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Abstract

We describe how to obtain mathematical formulae capturing the approximate

behaviour of simple dynamic systems. We call such formulae approximate functional

solutions of the associated ordinary differential equation. We show how approximate

functional solutions can be of greater practical utility than numerical, qualitative or

even exact closed form representations of behaviour,

1. Introduction

Many types of dynamic system can be modelled using ordinary differential equations. Recently, there

has been much interest in the A.l. community in reasoning about a dynamic system by reasoning from

this underlying differential equation model. Current approaches fall on a spectrum ranging from
numerical [Yip 87, Yip 88], interval [Berleant & Kuipers 88, Davis 87b] through qualitative [Forbus
84, de Kleer & Brown 84, Kuipers 85, Kuipers 86], order of magnitude [Raiman 86, Mavrovouniotis &

Stephanopoulos 87, Dague et al. 87, Davis 87a) to exact analytic representations [Sacks 85a, Sacks
85b, Sacks 87, Sacks 88).
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In all these systems the principal emphasis is on correctness. We contend that this misses the whole
point of why we were doing the analysis. In many engineering applications the major concern is to
obtain a behavioural description which is 1) comprehensible and 2) of practical use. Such issues are the
focus of this paper. We have developed a system which combines qualitative and mathematical
reasoning to produce behavioural descriptions which emphasize comprehensibility, utility and
adequacy rather than mere correctness. We call this level of description an approximate functional

solution.

The first question to be addressed is what are the characteristics of a comprehensible, useful and

adequate behavioural description?
1.1 Criteria for a Comprehensible Description

Comprehensibility is an elusive concept in part because it is dependent on one's education but also
because it is necessarily subjective. A formal definition of what constitutes a "comprehensible"
description is therefore a pipe dream. At the very least, however, we need to identify the class of
individuals and their necessary educational background such that for them our behavioural
descriptions will indeed be comprehensible. We chose college-educated engineers as our target

audience.

We take it as an axiom that a college-educated engineer has a certain body of mathematical
knowledge, is acquainted with physical concepts and knows how to interpret simple formulae in terms
of those concepts. For example, the formulae would include forms such as exponentials and sinusoids
and the physical concepts would encompass ideas such as half-life, completion time and frequency. We
want to capitalize on the fact that a great deal of this information is in the form of clichés i.e.
mathematical formulae which provoke an immediate and mandatory interpretation of the physical
significance of their subterms. For example, if told that "t" represents time and given the formula
"exp( - ¢1)" any engineer would immediately identify r as a time constant. The prevalence of clichés
suggests one principle: the behavioural descriptions we ultimately obtain should contain the kinds of
interpretable sub-terms with which engineers are familiar. In practice this amounts to saying any

behaviour is expressed as being “close" to one of a library of standard forms.
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A second principle emerges from considering the tradition of approximation in engineering.
Approximate descriptions are often found to be more easily comprehended than exact ones by
stripping away the detailed relationships to leave only the most coarse trends. Such formulae, whilst
still fully fledged mathematical descriptions are nevertheless rendered more comprehensible by their
greater simplicity. So a second principle is that the formulae in our standard library should be fairly

simple.

Both these principles can be summarized as "a mathematical formula is comprehensible if it is
familiar and concise"”. We only admit a formula to our library of standard forms if it meets both these

criteria.

1.2 Criteria for a Useful Description

Next we turn to the question of what constitutes a genuinely "useful” behavioural description. We

claim the following criteria need to be met:
¢  The qualitative form should be easily accessible.
e  The key functional relationships between system parameters should be explicit.
e  The effects of perturbations should be easily computable.
e  The timescale of processes in the model should be apparent.

Such features appear those most keenly sort by human engineers when performing "back of the

envelope"” calculations.

1.3 Criteria for an Adequate Description

Whilst we want to take the emphasis off fatuous accuracy it is, of course, important that any
description we obtain should be adequate for predictive purpeses. A general characterisation is
difficult because it is intimately connected with the intended application e.g. in some cases accuracy to
10% is acceptable whilst for others accuracy to 1% is demanded. What we can ask, is that the user be

able to assert a required tolerance and then allow the system to enforce accuracy to this value.
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However, as we are deliberately avoiding exact methods of solution we can hardly base our estimate of
adequacy by direct comparsion of the approximate solution with the exact one. Consequently, in

practical terms the criteria for an adequate solution need to be:

e The adequacy of the behavioural description should be verifiable by an indirect

procedure.

e  The description lies within the tolerance bound.

1.4 Failure of Previous Methods

Neither exact nor qualitative behavioural descriptions are guaranteed to meet either the
comprehensibility or utility criteria. For example, here are just some of the ways in which exact

descriptions can fail.

e  Impossible. Many differential equations have solutions which can only be written as
an infinite series. Extracting the qualitative properties, the coarse functional
relationships and the effects of perturbations from such a representation is extremely

difficult.

. Impenetrable. Moreover, even when the equations can be solved in closed form, the
ultimate formula can be so unweildy and involve such esoteric functions that it is

difficult to interpret its meaning.

° Spurious impression of accuracy Even after prodigious computation any so-called

exact solution is only as good as the quality of the original model. In many cases, the
apparent precision is fictitious as the real physical system may differ from the
idealisations implicit in its mathematical model. In such circumstances it would be
inappropriate to expend a great deal of effort in solving the equations exactly as there

is no guarantee that it would lead to significant predictive power or physical insight.

Similarly the qualitative level of description does not provide the kind of information an engineer

would typically want. Here are some of its problems:
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. Loss of quantitative timescale. In a qualitative behavioural description, there is no

notion of timescale, merely a total ordering on the distinguished time points. Thus it is

impossible to tell whether a process completes in seconds, days or months.

e Lack of functional relationships The final output does not embody any information as

to the functional relationships underlying the observed behaviour. At best it might be
possible to infer a monotonic connection but this is rarely precise enough to be of use in

engineering applications.

° Low level state sequence description of behaviour. Most qualitative reasoners specify

behaviour as sequences of state transitions; a very low level representation. Whilst the
ease with which such descriptions are comprehended is a much vaunted claim, there is
little evidence to support this. In engineering applications one usually wants

something more concrete than state sequence information.

The latter two criticisms apply equally to numerical integration methods.

These criticisms suggest that comprehensibility and utility have been sub-ordinated to positions of
lesser importance than accuracy. What we are striving for is the kind of description an engineer might
obtain after performing a back-of-the-envelope calculation; enough mathematical detail to capture the
key functional dependencies and timescale yet not so cluttered with esoterica that the overall

structure is swamped in detail.

2. Pathways to Approximation

There are two basic ways, starting from an ordinary differential equation, to build an approximate
functional solution. One way is to solve the equation exactly and approximate the resulting expression
and the other is to abstract the equation, reason in the abstraction space and map what is learnt back

to the mathematical level.
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Figure 2. Pathways to Approximation

In my thesis [Williams 89] I develop both approaches. In this paper I shall focus on the second. The
principal technique is called analytic abduction because it abduces an analytic function from a
qualitative behaviour but we shall also mention two ancillary techniques, back-of-the-envelope

reasoning and segment calculus.

3. Traditional Weighted Residual Procedure

Such a philosophy of approximation is new to A.I. but not to the physical sciences. Engineers have long
faced up to the difficulties of solving awkward differential equations which in fact constitute the
majority arising in real world problems. One technique, known as the method of weighted residuals
works as follows: A "trial function" (i.e. a guess at the solution) is constructed from a finite sum of

orthogonal polynomials containing adjustable parameters. If, by chance, we had guessed the right
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solution then on substitution into the differential equation all terms would cancel out identically.
However, it is more likely that the trial function will not be an exact solution. In this case, when the
substitution is made and the equation simplified some terms will remain. These so called "residuals”
must be minimized to make the trial function agree as closely as possible with the exact solution. This

is achieved by finding values for the adjustable parameters in the trial function such that a weighted

integral involving the residual, fabca‘-R‘ dt / fabm‘. dt is minimised. Different methods obtain from

different choices for the weighting function w:

Method w; Explanation
Collocation ole-t) a Dirac delta function
Galerkin D, an orthogonal polynomial
Subdomain 1 t€D, a square hump
0 €D,
Least Squares dR Jot, the partial derivative of the residual

If, after optimization the approximation is still inadequate then higher members from the family of

orthogonal functions are added to the trial function and the cycle repeated.

4. Failure to Satisfy the Comprehensibility and Utility Criteria

For our purposes this approach is not immediately useful as the description it yields violates most of
the criteria we set down at the outset: the qualitative form of the sum is difficult to gauge; the coarse
functional information is absent, it does not conform to a cliché because the sum could contain
arbitrarily many terms. The easiest way to fix this is to find a good single-term trial function in the
belief that the qualitative properties of such an object may more easily be comprehended than those of

a sum of orthogonal polynomials.
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5. Knowledge Based Weighted Residual Procedure

This introduces a new difficulty. With the algorithmic approach we can choose a set of basis functions
arbitrarily so long as they form an orthogonal family. However, if we want to make single-term
approximations we had better pay due regard to the qualitative properties of the exact solution

(whatever it may be).

5.1 A Model Intended for Manual Application

Acton & Squire [Acton & Squire 85] present a model, intended for manual application, of an
approximation procedure whose first step is to conjecture the qualitative form of the solution which is
then used to constrain the search for a plausible, single-term trial function. This model is based on
years of practical experience in "solving" awkward differential equations and teaching the acquired
heuristics to undergraduate engineering students. Their emphasis, like ours, is on comprehensibility

and utility rather than fatuous accuracy.

5.2 Automation & Extension of the Model

However, for our purposes, Acton & Squire's model is deficient in three respects:

1) The initial step consists of guessing the qualitative form of the behaviour. This
difficult point is finessed by appealing to the reader’s "physical intuition". A machine
however, needs to be able to compute the properties explicitly. Moreover, unless we
give the machine extensive knowledge about the physical world we will need to derive

this qualitative information from the differential equation.

2) There is no advice given as to what to do in the event of the first trial function proving
to be inadequate. In contrast, our extended model has three repair strategies

(discussed below).

3) Finally, the control of mathematical manipulation is simply a non-issue for Acton &

Squire because they can rely on the pre-existing abilities students bring to the
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problem. For the computer, faced with a multitude of legal manipulations, choosing

which one to pursue is a difficult problem.

The solution we advocate combines qualitative simulation (a reconstructed QSIM algorithm [Kuipers
85, Kuipers 86a]) with algebraic manipulation (an extended PRESS algorithm [Bundy & Welham 81,
Bundy 83, Bundy & Silver 81, Bundy & Sterling 81, Sterling et al. 82]) in the context of a goal directed
problem solver. As the resulting technique conjectures an analytic function from a qualitative

behaviour we term it analytic abduction.

QSIM is used to envision the qualitative properties of an exact solution and PRESS to control the
subsequent mathematical manipulations. It is conceivable that the qualitative description of the
behaviour could be obtained by other means e.g. by considering an ensemble of numerical
integrations. However, the advantages of using QSIM are twofold: first, its behavioural predictions are

provably complete i.e. guaranteed to include all qualitatively distinct modes of system behaviour and

second, it works solely with the differential equation.

PRESS [Bundy & Welham 81, Bundy 83, Bundy & Silver 81, Bundy & Sterling 81, Sterling et al. 82] is
a program which solves algebraic equations of the standard demanded by 'A' level (college entrance)
mathematics courses. PRESS exploits the distinction between reasoning about an equation and
reasoning with it. The former type of reasoning is called meta-level inference and the latter
object-level inference. The key insight is that inference at the meta-level can be used to guide that at

the object level.

The meta-level description of an equation is in terms of features such as the position or number of
occurrences of a variable. This information is used to verify the preconditions for the invocation of
various strategies for solving the equation. These include isolation (which solves equations containing
a single occurrence of a variable by applying the inverse function to both sides), collection (which
reduces the number of occurrences of an unknown in an equation thereby often enabling isolation) and
attraction (which, as a preparatory step for collection, brings the occurrences of an unknown closer

together).
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PRESS has no notion about the relative magnitudes of the terms it manipulates. Consequently, we
extended the orignal with a heuristic algebraic simplifier called BOTHER (for

Back-Of-THe-Envelope-Reasoner).

We present the overall algorithm and then describe the operation of its parts in the context of a
running example. Note that although this problem is taken from the Acton & Squire text, their
proposed solution turns out to be an inadequate approximation. In contrast our system solves the
problem without user intervention by invoking various repair strategies. This example therefore
demonstrates not only the automation of the analytic abduction procedure but also the greater power

of the underlying algorithm.

5.3 Analytic Abduction Algorithm

Given an ordinary differential equation and an intial state description, the goal of analytic abduction
is to predict an approximate functional solution. The method consists of abstracting the equation to
qualitative constraints, finding a qualitative form for the solution, constraining the search for a
plausible trial function using knowledge of the qualitative form, optimising the trial function with
respect to the differential equation and finally verifying its adequacy. If inadequate, the trial function

is modified and the cycle repeated. This is summarized in figure 3b.
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Figure 3(a).
Traditional Weighted Residual Algorithm

6. Running Example

Consider a chemical reaction in which a molecule of substance A combines with two of B to make the

product C. Mathematically the rate equation is
dn/dt = K*(n_—n)*(n,-2n)? (1)

This can be solved using elliptic integrals to yield [Acton & Squire 85]:

t = (VK (1/(2ng - np))(1(ng-2n) - Ung) + (2/(2ng - np)2)(log [(1 - (2n/ng))/(1 - ndng)] | @)
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However the question is, is this useful for most practical purposes? For example, how does the amount
of product qualitatively vary with time? What determines the rate? What is the effect of increasing the
initial concentration of substance A or B? What is a natural timescale for the reaction? Such
information is presumably embodied in the solution somehwere but it is not immediately accessible.

Let's look at analytic abduction applied to this system.

6.1 Abstraction

The first step is to map the functions in an ordinary differential equation into their QSIM counterparts.
This is done by bottom up parsing of the expression tree representation of the differential equation.

Equation (1) is mapped to the constraint set:

deriv(nc,flll\mult{?,nvEZ)f\add(fZ,f3,nb]/\mult(f3,f3.f4)f\ﬂdd(fS,nvna)A

muit(ft‘n.fd,f&)f\mult(K.fG,fl) (3)

6.2 Simulation

Qualitative simulation of this system of equations reveals that initially the rate of formation of C is

high but gradually falls off as the number of free molecules of reactants declines.

LMRK =e=sememsmmamunnanansiioanaozzaznoezazaee

80% completion

50% completion

0 | —> time
50 "80
t(0) t(l)

Figure 4. Qualitative Behaviour of the Chemical Reaction A +2B-C
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The qualitative behavioural description is thus
time ne dn./dt
t(0) <0,inc> <[0,+inf] ,dec>
t(0,1) <[0,+inf] ,inc> <[0,+inf],dec>

t(l) <LMRK,std> <0,std>

Notice that LMRK is a newly discovered landmark value.

6.3 Behavioural Revision

Each behaviour is a sequence of tuples of qualitative states i.e. (qual, gqdir) pairs for each system
parameter. As simulation proceeds, new landmark values may be discovered and inserted between
existing ones. Therefore, the landmark sets at the beginning and end of simulation may differ. We
therefore revise the output into a globally consistent qualitative behaviour by propagating the
knowledge of the new landmark values back through the state sequence. This turns out to be essential

for efficient trial function invocation.

Original Revised
Ne dnJ/dt ne dnJ/dt
£(0): [<0,inc>, <[0,+inf] ,dec>] [<0,inc>, <[0,+inf] ,dec>]
t(0,1): [<[0,+inf],ine>, <[0,+inf] ,dec>] [<[0,MRK],inc>, <[0,+inf] ,dec>]

t(l): [<LMRK,std>, <0,std>] [<LMRK,std>, <0,std>]

Knowledge of the newly discovered landmark value "LMRK" is propagated back to the earlier state over

t(0,1) thereby tightening the bounds on the qualitative value.

6.4 Trial Function Invocation

The next task is to invoke a trial function hypothesis on the basis of the qualitative behavioural
prediction. To do this it is necessary to have an explicit representation of the qualitative properties of
each library entry. Each function is therefore represented in a manner similar to that shown below for

the rising exponential function.
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name: rising-exponential

~

a ...................................... -

0 >
1(0) (1)
rising exponential
function: F = A - (A-I)*exp( - b*t)
descriptor: {t(o): [<I,inc>, <[0,+inf] ,dec>],
t(0,1): [<[I,A],inc>, <[0,+inf] ,dec>],
t(1):  [<A,std>, <0,std>] }
consequences: {A>I,
asymptotic-approach(F,A),
horizontal-shift(0),
vertical-shift(1),
vertical-scale(a),
is-infinite(t (1))}

parameters: [(b]

Matching occurs by attempting to unify the revised qualitative behavioural desecription of the exact
solution with the descriptor template of each library entry. If an entry is found which does unify with
the qualitative behaviour then they must share the same sequence of critical points, convexities and
bounding intervals. Such a function therefore makes a plausible trial function hypothesis. For
example, the rising exponential unifies with the behaviour of the chemical system provided I =0 and
A=LMRK. Notice that it was necessary to revise the qualitative behaviour produced by QSIM so that the

intervals were specified in a way consistent with the syntax for library descriptor templates.
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6.5 Optimization

As the exact solution is not available (even as a table of numerical data) the trial function cannot be
optimised directly (e.g. by a least squares procedure). Instead, the optimisation must be done indirectly
via its "fit" with the original differential equation. This is accomplished by finding values of the free
parameters in the trial function such that it agrees as closely as possible with the differential

equation.

We have implemented two methods for doing this: Collocation (for non-oscillatory systems) and
Harmonic Balance (for oscillatory systems). Other methods are possible [Crandall 56] but all involve
the calculation of integrals and consequently have a higher computational overhead. For the purpose

of this paper we will ignore harmonic balance.

Collocation works by making the trial function satisfy the differential equation at as many points as
there are adjustable parameters in the trial function. If we assume that the real solution does not stray
too far from the trial function in between these points (a common engineering inference c.f. drawing a
smooth curve through data) then the trial function will be a reasonable approximation of the true

solution.

Although we do not know the formula of the exact solution we do know its range expressed in terms of
the landmark values from the qualitative simulation. We can therefore find a value of the exact
solution expressed as a fraction of the range. By equating the trial function to a fraction of the range
we implicitly determine a time, expressed in terms of the adjustable parameters and landmarks, at
which the trial function and exact solution agree. By substituting this value into the residual equation
we can then find an expression for the adjustable parameter such that the residual equation is

satisfied at this particular time. For example, in the present case, the trial function is

F=A- (A-I)*exp( - b*t) (4)

(instantiated and simplified to n, = LMRK(1 - exp( - bt) with LMRK = *“b’ and the function ranges

between the initial point I (=0) and the asymptotic value A (=LMRK). Hence, we could collocate at

50% through the change by setting
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Fgg = A - (A-I)*exp( - bgp*tgg) = (A+1)/2 : (5)
or at 80% through the change by choosing
?ao = A - {A—I)*exp( - bBu*tao)‘z "‘A"‘I)/S (6)

Or anywhere else we please. The precise choice of collocation points is, in principle, arbitrary in the
sense that, for a good trial function approximation, parameter values computed at different collocation
fractions will be the same. However, better results might be expected if "representative points” are
chosen i.e. points neither too close together nor too near to the boundaries and preferably in the
vicinity of maximum change in the function. Therefore, bounding the range of the trial function

between min and max we invent two heuristics to guide the choice of collocation fractions:

Heursitics for Choosing Collocation Fractions

coverage heuristic: the collocation fractions should be roughly

evenly distributed over (min, max) or

curvature heuristic: weighted towards the region of maximum

curvature

Turning to the particular example, the collocation equations are used to derive a numerical

substitution for the time dependent sub-term viz:
exp( s bsu‘tso) =1/2 = Cso
and

exp( - bgg*tgg) =1/5 =¢g

Although it is possible to isolate ¢; by inverting the exponential, this will be unnecessary as
derivatives of the exponential function (linear in ¢) do not generate ¢ in isolation. Hence when this trial

function is substituted into the original differential equation, which did not contain time dependent
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coefficients to begin with, ¢ will never appear outside the exponential. Other trial functions, however,
such as an exponential quadratic in ¢, i.e. exp( - b£2), will have to be inverted to find ¢ explicitly as their

derivatives do generate new terms in ¢. Conceptually it is best to imagine that ¢ is always isolated.

To save subsequent work the system replaces the sub-term substitutions with the indexed "c" symbol.
The motivation is that when the adequacy of the approximation is being assessed the same general

formula for a parameter can be used and the different numerical substitutions (the c ) simply swapped

in. This makes the verification stage much more efficient.

Having obtained the numerical substitutions the system then computes the residual equation. In this

case, the original differential equation was
dn /dt = K#(n,-n)*(n, -2n )

and the residual equation therefore becomes

2

Uanybc, = Ke(n = Van,(1-c)nec
The adjustable parameter b, may now be isolated by PRESS to yield
bgoq = K*n *n,+(1-1/g(n/n))
bgoq = (¥/5)*K*n *n,+(1-2/5(n,/n )

In other cases we need the extended version of PRESS which is able to bound expressions containing

symbolic constants of unknown absolute value. But for clarity we will ignore this in the present paper.

Although the numerical substitutions for sub-terms are easily computed it is more efficient to record
them as collocation schemata which are invoked whenever the corresponding function is conjectured.
This means that as soon as a trial function is hypothesised, the variables in it are automatically
instantiated to the appropriate landmark symbols and its derivatives and substitutions for various

collocation fractions are retrieved. Although this may seem rather rigid remember that the choice of
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collocation fractions is, theoretically speaking, arbitrary so there is little to be gained performing

unnecessary symbolic manipulation at run time.

6.6 Verification

Once the trial function has been optimized it is necessary to determine whether it is an adequate
approximation. Had the exact solution been chosen the optimum parameter values would be
independent of the choice of collocation fraction. Hence one measure of the accuracy of the
approximation is the degree to which the optimum values are sensitive to collocation fraction. This is
simple to determine by selecting alternative random collocation fractions and computing the ratio of
optimum parameter values obtained at different collocation fractions. If this ratio exceeds a factor of 2

either way, the trial function is deemed to be inadequate.

In the current example, the value of b computed at 50% and 80% completion are
bsoq = K*n *n,s(1-1/4(n;/n )
bgoq = (/5)*Ken *n,+(1-2/5(n,/n )).

Hence their ratio is
bsoa/baon = (3/2)*(1 +(3/20)(ny/n )

As bgoe/bgog > 2.5, the hypothesis that n = LMRKk*(1 - exp( - b)) must be rejected. The complete chain

of reasoning is described in [Williams 89].

6.7 Modification

In the event of a trial function proving to be an inadequate approximation, it can be modified in one of

three ways:
e  replaced by a congruent trial function

e  replaced by an almost everywhere congruent trial function
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® replaced by an exaggerated trial function

The first repair strategy trivial. The second and third work by sacrificing agreement at the init.al
state in favour of a better fit overall. Almost congruent trial functions differ only in the sign of the

curvature at the initial time point. For example, the tanh(b¢) is almost everywhere congruent to

1-exp(-bt)) for t = 0.

f = (1-exp(-bt)) f = tanh(b?)
The rationale being that a negligible positive or negative curvature can be approximated by zero.

Exaggerated trial functions differ only in the magnitude of the gradient at the initial time point. For

example, the function f = LMRK(1 - exp( - at?)) (b<1) differs from f = LMRK(1 - exp( - b)) in having a

positive infinite initial gradient instead of a positive finite one..

LIARK = adecmrasiriim ot el e e e e ey EMRR & b s s s s e s e

0 > time 0 > time
t(0) t(l) t(0) t(l)
n, = LMRK (1 - exp( -b) n, = LMRK (1 -exp( -atb))
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The rational in this case is that a large finite gradient is effectively infinite.

Despite the error incurred in satisfying the initial condition, almost everywhere congruent or
exaggerated trial functions are sensible alternatives to pursue because the fit overall may be better.
Information pertaining to timescale and gross functional relationships over most of the behaviour will

in that case still provide valid information.

For simplicity in our running example I will ignore the procedure by which congruence and almost
everywhere congruence fail in their attempts. So, suppose we are now at the point of trying to find an

exaggerated trial function i.e. a function whose qualitative form at t(0) is shown below

time function derivative
original t=t0 <0,inc> <[0,+inf) ,dec>
exaggerated t=t0 <0,inc> <+inf,dec>

Such a qualitative behavioural description unifies with the function descriptor of a rising exponential

with polynomial exponent. Hence, the new conjecture becomes
n_ = LMRK(1 - exp( - at®))

Notice that this contains two adjustable parameters and so we need to choose three collocation points
(two to set up simultaneous residual equations and one extra for verification purposes). However,
conceptually the procedure is exactly as before. The new residual equations become (for collocation

fractions ¢; i=33%, 50%, 80%):
a(”“(log'(lfci) 1-1b - 2Kn nyc, (1-(n,y/2n )(1-c)

BOTHER solves these simultaneously to yield
b=0.51

a = 0.78%(2Kn n,)%5! [1-0.28(n,/2n )]
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Computing the ratio of parameter values computed at any two collocation fractions now yields a result

close to one. Hence, the trial function n, = LMRK( 1-exp(-at?)) is an adequate approximation to the

behaviour of the chemical system.

7. The Payoff

What has been gained from doing this? To answer this consider the criteria laid down at the outset. We

said we wanted:
. qualitative form
L] key functional relationships

L] an estimate of the timescale

The approximate functional solution meets all three criteria: the qualitative form is explicitly

available from the analytic abduction procedure; n. rises from zero approximately exponentially to
attain the final value ¥n;; if n, is increased the reaction will reach completion quicker; the timescale
is inversely proportional to V/(nyn) modulated by a slowly varying term in ny/n,. These commonsense
engineering inferences were buried under the complexity of the exact solution (equation (2)). Hence for

all practical purposes the approximate functional solution is more useful.

8. Limitations

Notwithstanding its successes, analytic abduction can fail in a number of ways. There are three

categories of limitations.

8.1 Limitations Inherited from QSIM
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First we inherit the limitations of the QSIM algorithm. For example, we cannot deal with systems
containing time dependent coefficients e.g. forced oscillators. Second, spurious behaviours will often
be generated [Kuipers 86, Struss 88a). Third the number of qualitatively distinct behaviours can
become large. Attempts have been made to eliminate the spurious behaviours [Lee & Kuipers 88,
Berleant & Kuipers 88, Struss 88b] and to contain the size of the envisionment [Kuipers 87, Kuipers &

Chiu 87] but more still needs to be done.

8.2 Limitations Instrinsic to Analytic Abduction

A second limitation is that the library of "known" functions is finite whilst the number of qualitatively
distinct functions is infinite. Hence, there must be many functions (in fact an infinite number!) which
are unrecognisable. The situation is not too bleak if we refer to the basic motivation:
comprehensibility. It isn't that important that we can't think of a simple function characterisingv a

behaviour with 64 turning points or whatever! Neither would a real engineer.

What is important is to decide what to do with behaviours containing more critical points than any
function known to the standard library. We make two technical suggestions: smoothing and segment

calculus.

If we know of order of magnitude assertions between landmark values it may be possible to "smooth" a
qualitative behaviour by reducing the number of critical points it contains. For example, the final

curve in figure 5 is a smoothed version of either of the curves to its left.
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(a) (b) (c)
Figure 5. The Effects of Smoothing a Behaviour

A second idea, which is fully implemented, is that of segment calculus. In this technique, a complex
behaviour, containing n critical points, is explained as the interaction of two simpler behaviours (i.e.
each containing less than n critical points) under addition, multiplication, composition or
exponentiation. For example, figure 6 shows how a "hump" may be explained as the interaction of

something like a half-parabola multiplied by something like a decaying exponential.
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Figure 6. Explaining Behaviours as Interactions

In order to explain a whole behaviour, it is partitioned into its component monotone segments, each is
explained separately and then the partial results are stitched together. Each separate explanation
consists of a left segment, s;*, an operator, R, and a right segment, s;*. The intended interpretation is
that the observed segment can arise from the interaction of segments s;* and si* under R. Once all
possible explanations of every component of the input behaviour have been found, an explanation
spanning the whole input behaviour can be built by concatenating members of consecutive left
explanations and consecutive right explanations in all legal ways. Eventually this process finds all

possible spanning interpretations.

Oscillators introduce an additional complication because the phase of some compound oscillator (e.g.
exp(~t)*cos(f)) may not match that of the simpler one (in this case cos(t)). However, segment calculus

can accomodate these too.
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8.3 Limitations in Common with Numerical and Exact Methods

The major advantage of qualitative simulation over the more traditional mathematical approaches is
that it can reason about incompletely specified systems i.e. those for which some coefficient is known
only to be monotonic and no more. By contrast numerical integration, symbolic integration and
analytic abduction all require complete mathematical specifications. However, the payoff is that one
can say correspondingly more precise things about the behaviour. In the real world an engineer,
confronted with partial information might well use his intuition to guess an approriate functional

form for some coefficient and then explore the consequences of the choice.

9. Areas of Application

Analytic abduction has so far been tested on equations describing chemical kinetics, unforced
oscillation, particle scattering and damped motion. We envisage applications in design support and

intelligent tutoring systems. Consider the following scenarios.

9.1 Intelligent Tutoring Systems

We envisage a physics tutoring system. Suppose one of the aims of the system is to encourage correct
"physical intuitions". This is an elusive quality. In current Intelligent Tutoring Systems [Wenger 87]
it is, at best, assumed to be induced by exposure to an apposite problem set. More often, it is ignored in

favour of inculcating problem solving schemata.

We want to address a student's intuitions head-on and foresee approximate functional reasoning as a
valuable tool for this application. In this scenario, the tutoring system would derive a rough
approximate functional solution to some problem and the student would be asked to suggest
justifications for both its qualitative features and its functional relationships. This would encourage
thought about the relative importance of competing processes as well as general physical principles.
Moreover, if the system were then to proceed to solve the problem exactly, the student could then

compare his or her intuitive predictions with the exact behaviour.
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9.2 Design Support Systems

Second, in a design support application, we envisage a designer defining a model of a device and
submitting it to approximate functional reasoning to determine its principal features. This may prove
to be better than numerical techniques as there is an explicit proposal for the principal functional
dependencies. Moreover, it may prove to be better than exact symbolic solution as the differential
equations corresponding to the device models may be extremely difficult, if not impossible, to solve

exactly or perhaps would not possess a closed form solution.

10. Conclusions

It is our belief that engineering support tools should focus on what a college-educated engineer
actually needs in order to build an approximate mathematical description of behaviour. This is a level
of description engineers typically communicate with and is meaningful to them by emphasising

comprehensibility and utility over fatuous accuracy.

Analytic abduction presents one way of building such approximate solutions which exploits knowledge
of the qualitative form of the exact solution to constrain the search for a plausible trial function which

may then be optimized with respect to the differential equation.

Analytic abduction is founded on an extension and formalization of Acton & Squire's model of
approximate engineering inference. Their model was intended for manual application assuming a
certain level of mathematical facility. Consequently it ignored the mechanisms by which the
qualitative behaviour of a system was envisioned and the control of subsequent mathematical
inference (especially the incorporation of order of magnitude reasoning). Moreover, it failed to explain

what to do in the event of the first trial function proving to be inadequate.

Analytic abduction addresses all these problems. As this permits automation of a procedure taught to

undergraduate engineers we believe it holds the promise of becoming a genuinely useful tool.
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Abstract

Combining numerical and qualitative simulation into one technique
allows simulation to be performed even when there is insufficient in-
formation for a numerical simulation. Predictions are also guaranteed
correct. Also, numerical simulations predict just one behavior; com-
bined simulations can predict more than one when this is warranted.
Thus, combined simulation is an improvement over numerical simula-
tion.

Combined simulation is also an improvement over qualitative sim-
ulation. Qualitative simulation provides weak predictions, because it
relies on weak model descriptions. Combined simulation allows adding
numbers to model descriptions, resulting in stronger and potentially
more practical predictions.

Q3 is a system for doing combined simulation. It uses intervals
to express partial information about values, because intervals can ex-
press values anywhere from fully specified numbers, to partially spec-
ified numbers, to very vague qualitative values. Q3 also explicitly
represents qualitatively significant values, like qualitative simulation,
and other values, like numerical simulation. Thus, Q3 represents, and
reasons, in ways that neither numerical simulation nor qualitative sim-
ulation do alone.
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