two variables, SP and SA, store successive approximations
to the state's persistence and arrival values respectively. SP is initialized to
the set {0, negl, fn, inf}, and SA to In egl, fin, inf} . For each parameter, X,
let P be the set of possible persistence values, and let A be the set of possible
arrival values . If X transitions to a new qualitative value in the successor
state, set SP to SP intersect P and let SA be SA intersect A . Otherwise,
if X has the same qualitative value in the predecessor and successor states,
remove any time values from SP that are greater than the largest value in P,
and remove any time values from SA that are greater than the largest value
in P, not A! Since this parameter is not changing, the next state must arrive
while this parameter is still persisting . If SP or SA is empty, the successor
state is inconsistent, otherwise SP and SA are the sets of possible persistences
and arrivals respectively.

3 .5

	

Heat Exchanger Example
Successor-arrival filtering is nicely illustrated by the heat exchanger . The
initial state generated by the transform phase persists for 0 time because
several parameters are moving from landmarks. Waltz filtering generates a
single successor state which arrives in negl time and has new values for X,
Q, and F:

Unfortunately, Waltz filtering does not predict a unique successor to this
state . The question is whether X will transition from its halo before, after or
at the same time as Q and F transition from their halo . Since each parameter

[X(Al )] - ((HALO xo+), (inc inf

[Q(Ai)] - ((HALO qo-), (dec fin))
[F(Al )] = ((HALO fo+),(inc fin))



is in a halo, each has a qualitative width of negl, and since each is moving
towards a finite interval, each parameter must travel a fin distance before
transitioning . Plugging these values into the distance-rate- iime table leads
to the conclusion that every parameter persists for negl time, so Ai represents
a time interval of negl length . In addition, X takes negl to arrive, but Q and
F take fin to arrive . Successor-arrival filtering uses these values to eliminate
the two successor states that don't have X transitioning before Q and F.
The only set of next values which pass the test are the following; they arrive
in neg1 time .

[X(A2)] = (-<xo,0>-,(inc inf))
[Q(A2)]

	

=

	

((HALO qo-), (dec fin))
[F(A2)]

	

=

	

((HALO fo+), (inc fen))

Since the distance to X's next value is still fen, similar reasoning holds
again. A2 has negl length; next X transitions to (HALO 0 -) and then to
0 (always arriving in negl time) while Q and F remain in the halo of their
original values . Without successor-arrival filtering, HR-QSIM could not be
sure that negligible heat is lost when oil moves infinitely fast through a heat
exchanger.
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Scale Phase

The scale phase answers comparative analysis questions by comparing a stan-
dard QSIM behavior of the original system with the hyperreal behavior gen-
erated by HR-QSIM from the transformed initial conditions . For example,
QSIM generates three possible behaviors for the heat exchanger: in one, ther-
mal equilibrium (Q = 0) occurs before the oil leaves the pipe (X = 0), in one
1i' transitions to 0 before Q reaches 0, and in the third they transition at the
same time . Since Q drops a finite amount in all these standard behaviors but
stays at (HALO qo -) in the hyperreal simulation, the scale phase concludes
that in general, output heat rises as oil velocity increases .

Although this is a correct answer for this problem, the scale phase can
draw false conclusions. Since exaggeration approximates the sign of a partial
derivative (e.g., 22 has positive sign) by evaluating at an infinite or infinites
imal asymptote and scaling, it may answer incorrectly if the system does not
respond monotonically [12] .
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Related Work
HR-QSIM was influenced by the Raiman's FOG system [10]'for order of
magnitude reasoning. Like FOG, the qualitative hyperreal representation is
grounded in the theory of nonstandard analysis [11] . Unlike FOG, which
only handles algebraic equations, HR-QSIM can simulate the time behavior
of differential equations .

Davis' CHEPACHET program [1] is very similar to HR-QSIM . In fact,
HR-QSIM's four next-value tables [14] are derived from CHEPACHET's
temporal topology rule . However, CHEPACHET has no analogue of the
successor-arrival filter . As a result, CHEPACHET is unable to determine
that the infinite flow-rate heat exchanger loses negligible heat . This means
that if exaggeration used CHEPACHET as its simulate phase, it would not be
able to conclude that increasing fluid velocity increases output temperature .
HR-QSIM is a better choice for exaggeration .

DQ analysis [13] also solves comparative analysis problems . Unlike ex-
aggeration, DQ analysis only predicts correct answers [13] to comparative
analysis questions . However, exaggeration appears to solve more problems
than DQ analysis [12] and often generates simpler explanations [14] .
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