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Abstract : Tasks such as forecasting, diagnosis, and planning frequently require quantitative
predictions . Typically, quantitative predictions are obtained by characterizing a system in
terms of algebraic relationships and then using these relationships to compute quantitative
predictions from numerical data . For real-life systems, such as mainframe operating
systems, an algebraic characterization is often difficult, if not intractable. This paper
proposes a statistical approach to obtaining quantitative predictions from monotone
relationships -- non-parametric interpolative-prediction for monotone functions (NIMF) . NIMF
uses monotone relationships to search historical data for bounds that provide a desired level
of statistical confidence . We evaluate NIMF by comparing its predictions to those of linear
least-squares regression (a widely-used statistical technique that requires specifying
algebraic relationships) for memory contention in an IBM computer system . We find that
NIMF consistently produces better predictions, which we attribute (in part) to using an
accurate monotone relationship instead of an approximate algebraic relationship . We also
show that using monotone relationships to produce quantitative predictions greatly facilitates
explaining the resulting predictions .



1. Introduction

Numerical or quantitative predictions of system behavior are frequently required in tasks such as
forecasting, diagnosis, and planning . Typically, quantitative predictions are obtained by
characterizing a system in terms of algebraic relationships and then using these relationships to
compute quantitative predictions from numerical data . Unfortunately, for real-life systems an
algebraic characterization is often difficult, if not intractable . This paper describes an approach to
obtaining quantitative predictions from monotone relationships, and applies this approach to
predicting memory contention in an IBM computer system .

Why is it often so difficult to obtain accurate algebraic characterizations of real-life systems?
Our experience with analyzing measurements of computer systems, in particular the IBM
operating system Virtual Machine/System Product (VM/SP), suggests that the major impediment
to an algebraic characterization is the absence of sufficiently detailed information about the
system's operation . For example, the performance of VM/SP systems is often constrained by
contention for the first sixteen megabytes of main memory (referred to as low memory), even
though there may be sixty-four megabytes or more of main memory. Low-memory contention is
a consequence of the operating system using twenty-four bit addressing and requiring that many
system services use memory that is directly addressable by the operating system . A key indicator
of low-memory contention is the rate at which pages below sixteen megabytes are taken from
users in the multi-programming set . Constructing an algebraic relationship between this measure
and parameters such as the virtual machine input/output rate and the number of logged-on users
requires using these parameters to quantify the frequency and execution times of operating-system
service-requests (e .g ., spool operations, messages exchanged through the inter-user communication
vehicle, and file opens) as well as the low-memory demands of each service requested (e .g ., bytes
required, page and/or cache alignments, and algorithm used when fixed-sized pools are empty) .
Unfortunately, such detailed information is rarely available .

When we are unable to construct algebraic relationships, we often have qualitative knowledge
in the form of monotone relationships . For example, in VM/SP intuition and experience strongly
suggest that low-memory contention increases with the virtual machine input/output rate and the
number of logged-on users. Another example in CPU-bound VM/SP systems is the relationship
between response time and a workload characterized by CPU utilization and the rate of small
transactions . Again, an algebraic characterization appears to be intractable ; however, we expect
response time to decrease with the rate of small transactions (since more small transactions means
fewer large ones, in a resource-constrained system) and to increase with CPU utilization. Still
other examples where monotone relationships apply but algebraic relationships are difficult to
construct include the following : relating lock contention to user activity, relating disk operations
to the virtual machine input/output rate, and relating working set size to the virtual machine
input/output rate and CPU demands.

If an accurate algebraic characterization of the system is unavailable, how can we obtain
quantitative predictions? One approach is to approximate the unknown algebraic relationship by
a simple function, such as a polynomial . Herein, we present an alternative approach in which
quantitative predictions are computed directly from monotone relationships . Our experience with
this approach, as shown in section 3, suggests that using an accurate monotone relationship
frequently results in better predictions than using an approximate algebraic relationship .

Our approach to prediction is statistical . Referred to as non-parameterc interpolative-prediction
for monotone functions (NIMF), our approach assumes the existence of historical data, which is
appropriate for domains such as computer performance, financial analysis, and demographic
studies. Often, the historical data is highly variable ; indeed, providing a point estimate (e.g ., an
expected value) may be meaningless .

	

For this reason, NIMF produces prediction intervals at a
user-specified confidence level (e.g ., 75%).

	

A prediction interval consists of a lower bound (yL)



2. Approach

and an upper bound (VH) with the following interpretation : The probability that the predicted
value lies between yL and yH is at least as large as the confidence level. NIMF uses monotone
relationships to search the historical data for yL and yH .

This paper contributes to two areas of research literature .

	

The first is the use of monotone
relationships as a knowledge representation. Monotone relationships have been used in many
contexts, such as predicting changes in qualitative state (e.g ., [Forbus, 1984], [Kuipers, 1984],
[Kuipers, 1986], and [DeKleer84]), monitoring dynamic systems [Dvorak and Kuipers, 1989],
explaining quantitative predictions produced by algebraic relationships (e .g ., [Apte and Hong,
1986] and [Simmons, 1986]), and analyzing financial statements [Kosy and Wise, 1984] . More
recently, there has been interest in the probabilistic semantics of qualitative influences [Wellman,
1987] and probabilistic considerations in qualitative simulation ([Dvorak and Sacks, 1989]) . Our
work further extends the application of monotone relationships by demonstrating their use in
quantitative, statistical prediction for situations in which numerical data are available but an
algebraic characterization is intractable.

This paper also contributes to the area of expert systems for statistical analysis .

	

A central
concern in statistics is improving the accuracy of predictions, or model diagnosis .

	

Existing
approaches to expert systems for statistical analysis use traditional statistical techniques, such as
least-squares regression (e .g ., [Dickson and Talbot, 1986], [Hietala, 1986], [Hahn, 1985], and
[Gottinger, 1988]) .

	

These techniques require that users specify their models in terms of algebraic
relationships, which complicates model diagnosis when such relationships are either unknown or
very complex. NIMF offers a way to avoid these problems by using monotone relationships
instead of algebraic relationships .

	

Also, NIMF facilitates model diagnosis by making it easy to
explain predictions in terms of monotone relationships .

The remainder of this paper is organized as follows. Section 2 describes the NIMF technique .
Section 3 evaluates NIMF by comparing its predictions to those of least-squares regression, a
widely-used statistical technique that requires specifying algebraic relationships. Section 4
describes how to explain NIMF predictions. Our conclusions are contained in section 5 .

Our approach to obtaining quantitative predictions from monotone relationships was motivated
by observations of performance analyst who tune VM/SP computer systems . One aspect of
tuning is workload assignment, in which users of computing services are assigned to one of several
computer systems in a manner so that computing resources (e .g ., CPU, input/output bandwidth,
and memory) are utilized within prescribed guidelines . Clearly, this task requires an ability to
predict the resource utilizations of an assignment . The most common approach to predicting the
performance of computer systems is based on queueing theory [Kleinrock, 1975]. Queueing
theory characterizes computer systems in terms of stochastic processes, which permits deriving
algebraic relationships between measurement variables . While queueing theory has proven
effective for modeling "active" resources (e.g ., CPU, input/output operations), it has not been
particularly effective for modeling "passive" resources, such as memory. In large VM/SP
computer systems, contention for low memory is often the primary performance bottleneck .

How then do performance analysts predict low-memory contention? Lacking a formal
approach to the problem, analysts often use an informal approach . We illustrate this by
predicting LOSTEALRAT (the rate at which pages in low memory are taken from users in the
multi-programming set) from LOGGED (the number of logged-on users) and VIO (virtual
machine input/output rate) . (All three variables can be obtained from the Virtual Machine
Monitor Analysis Program (VMMAP) [IBM, 1985].) Suppose that a workload assignment
would result in a computer system having an average of 500 logged-on users with an average
aggregate VIO rate of 500. Although we know of no algebraic equation that relates
LOSTEALRAT to LOGGED and VIO, we do have an excellent understanding in terms
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monotone relationships . Specifically, for each logged-on user, data structures are allocated in low
memory to describe the virtual address space; so we expect LOSTEALRAT to increase with
LOGGED. Further, each VIO requires that transient data structures be allocated in low memory,
and so LOSTEALRAT should increase with VIO as well . That is,
MR1 : LOSTEALRAT increases with VIO and LOGGED .

MR, provides analysts with an approach to searching historical data for potential bounds . For
example, to find a lower bound for the point VIO = 500 and LOGGED = 500, the analyst
considers data for which VIO < 500 and LOGGED < 500. Similarly, finding an upper bound
involves examining data for which VIO >- 500 and LOGGED >- 500 . Figure 1 provides a
graphical representation of this approach . This figure depicts historical data by plotting VIO
against LOGGED; each point is labelled with its associated LOSTEALRAT . Horizontal and
vertical (dotted) lines are drawn through (500,500), thereby dividing the graph into four quadrants .
Potential lower bounds are contained in the lower-left quadrant ; potential upper bounds are
contained in the upper-right quadrant .

Once the set of potential bounds is identified, analysts often resort to heuristics . For example,
in Figure 1, the lower bound might be computed by averaging values in the lower-left quadrant
or by finding the largest value of LOSTEALRAT within that quadrant . Unfortunately, such
heuristics do not indicate the confidence level of the resulting prediction interval, and they
certainly do not permit choosing bounds so that a particular confidence level is achieved .

The key to formalizing the above approach is to address randomness in the measurement data .
For example, Figure 2 displays scatter plots of LOSTEALRAT vs . LOGGED and
LOSTEALRAT vs . VIO for measurements taken from a VMISP computer system; these plots
suggest a high degree of randomness . We say that a monotone relationship exists between the
response variable y (e.g ., LOSTEALRAT) and the explanatory variables x,, . . . , x, (e .g., x, = VIO
and x, = LOGGED) if and only if there is a monotone function g such that

Yi = g(xi) + Ei,

p(VL < Y <_YH) ? 1 - a,

where 1 - a is the desired confidence level . Typical values for 1 - a are 75%, 90%, and 95% .

where y; is the i-th measurement of the response variable, x; _ (x;,� . . . , x;,,) is the i-th measurement
of the explanatory variables, and E ; is the i-th error term . Randomness is handled by the E;, which
are assumed to be realizations of continuous, independent, and identically distributed random
variables (Hellerstein [1989] relaxes the assumption that error terms be continuous and identically
distributed .) We make no assumption about g's functional form . However, we do assume that
g's directional effects are known ; that is, for the j-th explanatory variable (x;), we know if g is
non-increasing or non-decreasing . (If g is differentiable, this is equivalent to knowing the sign of
g 's first derivatives .) Since we do not assume that error terms are drawn from a specific
distribution and we make no assumption about g's functional form, our approach is
non-parametric .

	

Further, our approach is appropriate only if there are existing measurements
within the region in which a prediction is desired; that is, our approach provides interpolation, not
extrapolation . These characteristics of our approach as well as its being applicable only to
monotone functions motivate the name non-parametric interpolative-prediction for monotone
functions (NIMF) .

We now translate the informal approach described at the beginning of this section into a
formal statistical technique . The problem addressed can be described as follows . (See Figure 3 .)
Given x', values of explanatory variables at which a prediction is desired, and a description of g in
terms of its directional effects, NIMF computes prediction intervals by finding a lower bound (yL)
and an upper bound (y.) for the unknown response (Y') such that
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The NIMF procedure consists of three steps, as summarized in Figure 4. The first step selects

sets of potential bounds by using the monotone relationships that describe g. Specifically, a
monotone relationship imposes the following partial order:

xv< x2.1 if g is non-decreasing in xj
xl -'<X2 iff for all j

f
xlj

> x2i if g is non-increasing in xj

The set of potential lower bounds, SL, is a subset of {y, I x,-.<x'} consisting of the My, whose x; are
closest to x' ("Closest to" is defined as the Euclidean distance measure normalized by standard
deviation.) By picking x, close to x', we hope to reduce I g(x,) - g(x') I and hence reduce the
width of prediction intervals . The set of potential upper bounds, St,, is a subset of {y; I x'-<x,), and
is chosen in the same manner as SL . Applying these definitions to the data in Figure 1 with
M = 6, we have

SL = {0, .1, .2, .3, .6, 1 .2)
SH = {.5, .7, 1 .1 ., 1 .4, 1 .5, 1 .6)

[ Note that SH does not include y; = 2.1 at (VIO, LOGGED) = (640,560), since M= 6 and this
point is furthest from x' = (500,500) . ]

NIMF's second and third steps select YL from S L and yH from SH in a manner so that at least a
1 - a confidence level is obtained .

	

Our approach is similar to that taken by Bradley [1968] to
obtain confidence intervals for distribution percentiles .

	

Assuming that YL <_ yH, it suffices to pick
YL and y i such that

P(v' < Y") > 1

	

2
P(yH >_ Y") > 1

	

2
To find yL, we proceed by considering its components .

	

Let y; E SL , with y, = g(x;) + e; . If g is
monotone and we know the directional effect of each x,, then g(xi) <- g(x') (by construction) . So

P(yi < Y ) = P(g(xi) + ei < g(x) + e )
>- P(ei < e )
= .5 .

(The last step is a result of the error terms being continuous, independent, and identically
distributed .) Let AIL = min{M, size(SL)) . Since the e; are realizations of independent and
identically distributed random variables, the binomial distribution applies :

P( at least k elements in SL smaller than Y*) _>

	

X
NL1.5NL

k=n

Put differently, let YL,k be the k-th smallest element in SL . If at least k elements of SL are less than
or equal to Y', then YL,k <- Y' . Hence,

NL
1(1V ) .5N

k=n

NL

NIMF's

	

second

	

step

	

computes

	

kL

	

such

	

that

	

P(YL,kL <_ Y') >_ 1 - °-2̀

	

and

	

kH

	

such

	

that
PV'H,kH? Y') ? I -2 . In its third step, NIMF selects the prediction ini?erval bounds ; YL=YL,kL
and yH =YH, kH .
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We illustrate the NIMF procedure by computing a prediction interval for LOSTEALRAT
when (VIO, LOGGED) = (500,500) ; we use the data in Figure 1 with 1 - a = 75% and M = 6' .
We have already computed SL and SH ; they are shown in Eq . (3) . Since both sets have six
elements, AIL = NH = 6 . From step 2 of Figure 4, we observe that

where

Or,
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kL = CAI, a)
= 0(6, .25),

6
(h(6, .25) = max {k

	

\n1
.56 >- .875) .

Performing the necessary computations, we determine that kL = 2 . For kH , we have

kH = :'`H - (k(A'H, a) + 1
=6-2+1
=5 .

We use these indexes to find the prediction interval bounds ; yL is the second smallest element in
SL , and yH is the fifth smallest element in SH . That is, yL = .1, and yH = 1 .5 .

NIMF's ability to produce prediction intervals depends on the historical data provided and the
monotone relationships used . When NIMF cannot compute a lower bound, yL = - oo ; when an
upper bound cannot be computed, yH = oo . One situation in which NIMF cannot produce a
bound is when there is insufficient historical data ; that is, Al (A'H) is so small that kL = 0
(k, = A'H + 1) at the 1 - a confidence level . In most computer installations, data are cheap to
collect and plentiful ; so a missing bound can often be obtained by simply including more data .
Alternatively, the analyst can reduce the confidence level .

There is a second situation in which NIMF can produce prediction intervals, but the results
are inconsistent with the monotone relationship . This situation occurs when yL >y,. That is, the
°-2̀ percentile of SL is larger than the 1 - °-` percentile of SH , where these sets were specifically
chosen so that g would take on smaller values in SL than in SH . (When 1 - a = 75%,

	

12.5%
and 1 -

	

87.5°/x .) Clearly, this situation makes the monotone relationship suspect .

	

A
statistically valid prediction interval can be produced by taking yL to be the smaller bound and yH
to be the larger bound . However, our feeling is that this situation suggests an error in the
underlying model that should be surfaced to the user . An approach to doing to so is presented in
section 4 .

M = 6 is chosen for illustrative purposes ; a more common value for M is 20 .



3. Case Study
This section presents a case study in which NIMF's predictions are compared to those of linear
least-squares regression (hereafter, just regression), a widely-used statistical technique that requires
an algebraic specification of variable relationships [Draper and Smith, 1968] . We compare NIMF
and regression by using the data in Figure 2 as the historical data from which NIMF
potential-bounds sets are obtained and regression constants are estimated. Prediction intervals are
then constructed at values of VIO and LOGGED (the x' variables) contained in separately
acquired test data ; the test data also include measurements of LOSTEALRAT at each x', which
we use to evaluate the prediction intervals .

Prediction intervals are typically evaluated based on two criteria :
"

	

coverage (percent of LOSTEALRAT values in the test data that he in their prediction
interval)
prediction interval width

Since confidence level is a user-specified parameter, coverage is viewed as a constraint rather than
an optimization criteria . So, the preferred technique is the one that minimizes prediction interval
width subject to the constraint that coverage is at least as large as the specified confidence level .

First, we briefly describe the regression procedure . A regression model takes the same form as
Eq. (1), but stronger assumptions are made : g 's functional form must be known, and (to obtain
prediction intervals) s; must be normally distributed . A functional form is an algebraic
relationship with unknown constants . For example,

Where :
y; = i-th estimated LOSTEALRAT
L; = i-th measured LOGGED
V = i-th measured VIO

y i =bo +b,Ll +b2 V,

Here, the unknown constants are the b; . In essence, regression is a curve-fitting technique :
Unknown constants are estimated by using the historical data to find values that minimize the
total squared error, where e; = y, - y ; . The quality of a regression model can be evaluated by R2 ,
which is the fraction of the response variability that is accounted for by the regression model .

To compare NIMF and regression, we need to construct models using both approaches . A
NIMF model is a monotone relationship ; we use MR, . For regression, the choice of model is
more difficult since we must specify an algebraic relationship for an unknown g. Our approach is
to approximate g by an n-degree polynomial . We choose n by considering polynomials of
increasing degree until there is no improvement in R2. Equation (5) is a first degree polynomial .
Below are second and third degree polynomials .

yi= bo' + bl'Lc + b2'Vi + b3'4'+ b4'LtV + b5'V2	(6)

yt = bo� + b l "L; + b2� Vi + b3�Li2 + b4,,LiV + b5� Vl2
+ b6�Lt 3 + ~�L! 2V + bg�LiV 2 + bg�V3

	

(7)

For the data in Figure 2, the R2 for Eq. (5) is .26; for Eq. (6), .34; and for Eq. (7), .37. A fourth
degree polynomial showed no increase in R2; so we use Eq. (7) .
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Figure 5 plots 75% prediction intervals for the test data, both for regression and for NIMF2.
The plots show the measured value of LOSTEALRAT for each test-data instance (depicted by a
dot) and the associated prediction interval (indicated by a vertical line with a horizontal bar at
each end) . Both techniques achieve adequate coverage : 94% for regression and 83% for NIMF.
However, the average width of NIMF prediction intervals (.58) is less than half that of the
regression prediction intervals (1 .25) . Also, in several instances the regression prediction interval
includes negative values, which is impossible for LOSTEALRAT (a rate) . In contrast, NIMF
prediction intervals are constrained to lie within the measured data ; so NIMF predicts only
non-negative values for LOSTEALRAT .

The foregoing is one of eighteen case studies in which we compared NINIF to regression using
measurements of VM/SP computer systems [Hellerstein, 1987] . The results of the other studies
parallel those contained in Figure 5 : In all cases adequate coverage is provided by both
techniques, but NIMF consistently- (17 out of 18 case studies) produces smaller prediction
intervals .

Why does NIMF produce smaller prediction intervals? One reason is that regression assumes
a specific algebraic relationship between the response and explanatory variables . If the wrong
equation is chosen, then the fit is poor and prediction intervals are large. This shortcoming can,
in part, be avoided by using other curve fitting techniques (e .g ., cubic splines), which consider
families of curves .

	

However, these techniques still implicitly assume algebraic relationships, and
are complex to apply to multivariate data .

Another reason for NIMF producing smaller prediction intervals is that it makes weaker
assumptions about the error terms . Regression assumes that errors are realizations of independent
and identically distributed (iid) normal random variables ; in contrast, NIMF assumes only that
errors are iid . Thus, for data that differ significantly from a normal distribution, regression is less
effective than NIMF. A common approach to reducing the effect of non-normally distributed
data is to transform the response variable, such as taking logarithms or square roots. We have
considered a variety of transformations of the data in Figure 2; none resulted in significantly
smaller prediction intervals for the regression model .

A final reason for NIMF's producing smaller prediction intervals is its being a local technique .
That is, NIMF's assumptions of g being monotone and having iid error terms need only hold
locally nearby the point at which a prediction is made . In contrast, regression is a global
technique ; error terms must be drawn from the same distribution, regardless of the point at which
the prediction is made .

	

For the data in Figure 2, the assumption of globally iid error terms is
suspect.

	

As with the assumption of normally distributed error terms, compliance with the
assumption of globally iid error terms can be improved by transforming the response variable ;
however, we have not found a transformation that works well for our data .

4. Explanations
There are two reasons for explaining predictions. The first is to aid in model diagnosis, such as
determining why there are missing bounds and recommending appropriate corrective actions. The
second motive for explaining predictions is to provide an intuitive justification for a quantitative
result, thereby adding to its credibility .

The purpose of model diagnosis is to identify violated assumptions and/or large sources of
variability, and then to propose approaches to minimize these effects. NIMF makes only two
assumptions: g is locally monotone with known directional effects (e.g., LOSTEALRAT increases
with VIO and LOGGED), and error terms are locally iid . A full-fledged expert system for

We use M = 20 .



statistical analysis would systematically examine these assumptions, propose changes in the model
in order to improve compliance with the assumptions, and identify any deficiencies in the data
(e.g ., lack of independence). Here, we focus on the problem of explaining missing bounds .

Our approach to explaining missing bounds is computationally simple ; it involves little more
than print statements . This simplicity is possible because the knowledge representation used for
prediction -- monotone relationships -- is the same as the knowledge representation used for
explanation. There are three cases :

Case 1 : M is too small to achieve the specified confidence level .
Case 2: The potential-bounds set is too small for the specified confidence level (1 - a) .

So,

241

Case 3: The data nearby x' are inconsistent with the monotone relationship .
We use examples to illustrate how to generate explanations for all three cases . For case 1, we
note that for a confidence level of 1 - a there is a minimum value of A'L (and NH) required to
obtain yL (yH). Specifically, from Eq. (4), we know that

log2
ATL log .5

For example, if 1 - a = 99% and M = 6, no bounds can be produced since the minimum M
required is 8. Such a situation can be explained as follows:

Problem : No bounds possible when the confidence level is 99°,6 and M =6 .

Reason : M is too small .

Recommendations : Either increase M to at least 8 or decrease the
confidence level to no more than 97°,6 .

The second case also relates to potential-bounds sets being too small, but the reason is
different : too little data . Suppose that SL is too small when x'= (VIO, LOGGED) = (700,400),
which can be detected in step 2 of the NIMF algorithm by using Eq. (8) . Below is a sample
explanation .

Problem :

	

No lower bound for LOSTEALRAT when VIO=700, LOGGED=400 .

Reason :

	

Insufficient data in the range VIO <_ 700, LOGGED <_ 400 .

Recommendation : Collect more data or decrease the confidence level .

The foregoing explanation informs the analyst that the problem is not the violation of a model
assumption ; rather, the analyst needs either to acquire additional data (which poses little problem
in domains such as computer performance where data are plentiful) or to reduce the confidence
level .

Case 3 addresses problems with the monotone relationship used in the prediction model.
Such a problem is detected in step 3 of the NIMF algorithm, when it is discovered that yL >YH . A
sample explanation follows:

8
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Problem : No bounds for LOSTEALRAT when VIO=520, LOGGED=400 .

Reason : The data nearby (520,400) are inconsistent with the monotone
relationship that LOSTEALRAT increases with VIO and LOGGED .

Recommendation : Consider a different monotone relationship .

Here, the analyst learns that his/her understanding of the variable relationships is inconsistent with
the data collected . Such situations often form the basis for new insights . Indeed, an area of
future research is to develop an expert system that uses these insights and interacts with the
analyst to propose new monotone relationships that reflect more accurately variable relationships
evidenced in the data, while still being consistent with the analyst's intuition .

Next, we consider how to justify predictions when both bounds are present . Our approach is
based on the observation that performance analysts have confidence in monotone relationships
and data . A sample explanation follows .

is

While simple, the foregoing fails to explain why the bounds ensure a 1 - a confidence level .
Producing such an explanation without undue complexity is an open research topic .

5 . Conclusions

Frequently, we require quantitative predictions for systems in which numerical data are available
but the following situation exists :

"

	

There is no known algebraic characterization for the system .

"

	

The system can be characterized easily in terms of monotone relationships .

One could obtain quantitative predictions by approximating the unknown algebraic relationship
by a simple function, such as a polynomial . This paper presents an alternative approach :
generating quantitative predictions directly from monotone relationships .

Our approach, non-parametric interpolative-prediction for monotone functions (NIMF), is
statistical, and hence assumes the presence of historical data (which is reasonable for domains
such as computer performance, financial analysis, and demographic studies) . NIMF constructs
prediction intervals by using monotone relationships to search historical data for
prediction-interval end-points that provide a desired level of statistical confidence . Specifically,
monotone relationships are used to impose a partial order on the historical data and thereby
extract a set of potential lower bounds (SL) and a set of potential upper bounds (S.) . A simple
technique based on non-parametric statistics is then employed to select the prediction-interval
lower-bound from SL and the prediction-interval upper-bound from SH .

Do we obtain better predictions by using an accurate monotone relationship instead of an
approximate algebraic relationship? Although the answer depends on many factors (e.g ., the
system being studied and the approximation used), our experience with predicting low-memory
contention in VM/SP suggests that using an accurate monotone relationship with the NIMF
procedure can produce significantly better predictions than using a polynomial approximation of
the unknown algebraic relationship and employing least-squares regression . Admittedly, NIMF's
superior results are not solely a consequence of using monotone relationships instead of algebraic
relationships, since NIMF also makes weaker assumptions about the distribution of error terms .
However, avoiding unnecessary assumptions about algebraic relationships is clearly an advantage

242

T
.1 :5
e prediction interval

LOSTEALRAT < 1 .5 because :
for VIO=500, LOGGED=500

" It is assumed that LOSTEALRAT increases with VIO and LOGGED
" LOSTEALRAT = .1 when VIO=400, LOGGED=400
" LOSTEALRAT = 1 .5 when VIO=625, LOGGED=510



2y3
in terms of predictive accuracy . Also, using monotone relationships simplifies model building and
greatly facilitates explaining predictions.

NIMF has been implemented in APL and Prolog ; the results presented here are from the
Prolog implementation . Prolog is a particularly good implementation language for NIMF since
monotone relationships are easily expressed as facts, and simple predicates can be used to find the
sets of potential bounds .

1 0
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Obtaining Quantitative Predictions From Monotone Relationships
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Data used in illustrative example. (Nmnhcrs in parentheses arc I,OS'1'I-" :%I .RA'I' ialucs .)
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Scatter plots of 1'jr~1/SI' flntn



Model

Inputs

Outputs

Yi - g(xi) + ri
Where :

g = monotone function with known directional effects
r ; = error terms (realizations of independent and identically distributed random

variables)

y,, . . . , Y, = observations of response variables
x,, . . . , x, = vectors of explanatory variables for responses h,, . . . , Y,
x' = values of explanatory variables at which a prediction interval is constructed
1 - a = confidence level
M = control parameter

y,, and y� such that

P(v,, < Y

	

<Yrr) > I - a

Where :
Y' = random variable for responses at x'

Figure 3.

	

NIMPModel, Inputs, and Outputs



Step 1 : (,ontpute the potential-hounds sets

S1, = (y'i I x i e SL" with one of the X11 smallest d(xi , , x) for x j, c-

	

,, x ,

SJ, = {yi I x i e Slj" with one of the A4 smallest d(x i,, x) for x i , e Sjjx )

kr, = fi(N, . , a)

Where :
S, . x = ixi I x i-<x*}
`'�x = (Xi I x ~xi)

= partial order imposed by monotonicity assumption

(Xt. _ r2,)'
d(x� xz)~ N'~

V l-1

	

.tzi

Step 2: Compute the index of the bounds

k lj = Ntr - ~(Nij, n) + 1

Where :
N, = size of S, .
N� = size of S,r

4k(N, a) = mark I

	

(N) .5^' > 1
n -F

Step 3: Find the bounds

kL-th smallest yi e SL
Yt,={_00

s . = standard deviation of x~
X1 = maximum size of S,., S�

fkri -th smallest yl e Sl ,
YII =

	

00

Where :
Q1 .

	

=

	

(kr . ? I) ^

if QL

otherwise

if Q1i
otherwise

2

Figure 4.

	

Summary of NII\-1fProcedure
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