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Abstract
Combining numerical and qualitative simulation into one technique

allows simulation to be performed even when there is insufficient in-
formation for a numerical simulation. Predictions are also guaranteed
correct. Also, numerical simulations predict just one behavior ; com-
bined simulations can predict more than one when this is warranted.
Thus, combined simulation is an improvement over numerical simula-
tion .

Combined simulation is also an improvement over qualitative sim-
ulation. Qualitative simulation provides weak predictions, because it
relies on weak model descriptions . Combined simulation allows adding
numbers to model descriptions, resulting in stronger and potentially
more practical predictions .

Q3 is a system for doing combined simulation . It uses intervals
to express partial information about values, because intervals can ex-
press values anywhere from fully specified numbers, to partially spec
ified numbers, to very vague qualitative values . Q3 also explicitly
represents qualitatively significant values, like qualitative simulation,
and other values, like numerical simulation. Thus, Q3 represents, and
reasons, in ways that neither numerical simulation nor qualitative sim-
ulation do alone.

'This work was done in the Qualitative Reasoning Group at the Artificial Intelligence
Laboratory, The University of Texas at Austin . Research in the Qualitative Reasoning
Group is supported in part by NSF grants IRI-8602665, IRI-8905494 and IRI-8904454,
NASA grants NAG 2-507 and NAG 9-200, and Texas Advanced Research Program grant
003658175 .



1 Introduction
Simulation of continuous systems has a long history and much practical use.
Historically, such simulation has come under the heading of numerical meth-
ods . More recently, Artificial Intelligence has entered the field with qualitative
simulation, pioneered by de Kleer 1977, 1984], Forbus [1984], and Kuipers
[1984, 1986] .

Qualitative models can represent a class of system, because real systems
that are only partially equivalent to each other can correspond to the same
qualitative model. This is in contrast to the complete system specifications
typical of numerical models . The desire to model and simulate a class of
systems can be a reason for choosing qualitative modeling and simulation .

Another reason for using qualitative modeling is that information precise
enough for a numerical model may not be available . This lack of information
need not prevent modeling a system, or force the use of arbitrarily chosen
"reasonable" numbers, because qualitative modeling could be a reasonable
option when complete information is not available.

Thus, qualitative modeling and simulation has advantages over numerical
methods. However there are disadvantages as well . The weak specifications
inherent in a qualitative model can cause a simulation to be unable to pre-
dict very far into the future before encountering a state with more than one
and perhaps intractably many possible futures. Also, the predictions of a
qualitative simulator are weak compared to numerical simulations . These
problems with qualitative simulation are alleviated by introducing quantita-
tive information into the model. Even partial quantitative information, such
as intervals, is helpful . This is why we wish to be able represent our models
with however much or little information we have about them. Intervals are
useful for this because they can represent a wide range of partial information.

Work on adding numerical information to qualitative models and simula-
tions has been reported previously, for example by de Kleer ([1975], [1977]),
Simmons [1983], Forbus [1986], Williams [1988] and [Kuipers and Berleant,
1988]. These researchers and others succeeded to varying degrees in integrat-
ing quantitative and qualitative information. However, that work maintained
qualitative and quantitative knowledge in distinct representations, integrat-
ing them by mediating between the two representations . When combining
qualitative and quantitative information in a single model, we wish to use
just one representation, in the interest of representational and inferential sim-
plicity. The work presented here describes a system, Q3', that goes beyond
previous work on mediating between qualitative and quantitative simulations,
by producing hybrid simulations with characteristics of both numerical and
qualitative simulations, and also by using a single representational frame-
work which supports expressing information anywhere on a spectrum from

'Q3 is a superset of a previous system, Q2 [Kuipers and Berleant, 1988], which in turn
is a superset of QSIM [Kuipers, 1986] . We will often use the term Q3 here even when the
terms Q2 or QSIM could have been used instead .



qualitative values to single numbers .
Let us look at examples of a) qualitative simulation, b) qualitative sim-

ulation with added numerical information and its converse c) numerical
simulation with added qualitative information, and finally, d) combined
qualitative-and-quantitative simulation . We do this using a cycling ther-
mostat system model : The state of a cycling thermostat system changes
continuously except for occasional abrupt transitions when the thermostat
turns ON or OFF . Such a system needs to be simulated by a technique that
handles not only continuous systems, but also a generalization : Continuous
systems with discontinuities . Q3 can handle this, so we chose to model the
cycling thermostat system to illustrate the research presented here .

Intuitively, the temperature of a living unit in hot weather will rise at a
rate depending on the thermal mass of the air in the living unit, the amount
by which the outside temperature exceeds the inside temperature, and the
thermal resistance of the boundary between inside and outside . When the
inside temperature gets high enough, the thermostat transitions to ON, and
the air conditioner pumps heat outside . The temperature change is now also
a function of the air conditioner cooling capacity . Normally this function
results in a decline in living unit temperature, until the thermostat transitions
to OFF and the cycle repeats .
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Qualitative Simulation
A qualitative simulation of the cycling air conditioner system is shown in
figure 1 . Note that all qualitatively significant values for time and the other
variables are named . To is when the simulation starts . At T1 and T3 the
thermostat trips ON or OFF. At T2 the inside temperature equals the ther-
mostat setting . Symbolic names for values of the other model variables are
shown also . These values appear on the vertical axes of the plots . Figure 1
shows the normally operating system in which the inside temperature gets
warmer until the air conditioner turns on, then the air gets cooler until it
turns off, and the cycle repeats .

The simulation also produces several other possible behaviors ; each cor-
responds to a branch of the behavior tree in the upper right corner of the
figure . For example, perhaps the outside temperature is warmer than the
thermostat setting, but only slightly. Then, the indoor temperature slowly
rises asymptotically toward the outside temperature, but never gets high
enough for the air conditioner to turn on.

3 Qualitative simulation with quantitative
information added.

By adding quantitative information, even incomplete quantitative informa-
tion that is insufficient for a numerical simulation, quantitative inferences
may be reached about various qualitative values in a simulation. In Q3, these
inferences are done by constraint propagation among model variable values.



For example, consider one of the constraints in the cycling air conditioner
model : ((mult R HFin dTemp)) . This constraint declares that the temper-
ature difference between inside and outside, dTemp, equals the resistance of
the living unit to heat flow in or out, times the rate of heat flow occurring
despite that resistance . This constraint must hold at all times. One of its
instantiations in the behavior shown in figure 1 is R6 * IF29 = 1029. In Q3
such constraints, determined by the model and behavior, are used to filter
the possible quantitative values of the (three in this case) qualitative values
constrained . Constraint propagation with interval labels was examined by
Davis [1987] . When doing the propagation, a value is expressed as an inter-
val arithmetic expression in terms of the other values of the constraint. This
expression is evaluated using the rules of interval arithmetic (see for example
[Moore, 1979] and [Alefeld and Herzberger, 1983]) . The result is intersected
with the current label and the intersection assigned as the new label. Davis
[1987] argues that constraint propagation with interval labels is correct . For
a more rigorous proof see Berleant and Kuipers [1990] .

These inferences may allow other higher level conclusions [Kuipers and
Berleant, 1988], such as :
"- Ruling out behaviors . For example, inferring that a parameter is both
in the interval [1, 2] and [5,10] means the behavior can be ruled out, because
a value of a parameter cannot be within disjoint intervals simultaneously. If
all behaviors of a model can be ruled out, the model is ruled out .

Making predictions about unknown values . The constraints among values
imposed by the model and behavior allow quantitative knowledge about some
values to be used to make inferences about the quantitative values of some
or all other qualitative values .

These conclusions are illustrated in figure 1 .

4 Full-spectrum representation and hybrid
simulation.

A simulation which expresses and uses values that are either qualitative,
numerical, or expressed both ways simultaneously will be termed hybrid. A
representation which can express data anywhere on a continuum between
completely specified numerical information, and qualitative information will
be termed full-spectrum . Let us look at hybrid and full-spectrum in more
detail .
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Hybrid simulation
By hybrid we simply mean that the simulation can express and use val-
ues expressed qualitatively, numerically or both . An example is shown in
figure 2, which has characteristics of both a qualitative simulations and
a numerical simulation . In figure 2, both qualitative and numerical val-
ues are represented . The transitions between the air-conditioner-ON and



Structure : Cycling thermostatic control of apartment thermostat .,
Initialization : Room temperature ; air conditioner off . (5183)
Behavior 2 of 7 :

	

(6103 6104 6185 5108 5109 6111 6113 6114 6117 6118 6119) .
Final state : (CYCLE), (CYCLE-IDEMTITY 6183), T(IMF .

Thermostat Setting

-MAX [88 .8, a)

"e-e-+e-e-e .. ~ .. e-eR00MiEMP 80.8

'

	

-MIN (-%, 88.81

6)

a..y-e.-e. .e

-IMF

-ON [21 .6, 26 .41

plots .

Dynamic Lisp Listener T

Enter T (behavior tree), M or

Outside Temp

Fe-e -e e " e -e -40 -e-OHOT

	

[90 .8,

	

1191
-RODMTEMP 80 .8

-I MF

-COLD [8,

	

88 .8l

8

Inside Temperature
-IMF

"

	

i .

	

-TI34 [81 .8, 82 .21

tROOMTEMP 80 .0t .

ir
. .

-TI36 [78 .8, 79 .01

(SPACE) (next behavior, 3 of 7), behavior

Heat Flow Resistance

TempIn - TempOut

aooeoe

C MX

-IMF

t . ." . .,a -1033 [11 .0, 31 .21
a �

	

.t'

	

+1028 (10 .0, 30 .0)a t
's

	

-1029 [7 .8, 26 .21
_g

0 (other commands), or 0 (quit) :

Figure 1 : Simulation of the air conditioner system : If no quantitative in-
formation was added, none of the intervals would be shown, and all seven
behaviors would be plausible . With partial quantitative information, six be-
haviors can be ruled out (marked with an X), and quantitative inferences are
made.
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Figure 2: Hybrid simulation of the cycling air conditioner system, showing
one of the model variables .
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the air-conditioner-OFF model initializations were generated qualitatively,
and an appropriate time step size (in this case, 5000) was determined using
the interval estimates of the values of qualitative time points TO, T1, T2,
T3 and T4 found in figure 1 .
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Full-spectrum representation
The spectrum we discuss has numbers at one end, qualitative values at the
other, and numerical intervals in between . This a continuum because num-
bers and qualitative values both can be viewed as extremes of interval widths .
A purely qualitative value has an implicit interval value such as (0, C-0) . As
more information is acquired about a qualitative value, the width of its inter-
val decreases . For example, if a qualitative value is known to be within the
interval [5, oo) or [5,9], then the value representation is moving through the
middle of the spectrum . As certainty about the value increases, the width
of the interval defining the set of possible numerical values decreases . When
the width decreases to zero, e.g . [7,7], the value is known with full certainty,
is a number (7 in this case) and is at the other end of the spectrum. The
cycling air conditioner system simulation of figure 1 uses a full-spectrum rep-
resentation . Figure 2, while a hybrid of qualitative and numerical simulation,
contains no intervals but only numbers and symbols indicating qualitative
values . Therefore figure 2 does not use a full-spectrum representation .
4 .3

	

Bridging the gap : A full-spectrum, hybrid simu-
lation .

A simulation of the cycling air conditioner which is both hybrid and full-
spectrum appears in figure 3 . For a very sirr " d in much
greater detail see Berleant [1989] .

Note that there are now some new symbols ; . ., . . a ;. :ociated intervals, such
as K8 . These symbols are not qualitatively important - yet they can still be
represented . In addition, many intervals exist in internal data structures but,
for readability, are not explicitly printed . For example, the plot for model
variable Heat Flow in from outside has intervals associated with
all 19 time points. The midpoints of unprinted intervals are used to determine
plot coordinates as the curve goes from TO to T4.

The scales of the plots in figure 3 need some explanation, as (except for
Outside Temp) they are not to scale. Labeled values are equally spaced along
the axes of most plots, regardless of their associated intervals . Between the
labeled values, the unlabeled values are plotted to scale. But, since the scale
is usually different between different pairs of labels, the curves are distorted .
When the plots of figure 3 are all plotted with constant scales, the resulting
curves look different . For example, TempIn - TempOut looks like figure 5
(except for the interval labels) .
4.3 .1

	

Correctness of the inferred ranges .
By correct we mean that any real mechanism satisfying the structure and
initial conditions of the model will exhibit values within the intervals inferred



Structure : Cycling thermostatic control of apartment thermostat .,
Initialization : Room temperature ; air conditioner off . (S58)
Behavior 1 of 1 :
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Figure 3: A combined hybrid, full-spectrum simulation of the cycling air
conditioning system. The initialization is the same as for figure 1 .
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by Q3. Q3 is correct because constraint propagation with interval labels is
correct ([Davis, 1987], [Berleant and Kuipers, 1990]) .
4 .3 .2 Convergence
By convergence we mean the property that a simulated curve becomes a
better and better approximation to the actual curve, the more work we do,
until under some limit condition the prediction coincides exactly with the
actual curve.

Commonly used numerical simulation methods, such as the Runge-Kutta
technique, have been proven to converge as the time step size approaches
zero (e.g . Gear [1971]) . Naturally we want to know if Q3 behaves similarly .
There are two aspects to showing convergence in Q3. One is showing that, like
the Runge-Kutta technique, convergence occurs as the step size approaches
zero - given precise initial conditions . The other is showing that inferred
intervals get narrower as the initial conditions become more precise, so that
we can be confident that narrower initial intervals lead to better final results .
We now look at these two aspects of convergence .
Inferences improve as initial conditions become more precise.

	

Show-
ing that narrower initial intervals can lead to better conclusions, and do not
lead to worse conclusions, follows from the implausibility condition on con-
straints used to propagate interval labels : Numbers that are implausible as
values of a constraint argument will not become plausible when other in-
tervals are narrowed . Let C be any constraint and Q be a symbol which
is an argument of C . Define adjacent such that Q is adjacent to the other
arguments of C . Implausibility says that numbers which C disallows Q from
having as a quantitative value, cannot become allowed when adjacent argu-
ments are narrowed . Thus narrowing the initial intervals can lead to narrow-
ing their adjacent intervals, but not to widening them. Any intervals that are
narrowed can likewise narrow, but not widen, their own adjacent intervals .
This narrowing ripples outward, and can eventually reach all intervals in the
constraint network. Unfortunately, cycles can occur when intervals that were
narrowed once before become narrowed again, and again, and again. This
could lead to non-termination . Luckily non-termination is not hard to pre-
vent, although halting computation means not finding the narrowest possible
intervals [Davis 1987] .

Figure 4 shows the inferences that can be made when the initial conditions
to the combined hybrid, full-spectrum simulation of figure 3 are narrowed
all the way to single numbers . Comparing the figures, it is clear that the
inferred intervals tend to be markedly narrower . Most of them are numbers,
the narrowest possible intervals . Figure 5 shows one of the model variables
plotted using a constant scale.
Convergence and time step size .

	

Most numerical simulation techniques,
such as the Runge-Kutta method, give more accurate results as the step
size of the independent variable (e.g . OT) decreases . Likewise, note the
improved, narrower intervals achieved for the combined simulation (figure 4)



Structure: Cycling thermostatic control of apartment thermostat .,
Initialization : Room temperature; air conditioner off. (5352)
Behavior 1 of 1 :
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Figure 4 : A combined simulation of the cycling air conditioning system.
The initial quantitative information is specified as individual numbers rather
than intervals as in figure 1 . Each initializing interval in figure 1 has been
replaced by the number at the middle of that interval, thus initializing HOT,
ROOMTEMP, TI9, TI13, ON and R1 .
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compared with figure 1 . The improvement is due to decreasing the average
step size : Between TO and T4 there were in figure 1 only 3 time points, T1,
T2 and T3. But now, in figure 3 there are in addition to those, several more,
such as K, 1000, 2000, 3000, 4000, K6 and K8 . This narrowing is often
more dramatic, as a comparison between figures 6a and 6b illustrates .
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Structure : Constant gravity (no friction) .,

Initialleation : Drop an object downward (61480)
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Figure 6: a) In the left hand column, an object is dropped from about 8 feet .
In b), in the right column, two extra time points were inserted, leading to
much better inferences about the values of V5 and T1 .

It is not surprising that inserting time steps into a simulation improves
the resulting inferences, because the total number of constraints that Q3
uses to do constraint propagation increases when time steps are added in.
This is because each constraint template that is part of the model definition
is instantiated for the values of the model variables at all the time points .
Therefore when there are more time points there are more constraints .



5 Conclusions
Combined simulations have the following theoretical and potentially practical
properties (illustrated by figure 3), that other approaches do not have :
*Hybrid simulation provides a conceptual bridge between two seemingly dis-
tinct approaches to simulation : Numerical simulation and qualitative simu-
lation .
*Full-spectrum data expressibility provides a conceptual link between seem-
ingly distinct representations : Qualitative and numerical . Thus, full-spectrum
data expressibility bridges the gap between qualitative and numerical repre-
sentations. Intervals, of course, are only one approach to full-spectrum data
expressibility.
"Q3 implements both full-spectrum representation and hybrid simulation .
This truly bridges the gap between qualitative and numerical reasoning about
continuous systems, in both the representation and the algorithmic domains .

Combined simulations also have some major derivative properties of signifi-
cant potential practicality :
oPartial initial quantitative information is sufficient to run the simulation .
*Qualitatively different behaviors are retained if they are consistent with the
initial conditions, and represented explicitly . This is in contrast to numerical
simulators .

Finally, the combined simulation technique described here has other deriva-
tive properties that are interesting and potentially useful .
*Transitions between simulation models are generated automatically.
*Time step sizes need not be constant .
*Qualitatively distinctive points on the plots are named and given numerical
bounds .
oInferred bounds are guaranteed correct (even with non-linear models) .
*Convergence is likely.
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Future work: Applications
One intent of the combined hybrid and full-spectrum technique described
here is to bring the ability of qualitative simulation to generate all behaviors
to bear on real world problems .

Take an example from the field of finance . A common problem is de-
termining the feasibility of a goal given certain initial assumptions such as
interest rates. Unfortunately the exact values of such input parameters often
cannot be known ahead of time with desired precision . Thus, there is the
necessity of simply trying numerical simulations with various combinations
of plausible input condition values, to find out what different behaviors are
possible or to get an idea of how feasible the desired system behavior (usu-
ally, ultimately making a profit) might be. This is not only tedious, it may
be impossible from a practical viewpoint to try all desired combinations of

1 0
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plausible values for several or many input parameters . Combined simulation
will help in such a task by allowing intervals to be given as values of the input
parameters, running the simulation, and observing which behaviors occur.

A similar application in engineering relates to necessary tolerances of
various model parameters . Simply simulating many times with different
combinations of plausible model parameter values is likely to be tedious,
perhaps impractical, and could also miss possible and potentially serious
(mis)behaviors .

This sort of tolerance analysis could also be done automatically. Given a
model with precisely specified parameter values, an augmented version of Q3
could "blur" those values by replacing them with intervals within which the
specified values fall. Then Q3 could run the simulation to find the possible
behaviors .

Thus we expect an exciting potential for practical application of the Q3
system in the foreseeable future .
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