
Abstract
The apparently weak properties of a qualitative
algebra have lead some to conclude that we must
turn instead to extra-mathematical properties of
physical systems . We propose instead that a more
powerful qualitative algebra is needed, one that
merges the algebras on signs and reals . We have
invented a hybrid algebra, called Q1, allows us
to select abstractions intermediate between tra-
ditional qualitative and quantitative algebras .
The power of our algebra is demonstrated in three
ways: First, analysis of Q1 shows that the al-
gebra is robust, sharing many properties of re-
als, but including several that are unique . Sec-
ond, these properties enable symbolic manipula-
tion techniques for canonicalization and factor-
ization distinct from those applied to the reals .
Finally, these manipulation techniques hold much
promise for tasks like design and verification, as
suggested by a simple design example .

1 Introduction
Many systems analyze the behavior of physical devices us-
ing qualitative equations derived from models and device
structure . For tasks like explanation and diagnosis, a de-
vice's behavior is predicted using the equations as a net-
work of conduits through which values are propagated . In
contrast, the task of design is to construct a network of
conduits (i .e, qualitative equations) that produces some
desired behavior . Modeling this process requires a theory
of composition - how qualitative equations combine to pro-
duce the design's aggregate behavior . Creating such a the-
ory requires a careful analysis of the algebraic properties
of qualitative equations together with a set of techniques
for algebraic manipulation.
We have invented a powerful hybrid algebra called Q1,

that captures qualitative and quantitative information
about physical devices . We have implemented a quali-
tative symbolic algebra system based on this hybrid al-
gebra called MINIMA, that provides facilities for combin-
ing, simplifying, canonicalizing and factoring qualitative
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2 Example: Culinary Design

equations . These facilities are demonstrated on a simple
design/verification example and play a central role in the
system for novel design described in [8] .
Very little has been written about the properties of qual-

itative algebras, i .e ., algebras defined on abstractions of
the reals . The few existing studies have focused on the
properties of "confluences" - equations involving only ad-
dition and subtraction on the signs of quantities[2] . It has
been known for some time [1] that confluences are weak
- e.g ., there is no additive inverse . Recently Struss [7]
has performed a detailed analysis of confluences : in re-
placing signs with a variety of interval representations he
came to some disheartening conclusions : "Since the uncov-
ered drawbacks [of confluences] turn out to be very severe,
this should motivate a search for additional concepts and
approaches of a completely different nature." As a conse-
quence of this weakness few qualitative reasoning systems
manipulate qualitative equations symbolically.l
Our analysis of a more extensive qualitative algebra (Ql)

is much more optimistic . Focusing on both the interaction
between qualitative and real expressions and a broad set
of qualitative operators results in a powerful algebra, one
that shares many important properties with the reals, as
well as offering additional important properties (section 4) .
These additional properties allow efficient algebraic manip-
ulation (e.g ., canonicalization and factoring) of qualitative
expressions without resorting to the expensive procedures
needed to manipulate real expressions (section 6) . Q 1's al-
gebraic properties are also sufficient to account for simple
designs (sections 5, 7) .

Our overall agenda is to develop a theory of design inno-
vation that accounts for designs using technologies where
little is known beyond the physics underlying a few simple
devices . A key component of this theory is a qualitative
algebra used to describe and compose behavioral relations
of primitive devices at an abstract level . The designer uses
this algebra to reformulate a desired behavioral relation
by combining it with known relations, until he finds one
that he knows how to produce (fully or in part) through
additions to the physical structure (e .g ., adding compo-
nents or connections) . To understand the requirements of
this qualitative algebra we consider a simple design exam-
ple . Since the focus of this paper is the Q1 algebra rather
than design, neither the example nor the reasoning strat-
egy presented are particularly sophisticated . [8] presents

'The only current exceptions are the qualitative gauss rule
[3] and the composition of the ill operator[5] .



a much more sophisticated design strategy using Qi that
constructs designs of significantly greater complexity.
Suppose you are throwing a major party that includes

beverages . Having waiters manually refill the punch bowl
from a large vat would intrude on the ambiance of the
event . Thus you would like the level of the punch bowl to
be restored to the level of the vat automatically. That is,
whenever there is a height difference between the bowl and
vat, a device should automatically change the bowl height
to meet that of the vat .
You reason as follows : First, the height of the punch in

the bowl is raised or lowered by having punch flow in or
out of it . Second, the pressure at the bottom of a container
is proportional to the height and density of the liquid in
the container . Since the same type of liquid is in both
the vat and bowl, a difference in height corresponds to
a difference in pressure . Thus our goal is reformulated
as having punch flow into the bowl whenever its pressure
drops relative to the vat . Further we know for a pipe that
fluid flows to the end that has the lower pressure . Thus our
task is completed simply by attaching a pipe between the
bottoms of the vat and bowl (and, for aesthetics, hiding
the vat behind a tasteful and rare tapestry) .
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The qualitative vocabulary used above is similar to that
found in the literature, involving signs of quantities, differ-
ences and their derivatives . The reasoning process, how-
ever, is a bit different .

First, the example does not involve reasoning about spe-
cific numbers or qualitative values (e.g ., positive or increas-
ing) . Instead we reasoned about the composition of quali-
tative relations, using the process of reformulating an ini-
tial goal relation with known relations until a goal is found
that can be met by augmentations to physical structure
(e .g ., addition of the pipe) .
Second, the example at times requires the designer to

reason about the precise relationship between quantities,
rather than simply relating the signs of quantities as with
confluences[2] (e .g ., the exact quantitative relationship be-
tween fluid density, height and pressure must be known to
relate height and pressure difference) .

Capturing this reasoning process requires a hybrid qual-
itative - quantitative algebra coupled with a theory of the
designer's algebraic manipulation skills .
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The Qualitative Algebra Q1
The qualitative algebra explored here (Q1) is similar to
those used elsewhere in the literature (e.g ., [9],[2]), but
differs in two important respects .

Most importantly, our equations combine qualitative
and quantitative information by allowing a combination of
qualitative and real operators . Traditionally, real quanti-
ties are immediately abstracted to qualitative values (e.g .,
sign of the quantity), then operated on by the qualitative
operators . As a consequence of this early abstraction the
result of the qualitative operations is often ambiguous .

In Q1 quantities may first be operated on using the stan-
dard real operators, the result abstracted to a qualitative
value, and then operated on further using qualitative op-
erators . This produces a result that is less ambiguous than^`
that produced by qualitative operators alone . A "hybrid"~
algebra of qualitative and quantitative operators thus al-
lows us to express constraints spanning the spectrum from
weak constraints expressible by traditional qualitative al-
gebras to quantitative constraints expressible by the stan-
dard algebra ~>n the teals .
A second p~~operty of Q1 is that qualitative expressions

include a full complement of operators on signs analo-
gous to real addition, subtraction, multiplication, division
and exponentiation . Although previous work has included
many of these operators in qualitative simulation systems
(e.g ., [9],[4],[5]), algebraic analysis has focused only on the
properties of sign addition and subtraction [2],f7], [3] .
The remainder of this section defines the domain, oper-

ators and syntax of the algebra . Algebraic properties are
explored in the next section .
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Domain, Operators and Syntax
Qualitative descriptions operate on two sets, the teals ~
and the set S= {-, 0, +} denoting the sign of real quan-
tities . The relation between ~2 and S is defined by the
mapping [ ] : ~J2 --~ S where:

+ ifx>0
For any z E ~2,

	

[x] _ ~ 0

	

if x = 0
- ifx<0

Thus the operator [ ] partitions ~ into three intervals,
(0, +oo), [0, 0] and (-oo, 0) corresponding to +, 0 and - .
The set S'= {-, 0, +, ?} extends S with the value ?, used

to represent an undetermined sign (i .e ., the value may lie
in any one of the three intervals) . Thus ? corresponds to
the interval (-oo, +oo}.

Qualitative expressions are composed from the standard
operators on X32, (+, -, x, /), an analogous set of operators
on S' (®, 8, ®, O) and the operator [ ] .
The operator ® : S' + S' -~ S' is the qualitative analog

of real addition, answering the question : "What is the sign
of x + y, given only the signs of x and y?" . The operators
(8, ®, ~) have similar analogs to their corresponding real
operators (-, x, /) . These operators, called sign operators,
are defined by the following tables :

0 0

0

0 0

U 0 U
U + U

?U U

(U denotes values for which an operator is undefined, i .e .,
division by an interval containing zero) .

Allowable qualitative expressions (gexp) and real expres-
sions (rexp) are of the form:



where square brackets are placed around the elements of
S' to distinguish them from real operators .

Constraints on a system's behavior are described by a
combination of qualitative and real equations (qeqn and
reqn, respectively) :

gegn

	

. .=

	

qexp = qexp
regn

	

. .=

	

rexp = rexp
In most qualitative algebras (e .g ., [2],[9], [7],[3], and [5])
equality takes on a non-standard meaning - a qualita-
tive equation ql = q2 is satisfied if ql and q2 denote
the same value or if either q1 or q2 = [?]. Thus the ex-
pression [f 1] + [f 2]

	

=

	

[0] is not satisfied by [f 1]

	

=

	

[+]
and [f1]

	

since [+] +

	

This definition re-
sults in considerable confusion since qualitative equality
is not an equivalence relation - it is not transitive (e.g .,

As a consequence the
fundamental operation of substitution of equals for equals
is not generally permitted . This significantly weakens the
traditional qualitative algebra.

In Ql, equality has the standard meaning (i .e, qualita-
tive or real expressions that are equated denote the same
value) . For example, the expression [f1] + [f 2] = [0] is sat
isfied only if [f1] = [0] and [f 2] = [0] . The equation is not
satisfied by [f 1] = [+], [f 1] = [-] since [+] + [-] = [?] ~4- [0] .

Q1 can be used to describe the relations in the design
scenario . The desired relationship between vat and bowl
heights (Ha , Hb) is captured by the hybrid equation :

[HD - Hb] = [dldt(Hb)]

(i .e ., the height of the bowl should change in the direction
of the height difference between the bowl and vat) .
The required relation between height, pressure (P), fluid

density (d) and gravity (g) is a real equation, while the
relations between height, volume (V) and flow (Q) can be
real or qualitative :

These equations combine to produce the desired relation :

[P, - Pb] = [Qb]

The relation for a pipe with ends el and e2 is :

Al - Pet] = -[Qe2]

Thus the desired relation is achieved by connecting a pipe
between the bottoms of the vat and bowl .

21 provides two additional relations, "contains" and "over-
laps', that are important for expressing weaker constraints . [8]
discusses their properties, together with techniques for deter-
mining if one constraint is an abstraction of another .
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Properties of Q 1

In this section we demonstrate the power of Q1 by ex-
amining its most important properties (see [8] for a more
complete discussion) . Q1 is defined as the structure
(J2 U S', +, x, ®, ®, [ ]), where -, / are defined in terms
of +,* ; 6, m are defined in terms of ®. To understand
Ql we explore the properties of the real and sign alge-
bras ((R, +, x) and (S', (D, ®)) and then the interactions
between them .

In the remainder of the paper s,t and u denote elements
of S' and a,b,c denote elements of R A table below sum-
marizes the basic properties of (J2, +, x ) (i .e . the field
axioms) and the corresponding properties of (S', ®, ®) .

(S', ®, ®)

	

x )
Associative :
(s®t)®u=s®(t®u) (a+b)+c=a+(b+c)
(s®t)®u=s®(t®u) (axb)xc=ax(bxc)

Identity :
s®[0] =s

	

a+0=a
,,®[+]=s axl=a

Inverse :
nonL

	

a - d = 0
s 0 s = [+] if s

	

[0] or [?]

	

a/a = 1 if a ~4_ 0
Commutativity :
s®t=t®s a+b=b+a
s®t=t®s axb=bxa

Distributivity :
s®(t®u)=s®t®s®u ax(b+c)=axb+axc

The discussion of these properties are broken into prop-
erties of (R, +, x) missing in (S', ®, ®), shared properties,
and properties of (S', ®, ®) beyond those of (J2, +, x) . We
focus on the consequences of these properties most relevant
to symbolic manipulation.

4.1

	

Weaknesses of S'
(S', ®, ®) contains most of the field axioms .

	

The major
weakness is the lack of an additive inverse for any element
of S' except [0] (i .e ., if v E {+, -, ?}, there is no w E S'
such that v (D w = [0] ) . Thus, whatever e is, it can't be the
inverse of®. As a result the sign algebra does not meet any
of the normal classifications of field, ring, or even group .
One major consequence is that there is no cancellation law
for ® :

s®u=t®u ,7` s=t

Without it we cannot in general solve systems of sign equa-
tions by subtracting equations and canceling terms . Fur-
thermore, addends cannot be moved between sides of an
equation :

s®t=u A s=uet

Consequently we cannot always solve for a particular vari-
able in a qualitative expression using standard techniques
for real expressions . This is why an algebra based only on
confluences (i .e ., (S', ®)) is so impoverished.

4.2

	

Commonalities Between S' and R
In spite of a missing identity, (S', ®, (9) is still quite strong
because it shares most of the remaining properties of
(R,+, x) . ® has an identity ([0]), is commutative and as-
sociative . In addition, ® has essentially all the properties
of x (an identity ([+]), inverse operator (m), associativity

Pi = d x g x Hi for open container i
Qb = dldt(Vb)

[Ve~ ] = [H,:]

gexp [rexp] I sign I qexp sop gexp I e gexp
I gexpinteger I (qexp)

rexp . .= symbol I real rexp rop rexp I - rexp

"sop
I rexpinteger I (rexp)
®IeI®I0

rop +I-IXI/
sign ::- [+] I [0] I [-] I [?]



and commutativity) . Like x, ® has no inverse for [0], but
® also has no inverse for [?] (since [?] contains [0]) . This
does not present a problem in practice since a subexpres-
sion denoting [?] provides no information .

Since ® has an inverse, ® has a cancellation rule analo-
gous to x and multiplicands can be moved between sides
of an equation :

so u=touGs=t

	

axc=bxc~* a=b
for t h [0], [?]

	

for b 56 0
sot =u-#>s=uet

	

axb=c#:> a=c/b
for t

	

[0], [?]

	

for b A 0

The second property above allows us to solve for cer-
tain variables or subexpressions of qualitative equations
in many situations . Also ® distributes over ® . This, com-
bined with the commutativity and associativity of ® and
®, allows us to represent expressions in a canonical form
similar to polynomials on R.

Earlier we pointed out that 6 cannot be defined as the
inverse of ® . However e is related to ® in a manner similar
to - and x

eu =[-]®u

	

-a -(-1) xa
uev =uED((Dv)

	

a-b =a+(-b)

As a result (S', ®, ®) and (32, +, x) share the following
properties important for simplification :

e(E)s)

	

= s
E3(s®t) -E)sE3t

[+]m([+]es)=s
for s ~4 [0], [?]

[+] 0 (s x t)

	

=

	

1/(a x b)= (1/a) x (1/b)
([+]/s) o ([+] m t)

	

for a, b 54 0
for s, t 74- [0], [?]

-(-a)

	

= a
-(a+b)=-a-b
1/(1/a) = a, for a i4 0
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Properties of S' not in R
(S', ®, ®) has three important properties that allow sim-
plifications not possible in (R, +, x), and that are funda-
mental to the canonicalization and factoring algorithms
described in section 6 .

First, since [+] ® [+] = [+] and [-] ®

	

[+], ® is its
own multiplicative inverse:

[s] 0 [t] = [s] ® [t] for [t] j~ [0], [?]

	

(1)

A major consequence is that all occurrences of 0 in an
expression can be replaced with o (as long as the denom-
inator doesn't contain [0]) . In addition :

[s] ®[s]

	

= [+]

	

for s ~4_ [0], [?]
s®t=u

	

Gs=u®t

	

for t h[01,
The second property relates to exponentiation . For a quali-
tative expression s and integer n, let sn denote s ® s . . . ® s

Ini
if n is positive or negative, and [+] if n = 0 . Then the fol-
lowing holds :

s 2 ' ® s = s for i E integers

	

(2)

Thus all expressions raised to a positive/negative odd
power are equivalent ; likewise for positive/negative even
powers . This allows all exponents i to be reduced to

[s] + [s] = [s]

0 <_ i <_ 2 . This is used later in section 6 .1 to reduce
all sign expressions to quadratics .

Third, there is a cancellation rule for addition :

As a result of these three properties, common subexpres-
sions are often "absorbed" into a single expression during
the simplification process . This results in expressions that
are far simpler than their counterpart would be in -R . We
return to this issue in section 6 .1 .

4 .4

	

Relating S' and R
The remaining task is to examine expressions that use [ ] to
combine properties of S' and 12 (i .e ., (RUS', +, x , ®, ®, [ ]) ) .

[ ] is a homomorphism of R onto S for the operations of
multiplication, division, minus and exponentiation :

[a * b]

	

q[a] ® [b]
[a/b]

	

a [a] 0 [b]
[-a]

	

qE3[a]
[an]

	

b
[a]n

However, this is not the case for addition or subtraction .
For example, expressing height difference as [H,] e [Hb] is
weaker than [H, - Hb] (e.g ., consider H, = 8, Hb = 7) .
This sheds light on a crucial problem with the standard

approaches to qualitative reasoning - they over-abstract .
The mistake is that a qualitative equation is traditionally
produced from a real equation by replacing each operator
with its sign equivalent and each variable v with [v] . Thus,
in the punch bowl example we would be forced to represent
height difference as [H,] e [Hb] . But this expression is
useless - since height is never negative and rarely zero, the
value will almost always be [?] . We solve this problem by
allowing a hybridization of real and sign expressions .
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Using a Qualitative Algebra for
Design

The next step is to incorporate the above properties into a
symbolic algebra system adequate to capture the reasoning
steps in designs similar to our example . To do this . we
consider what design entails .
Given a desired behavior, a designer examines the be-

havioral constraints imposed by the design's existing struc-
ture, then uses the models of available components to de-
termine where and what additional augmentations are nec-
essary to meet the desired behavior . A good designer ex-
ploits constraints imposed by the existing structure to re-
duce the additions necessary and identify novel additions .
Here we focus only on the algebraic manipulations used in
this process ; coordinating the overall design process coher-
ently is a subtle task described in [8] .
The types of behavior used in the above process can

be expressed by equations in our qualitative algebra . The
basic algebraic inference performed by the designer is to re-
formulate an equation describing a desired behavior (goal),
by combining it with equations describing either existing
physical structure or augmentations to that structure he
is willing to make (constraints) . This process is repeated
until either a reformulated goal is met by an existing con-
straint or it is proven unachievable .



Combining a goal with a constraint involves 1) identi-
fying shared variables (or subexpressions), 2) solving for
a variable/subexpression in the constraint, 3) substituting
Me result into the goal, and 4) simplifying the combined
Wesult .

In the punch bowl example the original goal [H9 - Hb] _
[d/dt(Hb)], and the constraint Hb * Ab = Vb share the
variable Hb . Solving for Hb in the constraint we get
Hb = VblAb . Substituting for Hb in the right hand side
of the goal produces [H, - Hb] = [d/dt(Vb/Ab)] ; Simplify-
ing results in [H, - Hb] = [d/dt(Vb)] 0 [Ab] . This example
is completed in section 7 .

Next the reformulated goal is checked for failure or
success . Success occurs if the goal is a tautology (e.g .,
s® t = s ® t) or equivalent to an existing constraint . Fail-
ure occurs if the equation is inconsistent (e.g ., [+] = [-]) .

6 MINIMA
MINIMA is a symbolic algebra system for Q1 that sup-
ports the operations identified above . MINIMA is a quali-
tative analog of the symbolic algebra system Macsyma[6],
and in fact uses Macsyma to manipulate subexpressions in
(R, +, X) .
We discuss the two most important operations per-

formed by MINIMA : simplification and equation solving
(i .e ., solving for a variable or subexpression) . By making
the simplifier sufficiently powerful (i .e, reducing expres-
sions to a unique canonical form), identifying tautologies
and equivalent equations is reduced to determining syntac-
tic equivalence .

Like Macsyma, MINIMA provides two approaches to
iplification and equation solving . The first approach is

restricted to "obvious" transformations of the equations,
using a subset of the properties mentioned above . For ex-
ample, given c l = [+] and c2 = 8, the equation ([a 2 ]
[c2])®[-a/(b-4)*(-ct)] simplifies to ([a]®[+])®[a]20[b-4]
by 1) substituting for constants with known values, 2)
applying the homomorphisms for +, x, -, 3) evaluating
[ ] on known values, 4) cancelling identities and double
negations, and 5) using associativity and commutativity
to canonicalize the order of operator arguments. Com-
pleteness is traded for faster, more intuitive deductions .
The approach is sufficient for many designs, including the
punch bowl example .
The second approach performs less obvious transfor-

mations, using techniques for qualitative canonicalization
and factorization . For example, ([a] ® [+]) ® [a] 2 O [b - 4]
is further simplified to the multivariate quadratic3
[b - 410 [a] 2 ® [b - 4] ® [a] for [b - 4] A [0], [?] . Canonical-
ization and factorization are prohibitively expensive in tra-
ditional symbolic algebraic systems on J2 . However, this is
not the case for a sign algebra - MINIMA exploits the
properties of Q1 described in section 4.3 to make canoni-
calization and factorization very efficient in practice .

6 .1

	

Simplification and Canonicalization
The purpose of simplification is to eliminate irrelevant
st-cture in the equations . This facilitates the process of

A multivariate polynomial is a polynomial in variable v
whose coefficients are polynomials not in v . A multivariate
quadratic is a multivariate polynomial of degree 2.

both comparing and combining equations . The simplifier
eliminates structure through a combination of cancellation
(e.g ., a/a =:;, 1), evaluation ([+] ® [-] => [-]), substitution
of known constants, and reduction of subexpressions to a
standard form (e .g .,(b * a) * c =:> a * b * c) . The oper-
ator definitions and properties described in sections 3 and
4 provide the tools to perform simplification .

Simplifying equations in MINIMA involves three steps .
First, the real subexpressions of an equation (i .e ., expres-
sions contained within [ ]) are simplified using the prop-
erties described for (R,+, x) . Next, real operators are
transformed into sign equivalents whenever possible using
the homomorphisms of section 4.4 . Finally, the surround-
ing sign expressions are simplified using the properties de-
scribed for (S', ®, (9) . Mapping from real to sign operators
has two advantages : First, the sign of a quantity is often
known when the real value isn't . For example, we know
density and gravity are positive, independent of substance
and planet, thus [P] = [d * a * g * H] simplifies to [P] = [H] .
Second, the properties of section 4.3 allow significant sim-
plifications in S' not possible in R.
The "obvious" simplification approach involves making

local changes to an equation's structure . Most of the prop-
erties of section 4 are applied as simple rewrite rules during
simplification . Commutativity and associativity are used
together to convert binary expressions into n-ary expres-
sions whose arguments are sorted lexicographically (as in
(b * a) * c => a * b * c) . The main property not used is dis-
tributivity since expanding expressions using distribution
can radically change an equation's structure .
The second simplification approach reduces an expres-

sion or equation to a pseudo-canonical form¢ analogous to
a multivariate polynomial . In traditional symbolic systems
real expressions can be reduced to a unique rational form -
a fraction consisting of two multivariate polynomials with
common factors removed .

Although constructing polynomials is fast, constructing
rationals is expensive for large expressions . The cost is in
factorization, which relies heavily on computing greatest
common denominator (GCD) .
A similar approach is taken for Q1, but one that is signif-

icantly faster in practice . Operators in S' are distributive,
commutative, and associative . This is sufficient to con-
struct polynomials from sign expressions . Furthermore,
by equation 4 .3 all exponents can be reduced to degree 1
or 2, thus the polynomials are at most quadratic . Finally,
by equation 4 .3 division can be replaced by multiplica-
tion, thus all expressions in (S', ®, ®) can be represented
as quadratic, multivariate polynomials .' Since m is elim-
inated, factorization and GCD is unnecessary to perform
canonicalization .
To canonicalize a hybrid equation we convert the real

subexpressions to rationals, apply the homomorphisms,
and then canonicalize the sign expressions as above . s

'We use the modifier "pseudo" only because the canonical
form has not yet been proven unique .

'An additional stage involves eliminating irrelevant terms in
the quadratic equation (e .g .,[x]' ® [z] ® [+] q [x] ®[+]) . See
[8] for a complete list of elimination rules .

° A more general approach involves constructing the prime
factorization of the real expression before applying the
homomorphisms .
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Example Revisited

6 .2

	

Equation Solving and Factoring

(s®t)®u=v

	

=~

	

(s®t)= V0u for u~4- [0],[?]

32 ® [x] 2 ® s l ® [x] ® so = (a ® [x] ® c) o (b ® [x] ® d)

Given an equation in (R, +, x) it is possible to solve for any
variable . This is not the case for (S', ®, ®): Since there
is no cancellation for addition, addends cannot be moved
between the left and right sides of an equation.

However, it is often possible to solve for certain subex-
pressions . Cancellation can be performed for multiplica-
tion (section 4 .2), thus we can solve for any subexpression
that is an argument of a top-level multiplication For ex-
ample, solving for s ® t :

More generally, we can compute the prime factors of the
top-level expressions in a qualitative equation, and then
solve for any of the factors . Traditionally factorization
requires computing GCD, which is very expensive . How-
ever, factorization using standard GCD algorithms cannot
be used for sign expressions since GCD algorithms rely
on cancellation . Instead we use a much simpler approach.
Since sign expressions can be reduced to quadratics, it is
relatively inexpensive to determine the factors by generate
and test .
The factorization of a quadratic is of the form :

where s2 , s l , s o , a, b, and c are qualitative expressions and
s 2 = a 0b, s l = (a ®c) ®(b ®d) and so = cod. Thus
to factor a quadratic we generate a,b,c and d by factoring
the coefficients s2 and so , and then distribute s2's factors
between a and b, and so's factors between c and d . To
test we compute the polynomial corresponding to (a ® c)
(b ® d) and compare it with sl . Quadratics are sufficiently
infrequent that this strategy is quite acceptable in practice .

MINIMA's facilities for simplification, substitution and
equation solving provide the algebraic tools necessary to
walk through the punch bowl example which, as the trace
below suggests, is more complex than our intuitions might
at first suggest . The following is a simplified trace of the
deductions going from the initial goal [H, -Hb] = [dHb/dt]
to the reformulation [P, - Pb] = [Qb], which is the key to
recognizing the solution involving a pipe . In the example,
Gn, Fn, and Cn denote Goals, given Facts and Conse-
quences, respectively.
Gl) [H, - Hb] = [d/dt(Hb )]

	

Original Design Goal
F2)

	

Hb * Ab = Vb

	

Container Model
C3) Hb = Vb/Ab

	

Solve for Hb in F2
G4) [H, - Hb] _ [d/dt(Vb/Ab)]

	

Substitute for Hb in
G1 using C3

G7)

	

[H, - Hb] _ [d/dt(Vb)/Ab]

	

Differentiate G4
G8)

	

[H, - Hb] _ [d/dt(Vb )] 0 [Ab] Simplify G7
F9) [Ab ] _ [+]

	

Container Model
G10) [H, - Hb] _ [d/dt(Vb )]

	

Substitute for Ab in
G8 using F9

F11) Qb = d/dt(V6 )

	

Container Model
G12) [H, - Hb] = [Qb]

	

Substitute for d/dt(Vb)
in G10 using F11

F13) P, = d * g * H,,

	

Container Model
C14) H, = P,, /m, * g

	

Solve for H, in F13

G15) [P. Id * g - Hb] = [Qb]

	

Substitute for Ha in
G12 using C14

F16) Pb = d * g * Hb

	

Container Model
C17) Hb = Pb/d * g

	

Solve for Hb in F16
G18) [P, /d * g - PbId * g] _ [Qb]

	

Substitute for Hb in
G15 using C17

G19) [(P, - Pb)]/([d] 0 [g]) = [Qb] Simplify G18
F20) [d] = [+]

	

Property of fluids
F21) [g] = [+]

	

Property of gravity
G22) [(P, - Pb)]/([+] ® [+]) _ [Qb] Substitute g,d into

G19 using F20,F21
G23) [P, - Pb] = [Qb]

	

Simplify G22
The reformulated goal G23 enables the crucial insight -
the close similarity between G23 and a pipe's behavior
(i .e ., Al - Pre] = [Qc2] where tl,t2 are the ends of a pipe)
suggests connecting a pipe between the two containers .

8 Discussion
The apparently weak properties of a qualitative algebra
have lead some to conclude that we must turn instead
to extra-mathematical properties of physical systems . We
have instead proposed a new qualitative algebra, Ql, that
merges the algebras on signs and reals, allowing us to select
abstractions intermediate between traditional qualitative
and quantitative algebras .
The power of our algebra is demonstrated in three ways:

First, Q1 is a robust algebra sharing many properties of
reals, but several that are unique . Second, these properties
enable symbolic manipulation techniques for canonicaliza-
tion and factorization, distinct from those applied to the
reals . Finally, these manipulation techniques hold much
promise for tasks like design and verification, as suggested
by our example .
The qualitative symbolic algebra system MINIMA has

been fully implemented and tested on a Symbolics 3600 . A
design system based on MINIMA is partially implemented .
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