
Abstract
Many systems are too complex to represent
with a single, detailed model because the
model simply becomes too cumbersome . This
is especially true when reasoning about popu-
lations composed of many interacting individ-
uals . A fully-detailed model of such a system
would have to model all the interactions be-
tween a potentially enormous number of in-
dividuals. Frequently, however, these interac-
tions fall into only a few classes. We claim
that when this occurs population systems are
profitably modeled at three levels .
At the highest level we represent the gross
properties of the population as a whole. We
also provide restricted means for modeling any
direct influences the population's environment
may have upon them, such as the constraint
that the volume of a gas must equal the vol-
ume of its container.
At the aggregate level, we model the statistical
nature of a population explicitly . Changes to
the membership of a population are modeled
with sinks and sources. For example, evapora-
tion of a liquid can be modeled as a sink with
a threshold on kinetic energy of the molecules.
This allows us to deduce the cooling effect of
evaporation.
The most detailed level describes the proper-
ties of individual members of the population .
This level includes a set of models that de-
scribe all possible interactions that an indi-
vidual may have with other individuals and
with the population's environment. For exam-
ple, one model might describe a gas molecule's
collisions with other molecules, while another
model would represent a colision with a con-
tainer wall . Changes in individual proper-
ties due to interactions at the individual level
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are summarized and propagated to the higher
levels by statistical operators. Our approach
enables powerful reasoning about aggregate
properties plus the flexibility to justify con-
clusions in terms of individual interactions .

1 Introduction
Modeling is a central issue in qualitative physics because
the performance of reasoning algorithms is directly de-
pendent on the size of the underlying model. For many
complex systems, it is not practical to use a single
monolithic model-reasoning becomes intractable and
the explanations incomprehensible . In these cases it is
preferable to model the system at several levels of detail,
using fine-grained models only when necessary.

It is particularly important to avoid excessive detail
when reasoning about populations composed of many
interacting individuals . A fully-detailed model of such
a system would have to model every one of the poten-
tially enormous number of individuals and all of the NZ
interactions . Fortunately, however, these interactions
can often be grouped into just a few classes. In these
cases, we assert that population systems are more prof-
itably modeled at three levels :

e Models of the classes of interaction between indi-
viduals,

o Probabilistic models of the aggregate effect ofmany
such interactions, and

e A model of the macroscopic nature of the popula-
tion as a whole.

By summarizing the results of individual level reason-
ing into the ontology of the aggregate and macro levels,
a program can exploit the best of both models . Such
multi-level reasoning can be applied to answer questions
about many interesting systems. For example, we can
answer the question "Why does a liquid cool as it evap-
orates?" by observing that evaporation involves loss of
the most energetic molecules since these are the ones
that can break the electrostatic bonds confining them
to the liquid . Thus the average kinetic energy of the
population of remaining molecules must decrease . Since



temperature is equivalent to mean molecular kinetic en-
ergy, the liquid cools down . Similarly, we can answer the
question "Why do warnings about cholesterol raise the
price of fish?" by noting that more individuals will want
to buy fish, so the market equilibrium shifts to a higher
price. Lastly, we consider the question "Why does the
temperature of a gas in a cylinder increase when the
gas is compressed by a piston?" It does so because
molecules that collide with the inward-moving piston
face are accelerated, raising their kinetic energy ; this
raises the average thermal energy for the population . In
each of these examples we can explain large-scale effects
by reasoning about only a few qualitatively-distinct in-
dividual behaviors.
Our research has resulted in a comprehensive frame-

work for multi-level modeling of populations. At the
macro level we represent the gross properties of the pop-
ulation as a whole. We also provide restricted means
for modeling any direct influences the population's en-
vironment (by which we mean everything in the world
besides the population) may have upon them, such as
the constraint that the volume of a gas must equal the
volume of its container.

In this paper, we concentrate upon the aggregate and
individual levels . The aggregate level presents statisti-
cal models of a population and uses sources and sinks
to represent changes to the population's membership .
The individual level includes a set of models that de-

scribe all possible interactions that an individual may
have with other individuals and with the population's
environment, such as a gas molecule's collisions with
other molecules and with the container walls. Changes
in individual properties due to these interactions are
summarized and propagated to the higher-level mod-
els by statistical operators such as Summation and
Mean.
Our research has focussed upon the use of multi-

level reasoning to determine howpopulation parameters
change in response to a particular environment. Such
reasoning allows us to predict population-level effects,
and it allows us to produce more satisfying explana-
tions of population phenomena than could be produced
without reference to the individuals that make up the
population . We have tested our framework with a com-
mon lisp implementation which is adequate for reason-
ing about systems in which the population does not gain
or lose individuals, such as the gas-in-the-cylinder ex-
ample above. We plan to extend the program to handle
the other two examples in which the population mem-
bership changes dynamically.

2

	

The macro level
The macro level describes the population as a whole
with its own characteristic properties, which we repre-
sent as macro-level quantities . Many macro-level quan-
tities are defined in terms of the quantities that charac-
terize the statistical entities of the aggregate level and
are described in the next section. Some, however, are

most logically defined strictly at the macro level. The
volume occupied by the contained gas in our example is
one such quantity . It is determined not by any aggegate
behavior or state of the individual molecules, but rather
by the volume of its container. We thus must be able
to reason about the macro-level environment, and we
accordingly allow a simple constraint model of it . The
environment may have its own macro-level quantities,
such as container volume, and it is composed of com-
ponents which may be defined to influence these quan-
tities . Thus the piston component of the contained gas
system is defined to negatively influence the volume of
the inside of the cylinder . We may constrain macro-level
population quantities to be proportional to macro-level
environmental quantities, which allows us to relate the
gas volume to the cylinder volume. We have so far re-
stricted modeling at the macro level to the bare mini-
mum complexity in order to focus on population mod-
eling issues . However, in the long term, we hope to
investigate multi-level grounding of complex QP theory
macro envisionments.

3

	

The aggregate level
Theaggregate level allows us to relate macro-level quan-
tities to the population of individual-level quantities .
Although this population is of a finite number of indi-
vidual values, it is useful to represent it in continuous
terms . Accordingly, we define the quantity-population
for a quantity Q to be a continuous function from the
individual-level quantity Q to the real numbers. If f is
the quantity population for Q then the number of indi-
viduals having a value between ql and q2 is defined as
19,' f(q)dgl .

Although the quantitative notion of quantity-
population is powerful, we seek a qualitative description
of populations. We this via a set of statistical opera-
tors that are defined on quantity-populations . These
allow us to describe and summarize the population in
high-level, qualitative terms. So far we have defined the
following operators:

2

" Mean(quantity), which is equal to Summa-
tion(quantity) divided by NumIndividuals .

NumIndividuals, which in discrete terms repre-
sents the size of the population . We define Nu-
mIndividuals(quantity) to be the integral from
minus infinity to infinity of the quantity-population
defined by the argument . Since the value for this
integral is independent of the quantity concerned,
we often drop the argument and refer to NumIn-
dividuals as a variable rather than a function .

Summation(quantity), which is equal to the sum
of quantity over all the individuals in the popula-
tion .

Min(quantity), which is equal to the smallest value
of the quantity which is held by an individual .



e Max(quantity), which is equal to the largest value
of the quantity which is held by an individual .

Macro-level quantities may be defined to be propor-
tional (or inversely proportional) to any of these. They
may also be said to be proportional to other macro-level
quantities, which allows some quantities to be "hybrid,"
that is, influenced both by individual behavior and by
the macro-level environment. Such is the case with the
density (number of molecules per unit volume) of our
contained gas, which depends upon both NumIndivid-
uals and volume.
Although we have implemented only a few statisti-

cal operators, they have surprisingly broad applicabil-
ity. For example, we may describe the contained gas
system in the following manner . 1

(Qprop heat (Summation kinetic-energy))
(Qprop temperature (Mean kinetic-energy))
(Qprop density NumIndividuals)
(Qprop- density volume)
(Qprop pressure temperature)
(Qprop pressure density)

Here heat, a macro-level quantity, is defined to be
proportional to the aggregate-level summationof kinetic
energy over all individuals . Temperature is defined to
be proportional to mean kinetic energy, which makes it
proportional to heat and inversely proportional to the
size of the population . Density and pressure are both
hybrid quantities . Density is proportional to the size
of the population and inversely proportional to volume .
Pressure is proportional to both temperature and den-
sity. 2

3.1

	

Dynamically-changing populations

Population reasoning is especially interesting when the
populations can gain or lose individuals over time . Our
approach for modeling this is to include special sources
and sinks in the environment. A source adds individu-
als to a population, and a sink removes them . A source
and a sink can be associated to form a portal, which
allows individuals to move from one population to an-
other. Thus we can represent a vessel containing both

'Following QP theory, Qprop means qualitatively propor-
tional, and Qprop- is inverse qualitative proportionality.

2We justify this definition of pressure by observing that
the pressure a gas exerts upon an object is caused by the
collisions of the gas molecules with the object's surface.
It is thus proportional to the momentum of each colliding
molecule, which varies with velocity and thus kinetic energy
and thus temperature, and to the number of collisions per
area per time . The number of collisions over a given area
during a given time interval depends upon the number of
molecules that are within striking distance of the surface at
the beginning of the time interval, and this depends upon
density. (It also depends upon molecule velocity, which de-
termines how far from the surface a molecule may be and
still be within striking distance during the time interval, but
this too varies with kinetic energy and thus temperature.)

2.12

liquid and gas phases of a substance as two popula-
tions connected by two portals. One portal represents
evaporation . It appears as a sink to the population of
molecules confined to the liquid and as a source to the
population of gas molecules. The other portal repre-
sents condensation, and appears as a sink to the gas
and a source to the liquid . An alternative model might
dispense with the portals; instead evaporation would be
modeled with an unconnected sink on the liquid popula-
tion and condensation would be represented as a simple
source to the liquid . This model encodes the assump-
tion that the mass of liquid is negligible compared to
that of the gas.
The mechanism by which an individual enters or

leaves a population must be modeled at the individual
level, but we can still define asource or a sink strictly at
the aggregate level in terms of probability distributions .
For a source, the distribution represents the probability
(per unit time) that an individual with any given com-
bination of quantity values will enter the population .
The distribution for a sink represents the corresponding
probability of leaving. Most generally, the distribution
must be multi-dimensional to assign a probability to
all possible combinations of individual quantity values,
but in practice, concerning ourselves with only one indi-
vidual quantity generally suffices . For example, a sink
representing evaporation from a liquid can be charac-
terized by a very simple probability distribution that
specifies that any individual molecule whose kinetic en-
ergy is above the breaking strength of intermolecular
bonds will very likely leave the population, while those
molecules with less kinetic energy will not.
We refer to a sink like this one representing evapo-

ration as a high-pass sink and define it as a triple (Q,
T, R), where Q is an individual-level quantity, T is a
threshold value for that quantity, and R is a rate of dis-
appearance per unit time for individuals whose value for
the quantity is above the threshold. We define loin-pass
sinks analogously.

3.2

	

Reasoning using sinks
Determining the effects of even simple sinks is not
straightforward. We cannot, for example, simply define
the effect of a simple sink in terms of its effects upon
NumIndividuals or Summation. Since most sinks
will cause both NumIndividuals and Summation to
decline, the obvious derivation of the qualitative effect
on Mean is ambiguous . This is not surprising, because
what makes a high-pass sink different from a low-pass
sink, say, is the differing selectivity in which individuals
are removed . Reasoning about NumIndividuals and
Summation separately ignores this selectivity.

Instead, we must reason about the effect of sinks di-
rectly upon the mean of a quantity. We present four
rules that describe the effects of a high-pass sink upon
the mean of a qualitative population :

3

1 . If the sink threshold T is greater than Max(Q),
there is no effect upon Mean(Q) .



3 .3

	

Reasoning using sources

2 . If T is less than Max(Q), but greater than
Min(Q), Mean(Q) tends to decrease.

3 . If T is less than Min(Q), there is no effect upon
Mean(Q) .

4 . The closer T is to Mean(Q), the greater is the
tendency for Mean(Q) to decrease .

The intuition behind these rules is as follows. In a
population of discrete values, removing an individual
value abovethe mean causes themean to decrease, while
removing a value equal to the mean does not affect the
mean, and removing a value below the mean causes the
mean to increase . Deleting a value has a greater effect
upon the mean the farther it is above or below the mean .

If the threshold is above the high extreme of the pop-
ulation, no values are deleted, and the mean is not af-
fected . If the threshold is above (or equal to) the mean,
only values above (or equal to) the mean are removed,
so the mean must decrease . The closer the threshold is
to the mean the more such values are removed, so the
greater the effect is upon the mean . If the threshold
is below the mean but near to it, many values above
the mean and a few below it are deleted; the mean
still decreases, but the effect is moderated by the dele-
tion of individuals below the mean . As the threshold
moves farther below the mean, this moderating effect
gets stronger, thus further weakening the decrease of
the mean, until the threshold is below the entire distri-
bution, at which point the two effects cancel, and the
mean does not change.

Rule 2 above, together with definitions of evapora-
tion as a simple, high-pass sink and of temperature as
the mean of molecular kinetic energy, allows us to de-
duce that evaporation of a liquid will tend to cause its
temperature to decrease .
We maydescribe low-pass sinks with an analogous set

of rules, save that such sinks tend to cause the mean to
increase, rather than decrease .

It is perhaps surprising that sources are substantially
different than inverse sinks. To characterize a source
one must define the distribution from which the source is
producing values . This is unnecessary for sinks because
they bootstrap off the population distribution on which
they are defined. On the other hand, it is unnecessary
to specify an individual-level quantity or threshold for
a source, since the population specifies these values im-
plicitly. Thus a source can be defined as a pair (P, R)
where P is a population and R is a rate of production :
individuals per unit time .
A high-pass portal (a linked high-pass sink / source

pair) is defined the same as a high-pass sink, as a triple
(Q, T, R) where Q is an individual-level quantity, T is
a threshold value for that quantity, and R is the rate of
transfer . In this case, the source's population is derived
from that of the sink relative to the specified quantity
and threshold.
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The individual level
The individual (or micro) modeling level describes the
individuals that make up the population and their in-
teractions with the environment of the population and
with one another. The state of an individual is de-
scribed by a set of quantities. In the gas-in-the-cylinder
example, we describe the state of an individual molecule
by its position, velocity, and kinetic energy. The value
of a quantity may be affected by an individual's inter-
actions with other individuals and by the individual's
interactions with the environment, such as the cylinder
wall . To be able to reason about changes in the values
of the population's properties we must model all such
interactions .
For any given system, we may group these interac-

tions into types. For example, each object with which a
molecule can collide requires a different type of collision
interaction . For simplicity and tractability we model
and reason about each type of interaction separately,
rather than attempting to model all possible sequences
of interactions that an individual may engage in . This
allows us to factor the problem of micro-level modeling
into simpler sub-problems . Doing so requires that we
assume that interactions are independent, i.e. the oc-
currence of one will not influence the course of another.
This assumption is justified so long as the course of
one interaction does not depend upon unmodeled "hid-
den state" that a participating individual carries from
prior interactions, or, in other words, that our represen-
tation of an individual captures all relevant aspects of
its state. The validity of our assumption also depends
upon the occurrence of one interaction not interfering
with another while it is in progress, but this is simply a
closed-world assumption : we assume that the model of
each interaction fully describes all possible outcomes .
Thus we require a separate model for each possible

interaction type . At least one of these models must de-
scribe the interaction of an individual with another in-
dividual . For the contained gas example, this means the
collision of two molecules. Other models describe the in-
teractions of individuals with the environment . We as-
sume that the overall (macro) environment of the pop-
ulation is large relative to an individual, so that the in-
dividual interacts with only a small part of it, which we
term the micro-environment for that interaction . Dif-
ferent parts of the macro-environment may each present
a different micro-environment to the population's indi-
viduals. We define each micro-environment with a sin-
gle model that describes all the ways in which an indi-
vidual may interact with that micro-environment. For
example, the gas-in-the-cylinder example presents two
micro-environments (as well as an individual/individual
interaction which is independent of the environment) as
shown in figure 1 :

e A fixed surface, which represents an unmoving, in-
sulated container wall .

9 An inward-moving surface, which represents the



piston's compressing action .

If the piston could also move outwards, and hot
and. cold surfaces were modeled as well as insulated
ones, there would be a total of nine possible micro-
environments .

Since we are modeling effects upon individuals en-
tering and leaving interactions, it is natural to use a
process-centered modeling ontology because it allows for
a varying topology of interaction . Accordingly, we use
Qualitative Process (QP) theory [Forbus, 1984] to spec-
ify the micro-level models . An individual is represented
as an entity with quantities . Processes and views al-
low direct and indirect influences upon its quantities .
For example, a motion process allows velocity to influ-
ence position, and force processes allow forces to create
accelerations, which are summed to influence velocity.
An interaction that involves more than one individ-

ual may act to conserve some individual-level quantity,
which means that its sum over all the participating in-
dividuals cannot change . In the contained gas example,
the molecule-molecule collision interaction conserves the
sum of the kinetic energies of the two individuals . As
will be discussed further below, knowing about such
conserved quantities can be quite useful, so in addition
to their QP theory description, interaction models may
have a list of conserved quantities .

4.1 - Individual-level modeling of sources and
sinks

While the aggregate-level description of sources and
sinks allows reasoning about their effects upon the pop-
ulation, more satisfying explanations of their behavior
can be generated if we have models of the mechanisms
underlying them . Such models logically reside at the in-
dividual level. For example, we could associate with a
sink that represents evaporation amodel that represents
a molecule's attachments to its neighbors via spring-like
bonds that will break if the molecule vibrates too ener-
getically.

5

	

Aggregating individual behavior
Recall that our goal is to be able to determine whether
and in what direction macro-level quantities change
given a particular environment and to be able to ex-
plain our reasoning. This is equivalent to asking for the
signs of their derivatives . How we go about calculating
these signs depends upon how each quantity is defined.

5.1

	

Quantities influenced by the
macro-environment

The calculation is easy if the quantity is defined solely
in terms of influences from macro-environment compo-
nents - a qualitative sum of of the influences deter-
mines the qualitative derivative . For example, we may
determine the derivative of volume this way for the con-
tained gas system. Since gas volume is proportional to
cylinder volume, and the only influence upon that is the

negative influence from the piston component, we can
conclude that gas volume is decreasing.
Doing so requires assuming that there are no other,

unstated influences (a closed-world assumption) . Note
that since we are summing qualitative values, it is pos-
sible to get an ambiguous answer, which simply means
that it is consistent with the available information for
the quantity to be increasing, decreasing, or remaining
constant .

5.2

	

Quantities influenced by the
micro-environment

Those quantities that are defined in terms of the statisti-
cal operators require more elaborate computation. First
we consider NumIndividuals . Obviously, sources tend
to cause the population size to increase, and sinks tend
to cause it to decrease . If both are present, the effect will
be ambiguous, although we may be able to determine
the existence an equilibrium state in which the popu-
lation size remains constant . If there are no sources or
sinks, the derivative for NumIndividuals is zero, as is
the case with our contained gas example system .
To determine the derivative of a macro-level quantity

defined using Summation with perfect accuracy would
require determining the derivative signs of the corre-
sponding individual-level quantity for every individual
in the population and summing them . For populations
with a large number of individuals (like a gas) this is
an unworkable idea, so we must make some assump-
tions that allow us to reduce the problem to a manage-
able size . We assume that the set of micro-level models
appropriate to the environment represents all possible
interactions that can influence individual-level quanti-
ties (another closed-world assumption) . We also assume
that each such interaction will actually occur for at least
some individuals . This assumption is based upon the
idea that there are so many individuals in the popula-
tion that some will at one time or another be in every
possible state and thus will be capable of entering into
every possible interaction .
Given these assumptions, we calculate the derivative

sign for Summation in in three steps: 1) generate a to-
tal envisionment for each micro-environment and isolate
all possible behavior paths, 2) compute the net change
for the quantity over each behavior, and 3) sum the net
changes together .

5 .2.1

	

from envisionments to behaviors

A total envisionment [Forbus, 1984] is a directed
graph composed of all possible qualitative states of a
system along with all legal transitions between them .
Each state includes the qualitative values and qualita-
tive derivatives for every quantity. Following [Forbus,
1987], we call a state with no incoming transitions an
eden state . We also define a dead-end state to be one
with no outgoing transitions and a behavior to be a
path from an eden state to a dead-end state. We as-
sume that every such behavior is physically realizable .
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Figure 1 : Relation of micro and macro environments . The macro-environment is divided into components. Each
micro-environment model describes the interaction of an individual with a micro-environment . Components and
micro-environments need not correspond in a one-to-one manner .

This amounts to assuming that our qualitative state
description is sufficiently discriminating to prevent spu-
rious behaviors .
The intuition here is that the set of behaviors rep-

resents all the possible things that may happen to an
individual that participates in the modeled interaction .
We are thus assuming that the individual must enter the
interaction at an eden state and exit at a dead-end state .
This is based upon a deeper assumption that all inter-
actions begin and end within a finite interval of time,
that is, we do not allow interactions that continuously
influence an individual . s Thus, barring cyclic envision-
ments, there must be at least one state that represents
the individual before it enters into the interaction and
one that represents the individual after it leaves the in-
teraction, and these must be eden and dead-end states,
respectively.
Note that an envisionment with one or more cycles

may have no eden or dead-end states and hence no be-
haviors by our definition . Furthermore, even if there are
eden and dead-end states, the presence of a cycle means
there may be an infinite number of paths between some
of them . We note the following :

e A cycle in which all the states have the same deriva-
tive value for the quantity can be collapsed into a
single state with that derivative . This can create
new eden or dead-end states .

e When analyzing behaviors in a cyclic envisionment,
going around a cycle twice or more cannot yield
a new net change value for any parameter . Thus
there are only a finite number of "significant" be-

'One can easily imagine such interactions, for example,
the influence of the magnetic field upon particles in a ring-
shaped accelerator, but currently we leave such systems as
yet another topic of future research .

For each significant behavior in each envisionment,
we need to determine the net effect on the quantity of
performing the behavior . We have developed three tech-
niques for computing the net effect : summing the quan-
tity's derivative, comparing landmark values, and using
a reference quantity . In order to minimize ambiguity in
some examples, all three techniques must be used .

In the simplest case, we can determine this net change
by summing the signs of its derivative in each state along
a behavior . This analysis is all that is necessary for our
gas-in-the-cylinder example . Each model of the collision
of a molecule with a surface yields a single behavior
in which there are states for the molecule's approach,
contact with the surface, a spring-like compression and
decompression, and the molecule's flying away . While
the molecule is in contact with the surface its energy
(defined as the sum of kinetic energy and compressional
potential energy) changes monotonically . Thus it is easy
to determine that collision with a fixed surface causes
kinetic energy to remain unchanged, that collision with
an inward-moving or hot surface causes kinetic energy
to increase, and that collision with an outward-moving
or cold surface causes kinetic energy to decrease .

However, if we find both a positive and a negative
derivative along a behavior, the sum will be ambiguous .
One way to resolve the ambiguity is to use information
from the quantity's quantity space [Forbus, 1989], which
is a partially-ordered set of landmark points . At any
time the quantity's value is either equal to a landmark
point or in the interval between two landmarks. Because
the landmarks are only partially ordered, and because

haviors from the perspective of determining net
change values .

5.2.2

	

Computing the net change for a
behavior



an interval value could be anywhere within the interval,
we cannot always determine the ordering of two values .
However, if we can compare the values at the beginning
and end of an ambiguous path then the net change for
the path is simply the result of the comparison. Thus if
we know that the value of velocity at the end of a path
is greater than its value at the beginning of the path
then we know that velocity has a net increase regard-
less of its derivative in intermediate states . Note that
there are cases where this technique will fail to deter-
mine a relation while the first approach (summing the
derivative values) will succeed, and vice versa. In prac-
tice, the only way in which this idea has worked for us
is when we know the relation of the quantity to zero . In
QP theory, all other landmarks are simply other quan-
tities, and we cannot know a priori whether those other
quantities are constant .
Even if we cannot order the values in the beginning

and ending states, we can still resolve ambiguity in some
cases. If a quantity is known to be equal to another
quantity at the beginning and end of a path, then the
net change values for the two quantities must be the
same, so if either is known then both are known. Also,
if the quantity is less than the reference quantity at the
beginning and greater than (or equal to) it at the end
(or equal to it at the the beginning and greater than it at
the end), and the reference quantity has remained con-
stant or increased, then we can conclude that the quan-
tity of interest has increased . Similarly, if the quantity
has decreased relative to the reference quantity, and the
reference quantity has remained constant or decreased,
then we can conclude that the quantity of interest has
decreased.

5.2.3

	

Summing net changes

To return a value for the Summation expression we
must add the net change values for every behavior in
every envisionment . Obviously the potential for ambi-
guity is large if there are many possible behaviors. One
way to reduce this potential is to know which inter-
actions conserve the quantity being summed . Because
we know that they cannot affect the quantity sum for
the individuals that participate in them, we can ignore
them. This fact is critical to the successful analysis of
systems such as the gas-in-the-cylinder example. When
two molecules collide, the kinetic energy of each may
increase or decrease . Thus if we did not know that this
interaction conserves kinetic energy, any summation of
kinetic energy would always be ambiguous.
What is really needed is some means of reasoning

about the probability of each possible individual be-
havior. This would allow us to determine the rela-
tive number of individuals whose quantity has each
possible change value. If we know that there are
significantly more individuals for which the quantity
increases than there are for which it decreases then
we can unambiguously say that the summation in-
creases (assuming that the amounts of each individ-

ual increase and decrease are similar) . This is a prime
area for order-of-magnitude reasoning [Raiman, 1986,
Mavrovouniotis and Stephanopoulos, 1988] . With Avo-
gadro's number of gas molecules we could reason about
effects at many orders of magnitude.

6

	

Comparative analysis
So far we have discussed how we can determine the way
a population responds to a particular environment . We
also want our system to predict how a population re-
sponds to different environments . Such reasoning is
known as comparative analysis [Weld, 1990]. Using
comparative analysis we can answer questions about
the contained gas system such as "Does temperature
increase more rapidly if the piston moves inward more
rapidly?"

For now we consider only comparisons between en-
vironments whose differences can be expressed as dif-
ferential changes in the value of one or more quanti-
ties . These quantities can be either part of the macro
model (as with the question about piston speed above)
or about the nature of the individuals (e.g ., "What
would happen to pressure if the molecular weight of the
gas were higher?").
The overall algorithm requires three phases . First, if

the comparative analysis question specifies a change to
an aggregate or macro-level quantity, this is converted
into the corresponding change at the micro level. Sec-
ond, comparative analysis is performed in the individual
models . Third, the relative change (RC) results pre-
dicted by comparative analysis are aggregated to refer
to the quantities of the initial model. Since this aggre-
gation process is performed using the statistical oper-
ators NumIndividuals, Summation, and Mean in
the same way that ordinary derivative values are sum-
marized, we concentrate here on how comparative anal-
ysis can be performed on individual-level models . We
have discovered that generalizing DQ analysis [Weld,
1988] to work on QPE envisionments instead of QSIM
behaviors [Kuipers, 1986], requires three extensions (in
addition to the process of extracting behaviors from en-
visonments described in section 5.2.1) . Theseextensions
are described in the sections below:

6.1

	

Constraint Compilation

For each state in the behavior, the process and view
structure must be compiled into the corresponding qual-
itative differential equation (e.g ., QSIM constraints) ;
these constraints are then asserted into an AMORD-
like database [de Kleer et al., 1977] as input for the
DQ analysis inference rules. A closed-world assumption
is used to sum influences from the active processes to
determine quantity derivatives . For example if a state
had two force processes active on a single individual
1, each influencing its acceleration, the following QSIM
constraints would be generated:

(ADD 7(-acceleration-001 7(-acceleration-002



X-Deriv-059)
(D/DT X-velocity X-Deriv-059)

where X-acceleration-001 denotes the acceleration
quantity from the forcing process instance 1 active with
individual X, and X-Deriv-059 denotes a new parame-
ter created to represent the derivative of X's velocity.

6 .2

	

Multiple Operating Regions
The existing DQ analysis rules assume that a single set
of qualitative differential equations holds for all time,
but this is not the case for behaviors with changing pro-
cess and view structures such as result from collisions in
the contained gas example. Fortunately, it is a simple
matter to add an extra argument in the rules that iden-
tifies the appropriate QDE constraints as a function of
each state's process and view structure.

6.3

	

Identify Exogenous Parameters
To perform complete comparative analysis it is neces-
sary to know which parameters are exogenous so that
an initial relative change value may be ascribed to
them . When performing comparative analysis on a
QSIM model, this information must be given by the
human modeler. However, since QP theory embodies a
theory of causality [Forbus and Gentner, 1986], much of
this information can be deduced from the QP models .
The remainder can be deduced from the links between
models . For example, if the macro-level question spec-
ifies that the piston is moving faster then the initial
relative change for the micro-model must specify that
the wall speed is moving faster yet the wall heat is un-
changed .

7 Related work
This work build upon and extends that of many other
researchers . [Collins and Gentner, 1983] describes psy-
chological studies of how subjects reasoned about evap-
oration using multiple models much like we have de-
scribed here . Perhaps the best way to view this work
is as an elaboration and implementation of their initial
studies.
Our previous work on "aggregation" [Weld, 1986] is

similar to this research, but there are several differences .
While our current approach uses a fixed hierarchy of
three levels, aggregation created abstract models of sys-
tem behavior dynamically and was not limited to three
levels . However, aggregation could only summarize the
effects of repeating cycles of processes. Furthermore,
aggregation could not summarize the effects of random
processes -our work here uses more sophisticated sta-
tistical representations.

Recent work on the "molecular collection" ontology
[Collins and Forbus, 1987] is also relevant to our en-
deavor . Although Hayes first made the case that a "con-
tained substance" ontology was insufficient by itself for
commonsense reasoning [Hayes, 1985], Collins and For-
bus implemented a qualitative simulator that used both

representations . Our macro model is similar to the con-
tained substance view, but our molecular models are
more fine-grained than a molecular colection. Collins
and Forbus neatly observed the distinction when they
say that a molecular collection is a

. . . tiny piece of stuff [which] is viewed as
a collection of molecules - as opposed to
a single molecule - so that it may possess
such macroscopic properties as temperature
and pressure . [Collins and Forbus, 1987, p590]

By choosing to model a population in terms of its
most primitive members, the difficulty of integrating
reasoning between the levels is greatly increased, mo-
tivating our development of the statistical aggregation
operators which are unnecessary with the molecular col-
lection ontology. We feel that both approaches are use-
ful for reasoning, especially about complex systems such
as refrigerators and heat engines. For example, a molec-
ular collection could be used to select a sequence of
micro-environments for individual-level analysis . We
hope to unify these approaches as part of our future
work .
With motivation very similar to ours, Liu and Farley

observe that the device ontology is incapable of answer-
ing certain questions about electronics such as "Why
does the current through a resistor increase when the
voltage across it increases?" To rectify this explana-
tory inadequacy, they introduce the "charge-carrier"
(CC) ontology [Liu, 1989, Liu and Farley, 1990] . The
CC ontology models electronics with primitives such as
"field" and "charge flow" rather than "resistance" which
is modeled in the device ontology . Liu and Farley use
"bridging relations" to link the two ontologies, but un-
like our approach, these links are not statistical in na-
ture .

8 Conclusion
We have presented a novel way of reasoning about sys-
tems that can be viewed as populations of individuals .
Our framework models the population and its environ-
ment at the levels of the macroscopic system as a whole,
the aggregate properties of the population of individu-
als, and at the level of the individual themselves . At the
micro level we model all possible interactions between
an individual and other individuals and between an in-
dividual and its environment. We determine the effects
of these interactions upon the individuals by analyzing
the envisionment generated from each model. We sum-
marize these effects to the aggregate level by means of
statistical operators. This allows us to determine the
derivatives of population quantities under the influence
of an environment . At the aggregate level we also con-
sider the influence of sources and sinks which allow the
population to gain and lose members. All these con-
clusions are propagated to the macro-level quantities
through qualitative proportionalities . Adding compar-
ative analysis to our system will allow us to increase



the range of questions that can be answered to include
hypothetical changes to the environment.

8.1 Implementation
We have implemented a subset of the framework we de-
scribe here . This includes representations for macro,
aggregate, and micro level models, rules that imple-
ment the statistical operators and macro-environment
influences and qualitative proportionalities, and a pro-
gram that implements the above-discussed algorithms
for determining net change values from an acyclic en-
visionment . Our program is written in COMMON LISP
and we use Forbus' QPE [Forbus, 1989] to generate en-
visionments from the micro-environment models . The
rule-based reasoning is done by RULER, a simple .infer-
ence engine with an associated TMS based on AMORD
We Kleer et al., 1977] . The gas-in-the-cylinder exam-
ple is implemented and works correctly. We are just
starting to implement comparative analysis for QPE
envisionments ; given the availability of a compiler from
QP theory models to QSIM qualitative differential equa-
tions [Crawford et al., 1990], we may switch our efforts
in this direction.

8.2

	

Future Work
Our current implementation can reason only from micro
to macro level, following our intuitions about causality.
However, the proportionalities and statistical operators
are probably best implemented as constraints, which
would allow reasoning in the reverse direction as well .
We could then produce answers to a question such as
"What can cause the temperature to increase?"
A good theory of sources and sinks should also al-

low us to predict various equilibria . For example, we
should be able to deduce that a liquid/gas system in a
closed container will have equilibrium population sizes
and that a liquid in an open container will have an equi-
librium boiling point.
We are particularly interested in the behavior ofsome

populations that continuously renormalize their quan-
tity value distributions . For example, molecule veloci-
ties in an ideal gas always form a Maxwell-Boltzmann
distribution, even if molecules are added or removed.
Such self-normalization could be modeled at both the
level of the inter-individual interactions that accomplish
it and at the aggregate level, where we are exploring the
intriguing possibility of representing self-normalization
as a portal from the population to itself.
Other interesting topics include allowing the popula-

tion to affect its environment, introducing new statisti-
cal operators (a good candidate is Variance), reasoning
about several interacting populations, reasoning about
subpopulations within populations, and introducing be-
havior probabilities and order-of-magnitude measures of
the number of individuals affected in each possible way.
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