
Submitted to QP-90

Compositional Modeling of Physical Systems

Brian Falkenhainer
System Sciences Laboratory

Xerox Palo Alto Research Center
3333 Coyote Hill Road, Palo Alto CA 94304

Kenneth D . Forbus
Qualitative Reasoning Group

Beckman Institute, University of Illinois
405 N . Mathews Street, Urbana IL 61801

Abstract

Automating analysis of physical systems requires techniques for managing complexity and
finding an appropriate model for an analysis . Compositional modeling is a strategy for organizing
multi-grain, multi-perspective models of physical phenomena which addresses these problems .
In this paper, we identify several limitations with the approach presented in [7] and describe im-
portant extensions that address these limitations . First, we separate ontological commitments
(e .g ., energy flows, contained stuffs, etc) from granularity commitments . We present a new
framework for explicitly reasoning about the appropriate ontology and the structural nesting
of systems . Second, we provide a generalized modeling language which enables the composi-
tional modeling approach to be applied to either quantitative or qualitative models . We show
that model composition cannot a priori determine that a quantitative model will be sufficiently
accurate . However, we show that by using explicit modeling assumptions, inaccurate models
may be detected and these inconsistencies can be used to focus a new round of model composi-
tion, leading to using more accurate, but more costly, models only when they are needed . We
describe an implemented algorithm for model composition, which can automatically ascertain
the appropriate modeling assumptions to answer simple questions about physical and functional
characteristics of its operation .

1 Introduction

This paper describes recent progress in our compositional modeling framework for organizing models
of continuous physical systems. In previous work, we described how to organize large-scale. qualita-
tive models [7], so that one could automatically select an appropriate set of modeling assumptions
to answer a given query. We organized models as operating blocks, which describe a system or
subsystem at a uniform level of detail, and functional blocks, which hides internals and only has
input-output behavior . Coherence was enforced by finding a single operating block which could
serve as a focus of attention, and modeling all of its subsystems as functional blocks .

As we built more models, however, we discovered this decomposition is fundamentally flawed . It
actually confounds several distinct changes in modeling assumptions, which this paper disentagles .
First, modeling assumptions must control the amount of structure to be reasoned about. We
show how grain assumptions can be used for this . Second, modeling assumptions must control the
point of view taken on a system . Perspective assumptions control this . Whether or not a furnace
is considered from a mass-flow or an energy-flow perspective, for example, is independent of the
choice of whether or not it should be treated as a black box. Furthermore, we discovered that as
the number of alternate models grew, it was important to inform the model composition algorithm
about what choices were necessary to enforce coherence . To do this we adapted the notion of
assumption classes from [1] . This paper describes our new taxonomy of modeling assumptions,
describes a formal notion of system for controlling the granularity of an analysis, and extends our
model composition algorithm to exploit these representational extensions .

This paper also describes our work towards a general-purpose modeling language which enables
compositional modeling of quantitative as well as qualitative models. This extension required
focusing on techniques for carefully verifying models . While our model composition algorithm is
sufficient to ensure that an equational model is relevant, we show that it cannot a priori determine
that it will be sufficiently accurate . However, we show that by using explicit modeling assumptions,
inaccurate models may be detected and these inconsistencies can be used to focus a new round of
model composition, leading to using more accurate, but more costly, models only when they are
needed .

2

	

Overview of the compositional modeling process
A general-purpose domain model is used to describe a class of related phenomena or systems. A
domain model consists of a set of elementary domain models, each describing some fundamental
piece of the domain's physics, such as processes (e.g ., liquid flow), devices (e.g ., transistor), and
objects (e.g ., container) . We call the system or situation being modeled the scenario, and its
model the scenario model. The scenario model is built by instantiating and composing elementary
descriptions from the domain model.

Modularity is crucial in controlling complexity . By decomposing knowledge of a domain into
small fragments, the task of generating and using a large domain model can be greatly simplified .
This observation is the heart of the compositional modeling strategy . A domain model consists of
elementary models which can be instantiated and assembled as needed to form a scenario model
based on a combination of the properties of the physical scenario and the modeling assumptions ap-
propriate to the task . This enables implicit representation of a vast space of diverse scenario models
and allows each elementary model to be reused in a variety of settings . Simplifying assumptions
are used to state the conditions under which elementary models are appropriate. These include
their underlying approximations, perspectives, and granularity. Operating assumptions are used to

describe the kinds of behaviors relevant to a task (e .g ., steady state behavior) . Because the mod-
eling assumptions underlying the elementary models are not always independent, domain-specific
constraints are used to ensure that only coherent scenario models are formed .

In this approach the modeling process consists of four stages : (1) encoding the fundamental
principles and phenomena of a domain, with each elementary domain model explicitly conditioned
on a set of objects, assumptions, and operating regions; (2) composition of the simplest, coherent
scenario model relevant to the needs of the task ; (3) analysis using the model; and (4) examination
of the model's underlying assumptions to see if an alternate model is required . This paper focuses
primarily on methods for composing useful scenario models and the organizing the reasoning prin-
ciples needed to support this process . We use standard qualitative and quantitative simulation
techiques as our analysis method. Further, we only consider model switching due to modeling
assumption violations uncovered during the analysis phase.

3

	

Model Organization
This section describes how to organize a domain model using the compositional modeling strategy .
We focus on the use of simplifying assumptions for controlling a scenario model's granularity,
ontology, and approximations. Operating assumptions are not discussed further (see [7, 8] for more
details) . Examples from a thermodynamics model of a steam propulsion plant are used throughout
for illustration .

3.1

	

Simplifying assumptions

Predicating elementary domain models on simplifying assumptions provides the ability to ignore
that which is irrelevant . For uniformity, we require that all simplifying assumptions take the form

CONSIDER ((AsnType) ((system)))

where (AsnType) is a predicate denoting the specific kind of assumption and (system) is the subject
of the assumption. The collection of CONSIDER assumptions form the groundwork for any particular
analysis . They are classified into three categories, as discussed below.

3.1 .1

	

Grain assumptions

Crucial to analyzing large systems is the fact that not all objects in the system need be considered for
every analysis task . First, objects outside the current area of concern are simply ignored. Second,
abstractions sae used to allow collections of objects to be considered as a single, aggregate entity.
Control over which objects to explicitly consider in an analysis is organized around assumptions
recognizing their existence, which we call grain assumptions.

We assume the objects in the scenario are organized into systems. A system is either a primitive
object or a named collection of constituent systems. For example, a container is a primitive object,
and the boiler assembly is not, since it consists of a furnace, boiler, superheater. The relation
Part-of holds when one system is part of another. Thus

Part-of(boiler,boiler-assembly)

indicates that the boiler is part of the boiler assembly. The Part-of relation is limited to a system
and its immediate subsystems (i .e ., it is not transitive) . We say that system sl contains system s2

if either (a) 82 is a part of sl or (b) s2 is a part of some system s3 which itself is contained in sl .
This relationship is indicated formally by the transitive relation Sys-Contains . For example,

Sys-Contains(steam-plant, furnace)

CONSIDER(existence ((system)))

CONSIDER(existence(boiler))

indicates that the steam-plant system contains the furnace .
We currently assume that systems always form a strict hierarchy. The root of this hierarchy,

which contains all the objects in the scenario, is always a system called :scenario .
The following form is used to state grain assumptions about systems :

If true, then the existence of (system) is considered and it is placed within the scope of the current
analysis . This means some model for it must be included in any coherent scenario model . For
example,

forces a model of the boiler to be included in an analysis, rather than focusing on some subsystem
of it (such as the steam tubes) or treating the boiler assembly as a black box.

The constraint governing grain assumptions is slightly subtle . The intuition is that one cannot
arbitrarily choose a set of parts to model in isolation . Instead, given interest in some parts, one
has to consider enough of the system so that all of the relationships involving the parts in focus
are included. For example, thinking about how changes in an automobile transmission can affect
the wheels of a car doesn't make much sense unless one takes the drive shaft and differential into
account.

In the simplest case, if we consider two objects that are part of the same system, then all of
that system's components must be considered :

Consider (existence (sl)) n Consider (existence 02)) n Part-of(sl,so)
n Part-of(s2,so) - Consider (components (so))

Vsi[Consider (components (so)) n Part-of(si,so)
Consider (existence (si))]

In general, a more sophisticated line of reasoning is required . A covering system is defined to
be any system that contains all systems of interest.

Covering(sc) * `dsi [Consider(existence (si)) -+ Sys-Contains (sc ,si)I

Many covering systems are too large to be useful ; : scenario, for example, is always a covering
system . Therefore we define a minimal covering system to be a covering system that contains no
smaller covering system . Specifically,

Minimal-Covering(s,) q
[Covering(sr,)n-,3si[Covering(si) n Sys-Contains(s,:,si)]

During model composition (Section 4 .2), the notion of a minimal covering system is used to help
select a coherent set of grain assumptions given an initial set of query terms.

3 .1 .2

	

Ontology assumptions

CONSIDER(fluid-cs ((system)))

3 .1 .3

	

Approximations and Perspectives

Different tasks can demand carving the world up in different ways . Four ontologies are presently
considered . The contained stuff ontology [15, 10] is used to qualitatively model static and dynamic
fluids and their containers (similar to the fluid control volumes of classical thermodynamics) . The
following form is used to predicate a description on this ontology :

The energy-flow ontology analyzes the flow of energy (both heat and work) through a system (c .f.,
energy flow diagrams) . The molecular collection ontology [2] follows the movement of fluid particles
during flow . Finally, mechanics is used for the dynamic analysis of mechanisms.

We assume all ontological assumptions are implemented with the following discipline . First,
ontological assumptions are global and inherited by all systems being considered . Thus, any on-
tological assumptions that are made, and there must be at least one, must be made for the root
system, : scenario .

	

Second, when consistent, multiple ontological assumptions may hold .

	

For
example, an energy flow analysis often occurs with a mass flow analysis .

Approximations are used to construct simplified and (typically) easier to use models at the cost
of reducing accuracy . The approximations underlying each elementary model are explicitly stated
to enable selection between possible alternatives based on the scenario's operating conditions and
the accuracy needs of the analysis task . Approximations used in our models include incompressible
fluids, inviscid flows, inelastic objects, and frictionless motion .

Perspective assumptions control a large variety of modeling choices . Some perspectives indicate
how particular objects are modeled . For example, a fluid valve can be modeled either as a discrete,
on/off switch or as resistance that can vary continuously . Other perspectives represent simplifying
assumptions about the structure of the environment . For example, our fluid models typically
assume level fluid paths .

The constraints on approximation and perspective assumptions are domain-specific . For exam-
ple, in our models it does not make sense to consider the portals that connect a container to a fluid
path unless one is willing to consider the geometric properties of the container .

3 .1 .4

	

Assumption classes

Some collections of assumptions represent mutually exclusive, alternative ways to model the same
aspect of an object or phenomenon. To represent this important relationship, approximation and
perspective assumptions are organized into sets called assumption classes [4, 1] . Assumption classes
are declared with the form

(defAssumptionClass (class-form) (assumption-forms))

The order of the assumptions is important : models based on assumptions earlier in the list are
less costly than models based on assumptions later in the list .' We say that the assumption class
is active when (class-form) holds. When a class is active, one and only one of the assumptions
associated with that class must hold in the scenario model. Additional information about the

'Having a context-independent cost estimate is something of an oversimplification, but has proved quite useful .
The extension to a scheme where a task-specific cost procedure is provided to induce an ordering on assumptions is
straightforward, and hence we have chosen not to complicate our presentation .

conditions under which each assumption class is most relevant or is inappropriate can then be
specified independently.

For example, our models of liquid flow include the fluid-viscosity assumption class, which
controls how the viscosity of a fluid flowing through a path is modeled . Its definition and the
condition that it becomes relevant for each path through which liquid is considered to be flowing
are stated as follows :

(defAssumption-class (fluid-viscosity ?path)
((CONSIDER (inviscid ?path))
(CONSIDER (viscous ?path))))

(<__ (fluid-viscosity ?path) ((process-instance fluid-flow ?pi)
(Ypi PATH ?path)))

Additional constraints are then placed on the use of these assumptions . For example, questions
concerning head loss should rule out the inviscid (frictionless) assumption .

3.2

	

A language for elementary domain models
We define elementary domain models using a generalization of the modeling language developed
for QP theory (see [8]) . The principle construct is defModel, which defines an elementary domain
model. It has the following syntax :

(defModel (name-form)
Individuals (i-spec)
Assumptions (assumptions)
OperatingConditions (assertions)
Relations (assertions))

where (name-form) is an expression with variables which provides a term designating an instantia-
tion of this model and (i-spec) is a set of variables and restrictions on their potential bindings . The
Individuals field describes the physical settings to which the model applies. The Assumptions
field contains the simplifying assumptions the model relies upon. Given a set of objects and con-
stants that match the individuals specification, we say the model is applicable for that collection . If
furthermore the simplifying assumptions hold, then we say the model is applied for that collection,
and becomes part of the scenario model . For example, a model of a string under tension is not
applicable to analyzing a steam propulsion plant, while a model of boiling is applicable but need
not be applied.
A model can apply to a scenario yet not be imposing constraints. For example, a model of the

process of liquid flow can be applied even when the flow is not occuring (say if a valve in the fluid
path becomes closed) . Prerequisite behavioral conditions are contained in the OperatingConditions
field . We say a model is active when it is both applied and its operating conditions hold . When
the model is active, the statements in the Relations field hold . The model's relations include the
constraints imposed by the model, both qualitative and quantitative, and any other consequences
which directly follow as a consequence of the model being active .

While any expression may appear in the relations field, expressions declaring quantities are of
particular interest . The predicate quantity is used to state that an object(s) has a quantity of a
particular type:

(Quantity ((quantity-type) . (objects)))

4

	

Model Composition

Because it is generally easy to extract from a task specification or query a set of quantities which
must exist for the task to even make sense, quantity declarations are the major link for matching
models to task requirements .

Given a question (e.g., analysis goal, tutorial query, etc.), our task is to construct a scenario model
that (a) suffices to answer to question and (b) minimizes extraneous details and problem solving
effort . Sufficiency in turn has two aspects . The first is concerned with aboutness, that is, the
scenario model includes all the aspects of the system required to perform the analysis . The second
is concerned with accuracy, that is, the scenario model must contain enough information to provide
a suitable answer . In this paper we focus on the aboutness criterion (see [9] for more on the accuracy
criterion) . Clearly, sufficiency and minimality are somewhat in conflict . This is resolved by treating
minimality as the selection criterion for models satisfying the absolute sufficiency requirement.

Our approach to model composition operates under two restrictions . First, we require that
the information needed to derive an appropriate scenario model can be gleaned solely from the
query and the contents of the models, without recourse to other domain-specific conventions or
default patterns of communication. Second, we only address the problem of selecting appropriate
simplifying assumptions ; while some operating assumptions are forced as a by-product of selecting
approximations, the general problem of finding appropriate operating assumptions is beyond the
scope of this paper .

The basic idea of our algorithm is - this : While our goal is to produce a scenario model, explicit
reasoning about combinations of elementary domain models to ascertain which of them are con-
sistent and sufficient is expensive and unnecessary. Rather, we find which elementary models are
applicable and reason instead about their underlying modeling assumptions, since the number of
modeling assumptions is much smaller than the number of elementary domain models. The final
output of the algorithm is a consistent set of ground modeling assumptions that, together with the
scenario description, entail a minimal, sufficient scenario model.

Our algorithm assumes an underlying assumption-based truth maintenance system (ATMS) [4] .s

Each statement in the problem solver's database has a corresponding ATMS node. Some nodes are
specifially designated as assumptions, which we assign to each instantiated modeling assumption .
An environment is a set of assumptions, logically equivalent to a conjunction of assumptions. The
consistent, complete, and minimal disjunction of environments under which each node holds is
called its label. If some environment in a node's label is a subset of a given environment, then the
corresponding statement is believed under the assumptions which comprise the given environment.

The labels and dependencies maintained by the ATMS are used to compute a modeling environ-
ment, the conjunction of modeling assumptions needed to produce an appropriate scenario model.
After using the scenario description to fully instantiate the domain model (i .e ., find all applicable
models), model composition consists of four steps: query analysis, object expansion, candidate com-
pletion, and candidate evaluation and selection . The remainder of this section describes each step
in more detail . Steps 2 and 3 are performed for each seed environment and are described from the
perspective of a single candidate seed .

'We use the ATMS vocabulary to describe our query analysis procedure. The actual implementation could be
modified, at possibly reduced efficiency, to work with other kinds of TMS' .

"ORA(~M w

4.1

	

Query analysis

nwgawRnsaKnwr~

"ARITR~~70(/IA~)

COMMFR(FMA,t(FLU(R-LEKL . RO)LM)

CORMMRRMRRCE(RURMM)

-UAQ(FUL ,14M

~lwLIWK~16Y1`K.~I)Il~lm
w rE

-wurl(~wwoio
WK~1KlAQ.r---W

COMJ)1KR(fiUtJ-CJ(JII[RNLAlER))
O

CO)1JIKR(iXtlIf1KJ(JUPiRKJR7CRJ)
IR
KKRi7LOM~IKr1R~RlLJIRORAIeb

Figure 1: TMS dependency structure showing the relationship between terms in the models and
the modeling assumptions that enable their use. Answer (query-33) represents the conjunction of
the query expressions. Monitor-boiler-level (boiler) shows what would have been needed to
also include the boiler's fault model and why it was deemed unnecessary for the query.

We assume that whatever the initial form of the query, it can be decomposed by a query elaboration
procedure into a set of ground expressions Q, each having referents in the fully instantiated domain
model. These ground expressions provide the input for this step of model composition and contain
the conjunction of objects, quantities, and relations of interest .

Given query expressions Q = lei , . . . , e� }, we construct seed candidate modeling environments
(hereafter "seeds") as follows. Let QUERY be a new ATMS node. Justify QUERY by the conjunction
of the expressions in Q and compute its label GQ. Since the only assumptions in the ATMS
database are modeling assumptions, every environment in QUERY's label is a seed . Each seed in
GQ provides an alternate set of necessary simplifying assumptions. That is, since we have included
all potential simplifying assumptions in the instantiated domain model, every minimal consistent
combination of these assumptions that together entail the objects and properties mentioned in the
query will appear as an environment in the label of the node QUERY. However, these seeds may
not by themselves entail a coherent scenario model. The next two steps extend these seeds into
coherent candidate scenario models .

As an example, suppose we are interested in the question "How does the furnace's fuel/air ratio
affect the amount of steam flowing in the superheater?" . This query is transformed into the set of
expressions representing the quantities of interest :

Q = {Quantity(amount-of-in(vater,gas,superheater)),
Quantity(FA-ratio(furnace))}

The dependencies for the corresponding QUERY node are shown in Figure 1. Inspection of these
dependencies produces the single candidate seed environment:

~COMJIPER(/LU1)-CJ(RO)LFR))

/CORJIMR(LAZSIEUCE(RRJLER))
O

rlgR~i'~NRKR"RiRKtRlI 1wClf-~lYbl111fKY1f0.UYgitlYb

{Consider(existence(furnace)), Consider(existence(superheater)),
Consider(fluid-cs(:scenario))}

This seed provides initial guidance by identifying the simplifying assumptions that entail the
minimal set of elementary models supporting the query's expressions. Had the query mentioned
other aspects of the boiler assembly, these requirements would have been reflected in the seed . For
example, also stating interest in the possible boiler faults (i .e ., water level too high or too low)
would add consideration of the boiler's geometry as part of the seed . Note that this seed does not
represent a coherent scenario model. For example, it assumes the existence of the furnace and the
superheater, yet fails to include the intervening boiler object .

4 .2

	

Object expansion

Each seed entails the existence of some set of objects. To ensure coherence we must determine if
additional objects are required . For example, if we are thinking about steam flow in the boiler and
turbine, then we need to think about the condenser and feed pump, too, so that we will correctly
recognize that these flows are part of a closed cycle.

These decisions are made by finding the minimal covering system for the objects entailed by the
seed . If the seed only requires a single object, then the minimal covering system will be that object
and nothing needs to be added. Otherwise, the seed is extended according to the grain assumption
constraints defined in section 3.1 .

Resuming our example, recall that the candidate seed explicitly stated a need to consider the
furnace and superheater. To identify the complete set ofobjects required to form a coherent scenario
model from this seed, we first determine the seed's minimal covering system . For the furnace and
superheater systems, this is the boiler-assembly system . From the grain assumption constraints,
the following grain assumptions are then required (Figure 2) :

{Consider(existence(furnace)), Consider(existence(superheater)),
Consider(existence(boiler))}

The net effect is that the boiler has been added to the scope of consideration . Note that the
steam plant's other primary components, such as the turbine and condenser assemblies, are ignored
for this query. Further, additional detail within the selected systems is ignored, such as the furnace's
fuel pump and exhaust manifold.

4.3

	

Candidate completion

At this stage our seeds have grown to include every object that must be included in a coherent do-
main model. However, this does not necessarily mean that we have chosen exactly how each object
should be modeled . For example, modeling fluid flows requires decisions about paths, resistances,
and flow regimes. The extra information needed to both determine what kinds of modeling assump-
tions need to be made and what the alternatives are is provided by assumption classes. Recall that
an assumption class is considered active when its class form holds, and thus requires the problem
solver to include one of its members in a scenario model. For each assumption class whose activity
is entailed by the candidate seed environment, one of its assumptions is selected and added to the
seed . Choices made for one assumption class may lead to inconsistencies or the activation of other
assumption classes. The process of making and retracting choices, and satisfying constraints over
a dynamically changing set of assumption classes is called dynamic constraint satisfaction [16] .

The candidate completion procedure produces a set of candidate modeling environments . The
scenario models entailed by these candidates are coherent, since they each entail all the objects

rl_I-
I -1
I TURBINE I

.

	

relevant , objects,

SUPERHEATER

L_

	

J

	

eshas~L

	

d--

	

,

	

lr

	

asrr _ .
I I

	

.FURNACE :
I I

_J
CONDENSER I __ __ __ j- - - - - - - - J
ASSEMBLY

4.4

	

Candidate evaluation and selection

Ds[heat-rate(fumace)]=1
I PUMP

I I ASSEMBLY
Ds[heat-rate(boiler)]=1

{Consider(existence(lurnace)), Consider(existence(superheater)),
Consider(existence(boiler)), Consider(iluid-cs(:scenario))}

FA-ntio(fumace)
Ds(FA-ntio(fumace)]=1

	

< FA-peak-eficiency(fumace)

Ds[mass(c-s(water .gas .boiler))]=1

Ds[pressure(c-s(water .gas .boiler))]=1

Ds[flow-nte(pi6)]=1

Figure 2: How does the furnace's fuel/air ratio affect the steam flowing in the superheater?

necessary to reason about the queried objects, and include a choice for all relevant modeling deci-
sions.

In our continuing example, the developing seed is currently comprised of:

This seed entails nine assumption class instances, corresponding to three general assumption class
types. The first type requires a decision about whether or not to model the geometric properties
of each fluid container whose existence is considered . Because there are three "fluid containers"
(furnace, boiler, superheater), there are three geometric-properties assumption class instances,
each of the form Geometry((can)).The second type of activated assumption class concerns the
thermal properties of each object whose existence is considered . The third concerns the fluid
resistance of each flow's path . In the next section, we describe our metric for evaluating the
relative desirability of each choice . This metric is consulted by the candidate completion procedure
so that all possibilities need not be generated.

Given a set of candidate modeling environments, the final step is to apply an evaluation metric
to the candidates and select the "best" one to use in answering the query. What is "best" often
depends on the details of the domain and task . We currently use a simple scheme that is based on
crude estimates of model costs and has worked surprisingly well in our experiments.

The first stage prunes the set of candidates by retaining only those with the smallest number of
objects. For example, if two candidates entail four objects and three candidates entail five objects,
those entailing five objects would be deleted.

The second stage uses the ordering information in assumption classes to estimate overall sim-
plicity. Recall that the choices in each assumption class are ordered in increasing complexity.
Consequently, we assign a number to each choice corresponding to its place in its ordering . For
each candidate these values are summed, and the candidate whose sum is the smallest is selected .
In case of a tie, one of the minimal environments is selected at random.

As an example, assume a domain model containing active assumption classes A = {A1, A2, A3}
and B = {Bl, B2}. If all combinations are consistent, the following candidates are possible :

Thus, JAI, B1} would be selected .
The limitations of this scheme are obvious. For example, should {A2, B2} and {A3, Bl } be

considered equivalent? Probably not. But the information required to distinguish between them
(for instance, by ascertaining the relative expense of A3 and B2) depends on the specifics of the
task and domain, and hence we must defer attempting to provide more guidance here .

Returning to our running example, the selected modeling environment describes the fluids and
processes associated with the three components being considered, as well as their interactions, in
isolation from the rest of the steam plant .

5

	

Model use, verification, and change
Simulation, both qualitative and quantitative, has been the principle use of the models we develop.
Our qualitative simulations are carried out using QPE [11], an envisioner for QP theory. Once the
model composition algorithm has generated an acceptable set of modeling assumptions, the scenario
model they entail is built by QPE. QPE then uses this scenario model to produce an envisionment
under the current operating assumptions . For example, the scenario model derived in the previous
section produces an envisionment describing the various ways in which the furnace's fuel/air ratio
can affect the amount of steam flowing in the superheater . For the case in which the furnace has
been operating in a suboptimal, low F/A region, Figure 2 shows the resulting perturbation when
the fuel/air ratio is increased . Briefly, an increase in F/A results in increased heat production,
which results in increased steam production and increased boiler steam pressure, leading to an
increased flow of steam through the superheater.

Our quantitative simulations are carried out by a simple simulator we have built around a
fourth-order Runge-Kutta integration algorithm with adaptive step-size control (from [18, ch . 15]) .
The equations for the simulator are gathered from the scenario model, with some minor processing
to get them into the form it expects. Currently we restrict an analysis to concern a single operating
region - that is, all equations hold all of the time.

Because not all of the model's parameters are known beforehand, the initial scenario model may
make invalid assumptions about the system's behavior . There are of course a variety of ways to
verify a model, including comparing its results to observations or to other models . We focus here
on internal consistency tests, since these are usually cheaper than external tests. Identifying an
internally inconsistent qualitative model is simple : If the envisionment is empty, then the model is
inconsistent .

One aspect of verifying a quantitative simulation involves checking to see if the behavior pre-
dicted by the scenario model violates its assumptions. To do this, we gather the set of critical
inequalities . These are the set of inequalities that represent the conditions required by the model's
simplifying assumptions. For example, the incompressible flow assumption requires that the flow's
Mach number (ratio of velocity to speed of sound) is less than 0.3 . If at any time during a simulation
using the incompressible flow assumption its Mach number exceeds 0.3, the modeling environment
is deemed inconsistent .

1 0

{A1, BI} (score = 2)
{Al, B2} {A2, Bl} (score = 3)
{A2, B2} {A3, Bl } (score = 4)
{A3, B2} (score = 5)

Figure 3 : Two oil supply drums connected to a central reservoir. Find the level of the three
containers as a function of time when the system is released from the given initial conditions .

The only recourse when an internal inconsistency is discovered is to look for a new modeling
environment . The model composition process is repeated with new information about inconsistent
modeling assumptions. We demonstrate this process in the next section .

6

	

Identifying an appropriate flow model

The compositional modeling strategy has been used to answer a number of qualitative and
quantitative questions about a hypothetical steam propulsion plant (see [7, 9]) . Here, we demon-
strate its use on a quantitative analysis problem concerning a hypothetical set of lubrication tanks
and pipes. Given two oil supply drums connected to a central reservoir (Figure 3), the task is
to determine the behavior of the oil levels when the system is released from the initial condition.
Our current fluid flow models represent various simplifications of the unsteady Bernoulli equation,
which describes incompressible flow along a streamline:'

2

P1 +

	

21 +
9z1 = P

+__

	

22

+
9z2 + hi +

	

' ds1,

	

011t

where p is the density of the fluid, zi is the height at point i, V is the fluid velocity at point i,
and hl is the head loss due to frictional effects . The formula used to compute hl is dependent on
the flow regime (laminar or turbulent), which is normally determined by Reynold's number (Re
= pVDIu) . For low Reynold's numbers (low flow rates), the flow is laminar; for high Reynold's
numbers (high flow rates), the flow is turbulent. Although the transition occurs over an interval,
flow in pipes is generally taken to be laminar for Re<2,300 .

Given only the initial conditions, our model composition algorithm lacks information about the
Reynold's number for either pipe . Thus, it selects a simple modeling environment that includes
assumptions of laminar flow :

Conzider(laminar(pipe12)), Consider(laminar(pipe23))
Consider(incompressible-flov(pipel2)), Consider(incompressible-flow(pipe23))

The predicted level of each container as a function of time is shown in Figure 3 . At this point, the
system inspects the predicted behavior and finds one modeling environment violation : the Reynold's

3 At the present time in our model development, we use the unsteady Bernoulli equation, which subsumes the
steady and unsteady flow cases.

number for pipe23 reached 54,000, thus violating the laminar flow assumption for pipe23. The
model composition procedure is repeated with this added information, producing a new set of flow
regime assumptions :

Consider(laminar(pipe12)), Consider(turbulent(pipe23))

This modeling environment models the flow through pipe12 as laminarand the flow through pipe23
as turbulent . The new model predicts a lower amplitude oscillation for the flow through pipe23,
due to the greater dissipative effects of turbulent flow.

Note that because the Reynold's number for pipe12 never exceeds 1,100, the laminar flow
assumption for pipe12 remains consistent . This demonstrates an important attribute of the com-
positional modeling approach . By representing modeling assumptions as predications over indi
vidual objects and phenomena, a scenario model is able to represent the same type of object or
phenomenon in different ways, depending on their individual conditions . This ability is crucial for
analyzing large systems . For example, some wires in complex circuits must be modeled as trans-
mission lines . The computational cost of considering all wires and connections as transmission lines
is prohibitive, and modeling as few wires as possible that way is a necessity.

7

	

Related Work

The work closest to our own is the graph of models (GoM) approach [1], in which the space of
possible models is represented explicitly as a graph. Each node represents a model of the system
being analyzed, and each edge indicates which assumptions differ between the models it connects .
What GoM refers to as a model is what in the compositional modeling framework is a complete and
consistent set of modeling assumptions (i .e ., a scenario model) . To the extent that relevant, com-
plete scenario models can be pre-enumerated, the GoM approach is faster, but incurs a potentially
exponential increase in storage. The guiding principle behind the compositional modeling approach
is the belief that there are too many useful scenario models to enumerate. This comes in part from
our concern for grain, ontology, and operating assumptions, which significantly increases the space
of possible models. Additionally, the number of influences acting on a system can significantly differ
from one setting to the next (e.g., sum of forces, sum of fluid flows into and out of a container, etc) .
The compositional approach allows these effects to be folded into the scenario model as needed .

One very interesting aspect is Graph of Model's ability to reason about how changing assump-
tions affects model/observation discrepancies . Weld [19] presents a domain-independent approach
that we believe could easily be adapted for compositional models . In particular, the set of modeling
assumptions that specify a scenario model could be perturbed individually, generating "adjacent"
alternatives by repeating our candidate completion procedure .

Davis' system for model-based diagnosis of digital circuits used multiple levels of structural
descriptions to control search [3] . In many respects our use of grain assumptions and system
distinctions is similar. However, we are able to focus in on individual objects in the system more
easily, and do not require a fixed hierarchy of finer-grained models.

8 Discussion

We believe the compositional modeling strategy is an important step towards understanding how
to build large-scale, multi-grain, multi-perspective models of physical domains that can be flexibly
and efficiently applied to whatever task is at hand. We believe the insulation of the analyst from
the details of the domain model our model composition algorithm provides is very important . For

12

9 Acknowledgements

References

tutoring tasks, it is obviously a necessity: If a student's knowledge of the domain were sufficient
to select the appropriate simplifying assumptions, there would be little need for the tutor. But we
believe even expert engineers will benefit from allowing the model composition algorithm to share
the burden of finding the right foundation for an analysis . First, the engineer's task is simplified if
she can specify just enough to make her intent clear, and leave the rest to a (mechanical) assistant .
Second, in practice, all too often one finds models where the underlying assumptions made in one
part of a model conflict with those made by another part (c .f ., the negative water level example) .
The automatic selection of a complete set of explicit simplifying assumptions can help ensure that
they are used consistently across an analysis .

However, much research remains . We are currently investigating two important extensions.
First, in most domains there is a large gap between engineering drawings and the abstractions an
engineer uses to decompose the system for analysis . For many tasks, the mapping from structural
description to structual abstraction is the crucial step ; doing it incorrectly can prevent consideration
of important phenomena (such as ignoring resonance phenomena in the design of structures) . The
discipline of explicit modeling assumptions must be extended to this part of the modeling process, so
that we can build engineering problem solvers whose analyses axe trustworthy. Second, the current
approach requires a query consisting of terms in the instantiated domain model. This provides an
important framework for studying the problem of query analysis : given some analytic question,
how can its form be used to suggest an appropriate model beyond simply looking for terms in the
model. For example, asking when an oscillator will stop a-priori rules out a frictionless model .

The authors wish to thank Mark Shirley, Sanjay Mittal, and Johan deKleer for productive dis-
cussions about this work. John Collins provided valuable commentary and technical assistance .
Significant portions of our thermodynamics model were developed in collaboration with John. We
thank Mark Shirley for providing the Runge-Kutta code, who in turn obtained it from Elisha Sacks .

This research was supported in part by the National Aeronautics and Space Administration,
Contract No. NASA NAG-9137, by the Office of NavalResearch, Contract No. N00014-85-K-0225,
and by an NSF Presidential Young Investigator Award.

Addanki, S, Cremonini, R, and Penberthy, J . S. Reasoning about assumptions in graphs of models .
In Proceedings of the Eleventh International Joint Conference on Artificial Intelligence, Detroit, MI,
August 1989 . Morgan Kaufmann .

[2] Collins, J and Forbus, K . Reasoning about fluids via molecular collections. In Proceedings of the
Sirth National Conference on Artificial Intelligence, pages 590-594, Seattle, WA, July 1987 . Morgan
Kaufmann .

[3] Davis, R. Diagnostic reasoning based on structure and behavior . Artificial Intelligence, 24, 1984 .

[4] deKleer, J . An assumption-based TMS . Artificial Intelligence, 28(2), March 1986 .

deKleer, J and Bobrow, D. G . Qualitative reasoning with higher-order derivatives . In Proceedings of
the Fourth National Conference on Artificial Intelligence, pages 86-91, August 1984 .

[6] deKleer, J and Brown, J . S. A qualitative physics based on confluences . Artificial Intelligence, 24:7-83,
1984 .

13

Falkenhainer, H and Forbus, K . D. Setting up large-scale qualitative models . In Proceedings of the
Seventh National Conference on Artificial Intelligence, pages 301-306, St . Paul, MN, August 1988 .
Morgan Kaufmann .

[8] Falkenhainer, B . and Forbus, K. D. Compositional Modeling: Finding the right model for the job.
Submitted to Artificial Intelligence, February, 1990.

Falkenhainer, B and Shirley, M. Explicit reasoning about accuracy for approximating physical systems.
(submitted for publication), 1990 .

[10] Forbus, K . D . Qualitative process theory . Artificial Intelligence, 24, 1984 .

[11] Forbus, k . d. The Qualitative Process Engine in Readings in Qualitative Reasoning about Physical
Systems, Weld, D . and de Kleer, J . (Eds .), Morgan Kaufmann, 1989 .

[12] Forbus, K. D and Falkenhainer, B. Self-explanatory simulations: An integration of qualitative and
quantitative knowledge. (submitted for publication), 1990.

[13] Fox, R. W and McDonald, A. T. Introduction to Fluid Mechanics . John Wiley & Sons, New York, NY,
third edition, 1985 .

[14] Granet, I. Fluid Mechanics for Engineering Technology . Prentice Hall, 1989 .

[15] Hayes, P. J . Naive physics 1: Ontology for liquids . In Hobbs, J and Moore, R, editors, Formal Theories
of the Commonsense World . Ablex, 1985 .

[16] Mittal, S and Falkenhainer, B. Dynamic constraint satisfaction problems . (submitted for publication),
1990 .

[17] Murthy, S and Addanki, S. PROMPT: An innovative design tool . In Proceedings of the Sirth National
Conference on Artificial Intelligence, pages 637-642, Seattle, WA, July 1987 . Morgan Kaufmann.

[18] Press, W.H., Flannery, B.P ., Teukolsky, S .A . and Vetterling, W.T . Numerical Recipes . Cambridge
University Press, 1986 .

[19] Weld, D. Automated model switching: Discrepancy driven selection of approximation reformulations .
Technical Report 89-08-01, Department of Computer Science and Engineering, University of Washing-
ton, 1989 .

[20] Welty, J . R, Wicks, C. E, and Wilson, R. E. Fundamentals of Momentum, Beat, and Mass Transfer
(second edition) . John Wiley & Sons, New York, NY, 1984.

