68

Reasoning about Qualitative Temporal Information

Peter van Beek
Department of Computer Science
University of Waterloo
Waterloo, Ontario
CANADA N2L 3G1

Abstract

Interval and point algebras have been proposed for representing
qualitative temporal information about the relationships between pairs
of intervals and pairs of points, respectively. In this paper, we address
two related reasoning tasks that arise in these algebras: Given (possibly
indefinite) knowledge of the relationships between some intervals or
points, (1) find one or more scenarios that are consistent with the infor-
mation provided, and (2) find all the feasible relations between every
pair of intervals or points. Solutions to these problems have applica-
tions in natural language processing, planning, and a knowledge
representation language. We define computationally efficient procedures
for solving these tasks for the point algebra and for a corresponding sub-
set of the interval algebra. Our algorithms are marked improvements
over the previously known algorithms. We also show how the results for
the point algebra help us to design a backtracking algorithm for the full
interval algebra that is useful in practice.

Topic: Qualitative representations of time.

Declaration of multiple submission: This paper was also submitted to

AAAI-90.

639

1. Introduction

Qualitative temporal information is information such as ‘““The Cuban Missile crisis took
place during Kennedy's presidency,” where only the ordering of the end points of the
two events is specified. Allen [2] and Vilain & Kautz [29] have proposed algebras for
representing such qualitative information about the relationships between pairs of
intervals and pairs of points, respectively.

In this paper, we address two fundamental temporal reasoning problems that arise
in these algebras: Given (possibly indefinite) knowledge of the relationships between
some intervals or points,

1. find one or more scenarios that are consistent with the information provided.
2. find all the feasible relations between every pair of intervals or pointst.

Specific applications of solutions to these problems include natural language processing
(Allen [3], Song & Cohen [23]), planning (Allen & Koomen [5], Hogge [10]), plan recog-
nition (Kautz [11]), and a knowledge representation language (Koubarakis et al. [13]),
and history-based qualitative simulation (Weld & de Kleer [31]). As well, the tech-
niques developed here could be part of a specialist in a general temporal reasoning sys-
tem (see [20]) that would have other specialists for other kinds of temporal information
such as quantitative information about the distances between intervals or points
(Dechter et al. [8], Dean [6]), or combinations of qualitative and quantitative informa-
tion (Allen & Kautz [4], Ladkin [14], Malik & Binford [19]).

The main results of the paper are as follows. For the point algebra and for a
corresponding subset of the interval algebra, we define computationally efficient pro-
cedures for solving both of these tasks. Our algorithms are marked improvements over
the previously known algorithms. In particular, for finding one consistent scenario we
develop an O(n?) time algorithm (as opposed to the previously known O(n®) algorithm
[15]) and for finding all the feasible relations we develop an algorithm that takes, under
certain assumptions, O(n®) time (as opposed to the previously known O(n*) algorithm
[26]), where n is the number of intervals or points.

For the full interval algebra, Vilain & Kautz [29, 30] show that both of these tasks
are NP-Complete. This strongly suggests that no polynomial time algorithm exists.
We show how the results for the point algebra help us to design a backtracking algo-
rithm for finding one consistent scenario that, while exponential in the worst case, is
shown to be useful in practice. A similar backtracking approach is given for finding all
the feasible relations. The results here are less encouraging in practice and we con-
clude that a better approach in this case is to, if possible, accept approximate solutions
to the problem (Allen [2], van Beek [26]).

+ The terminology is from [8]. Other names for problem (1) include consistent singleton la-
beling [26] and a satisfying assignment of values to the variables [15]. Other names for problem
(2) include deductive closure (30}, minimal labeling [26] and, as it arises as a general constraint
satisfaction problem, minimal network [21].

70
=Y.

2. Background, Definitions, and An Example

- In this section we review Allen’s interval algebra and Vilain & Kautz's point algebra.
We end with an example from the interval algebra of the two reasoning problems we

_ want to solve.

Definition 1. Interval algebra, IA (Allen [2]). There are thirteen basic relations
(including converses) that can hold between two intervals.

relation symbol converse meaning
x before y b bi XXX YYY
X meets y m mi XXXYYY
x overlapsy o oi XXX
Yyy
x during y d di XXX
_ YYyyy
x starts y s si XXX
YYYYYyYy
x finishes y f fi XXX
YyYyYyy
x equal y eq eq XXX
Yyy

We want to be able to represent indefinite or uncertain information so we allow the
relationship between two intervals to be a disjunction of the basic relations. We use
sets to list the disjunctions. Somewhat more formally, let I be the set of all basic rela-
tions, {b, bi, m, mi, o, oi, d, di, s, si, f, fi, eq}. IA is the algebraic structure with
underlying set 2", the power set of I, unary operator converse, and binary operators
intersection and composition (see [2] for the definition of the operators). Ladkin &
Maddux [16] show that LA satisfies the definition of a relation algebra.

Definition 2. Point algebra, PA (Vilain & Kautz [29]). There are three basic
relations that can hold between two points <, =, and >. As in the interval algebra,
we want to be able to represent indefinite information so we allow the relationship
between two points to be a disjunction of the basic relations. PA is the algebraic
structure with underlying set {@, < S = D2 %, ?}, unary operator converse, and
binary operators intersection and composition (see [29] for the definition of the opera-
tors). Note that <, for example, is an abbreviation of {<, =}, (J is the inconsistent
constraint, and ? means there is no constraint between two points, {<, =, >}. Ladkin

& Maddux [16] also show that PA satisfies the definition of a relation algebra.

Vilain & Kautz show that a subset of the interval algebra can be translated into
their point algebra. We denote as SIA the subset of the underlying set of the interval
algebra that can be translated into relations between the endpoints of the intervals
using the underlying set of PA (see [15, 28] for an enumeration of SIA).

We will use a graphical notation where the vertices represent intervals or points
and the directed edges are labeled with elements from the approjpriate algebra
representing the disjunction of possible relations between the two intcrinls or points.
A consistent scenario is a labeling of the graph where every label is a sinuleton set (a
set consisting of a single basic relation) and it is possible to map the verii .~ to a time

71

- B

line and have the single relations between vertices hold. The set of feasible relations
between two vertices consists of only the elements (basic relations) in that label capa-
ble of being part of a consistent scenario. Finding the feasible relations involves
removing only those elements from the labels that could not be part of a consistent
scenario.

An Example. Here is an example from the interval algebra of our two reasoning
tasks. Suppose Event A either overlaps or starts Event B, but we are not sure which,
and Event B meets Event C. We represent this as follows

{o, s} {m}
I

where the label I, the set of all basic relations, shows we have no direct knowledge of
the relationship between A and C. There are two possible answers to problem 1: find a
scenario that is consistent with the information provided.

It remains to answer problem 2: find all the feasible relations between every pair of
intervals. The only change is that the feasible relations between A and C are just the
‘“before’ relation. We see that this is true in the diagram above. No other relation
between A and C can be part of a consistent scenario.

3. The Point Algebra and a Subset of the Interval Algebra

In this section we examine the computational problems of finding consistent scenarios
and finding the feasible relations for the point algebra, PA, and the corresponding sub-
set of the interval algebra, SIA.

3.1. Finding Consistent Scenarios

Review of previous solutions. Ladkin & Maddux [15] give an algorithm for finding
one consistent scenario that takes O(n®) time for PA networks with n points. If no
consistent scenario exists, the algorithm reports the inconsistency. Their algorithm
relies on first applying the path consistency algorithm [17, 21| before finding a con-
sistent scenario.

An improved solution. Here we give an algorithm for finding one consistent scenario
that takes O(nz) time for PA networks with n points. Our starting point is an obser-
vation by Ladkin & Maddux [16, p.34] that topological sort alone will not work as the
labels may be any one of the eight different PA elements, {{, <, <, =, >, 2, #, ?},
and thus may have less information about the relationship between two points than is
required. For top sort we need all edges labeled with <, >, or ? (see [12]). The “prob-
lem” labels are then {=, (J, < >, #}. The intuition behind the algorithm is that we

somehow remove or rule out each of these possibilities and, once we have, we can then

A

-4 -

Input: A PA network represented as a matrix C where element Ci; is the set of possible relations on
edge (1, 7).
Output: A consistent scenario (a linear ordering of the points).

Step 1. Identify all the strongly connected components (SCCs) of the graph using only the edges
labeled with <, <, and =.

Condense the graph by collapsing each strongly connected component into a single vertex.
Let {S), Sy, ..., S,,} be the SCCs we have found (the S; partition the vertices in the graph in
that each vertex is in one and only one of the S;). We construct the condensed graph and its
matrix representation, C, as follows. Each S; is a vertex in the graph. The labels on the
edges between all pairs of vertices is given by

CI'J' - n CWI ’:r J‘= 1! ey M (*)
v €ES;

If the empty label, (7, results on any edge, then the network is inconsistent.

Step 2. Replace any remaining < labels in C with <. Perform a topological sort using only the edges
in C labeled with <.

Fig. 1. Consistent Scenario Algorithm for PA Networks

apply top sort to give a consistent scenario. Much of the discussion to follow relies on
the assumption that looking at paths (the transitivity information) is sufficient for
deciding the label on an edge. The only exception to the truth of the assumption is
that looking at paths will sometimes assign a label of < instead of < (see Sec. 3.2) but
this will not affect the discussion.

Step 1: The = relation. To remove the = relation from the network, we iden-
tify all pairs of points that are forced to be equal and condense them into one vertex.
By forced to be equal, we mean that in all consistent scenarios, the vertices are equal
so no other relation will result in a consistent scenario. More formally, we want to par-
tition the vertices into equivalence classes S;, 1 <7 < m, such that vertices v and w
are in the same equivalence class if and only if they are forced to be equal. But, the
vertices v and w are forced to be equal precisely when there is a path of the form

u v < - Sw<u

where one or more of the < can be =. This is the same as saying v and w are in the
same equivalence class if and only if there is a path from v to w and a path from w to
v using only the edges labeled with < or =. This is a well-known problem in graph
theory. Determining the equivalence classes is the same as identifying the strongly
connected components of the graph and efficient algorithms are known (Tarjan [24],
see also [1]). An example is shown in Fig. 2. Only < and = edges are shown except
that self-loops are also omitted (each vertex is equal to itself). There are four strongly
connected components.

S, =1{1,7,8 Sy={4,5)
Sg = {2, 3} S*I- - {6}

Fig. 2. Strongly Connected Components

Step 1: The () relation. To rule out the (/) relation we must determine if the
the network is inconsistent. The network is inconsistent if a vertex is forced to be <,
>, or # to itself. That is, when there is a path of the form

Uu=y= *** =wsu
or of the form
gt € v <€ v LW <Y

where all but one of the < can be < or =. We can identify these cases simply by also
looking at edges labeled with < when identifying the strongly connected components.
The inconsistencies are then detected when the vertices are collapsed. For example,
suppose the label on the edge (1, 7) in the graph shown in Fig. 2 was < instead of the
< shown. Condensing the strongly connected component S, gives

Cpp = C12N CigN Cqy N CrgN Cgy N Cyy
= {<NE,=NEInK=n{K=n>=} =

where again we have omitted the self loops Cy;.

Step 2: The < > relations. To remove the < relation from the network, we
simply change all < labels to <. As a result of Step 1, we know a consistent scenario
exists and that no remaining edge is forced to have = as its label in the consistent
scenario. Changing < to < can only force other labels to become <; it cannot force
labels to become =. So after the changes, a consistent scenario will still exist. We can
also show that no new inconsistencies are introduced by this step.

Step 2: The % relation. We can now perform topological sort to find one con-
sistent scenario. The # relations will be handled implicitly by top sort as all the ver-
tices in C will be assigned a different number.

Theorem 1. The algorithm in Fig. 1 correctly solves the consistent scenario problem
for PA and SIA networks in O(n®) time.

H

==

Note that for SIA networks we just first translate the network into a PA net-
work, solve, then translate back. For the time bound, finding the strongly connected
components is O(n?) [24], condensing the graph looks at each edge only once, and topo-
logical sort is O(n?) [12]. It is easy to see that the algorithm is asymptotically optimal
as we must at least examine every edge in the network, of which there may be as many
as O(n®). If we do not, we can never be sure that the label on that edge does not
involve a contradiction by, for example, being part of a loop that causes a vertex to be
less than itself.

Some applications of the results. Koubarakis et al. [13] use a subset of SIA in a
knowledge representation language so the algorithm given in Fig. 1 is applicable. The
decision portion of the algorithm, for example, could be used when adding new infor-
mation to the network to detect if the new information is inconsistent with the old.
PA may be useful in planning and scheduling where a common approach is to model
actions or resources by points and there are precedence constraints and constraints on
two actions co-occurring. Here a consistent scenario corresponds to a plan or a

schedule. Finally, the algorithm will be shown to be useful in designing algorithms for
IA (Sec. 4.1).

3.2. Determining the Feasible Relationships

Review of previous solutions. Ghallab & Mounir Alaoui [9] give an incremental
procedure, based on a structure called a maximal indexed spanning tree, that is shown
to work well in practice. The path consistency algorithm (PC) [17, 21] can be used to
find approximations to the sets of all feasible relations [2]. Much previous work are
efforts at identifying classes of relations for which PC will give exact answers. Mon-
tanari [21] shows that PC is exact for a restricted class of binary constraint relations.
However, the relations of interest here do not all fall into this class. Valdés-Pérez [25]
shows that PC is exact for the basic relations of IA. In [26, 30|, we show that PC is
exact for a subset of PA and a corresponding subset of SIA. The new point algebra
differs from PA only in that s is excluded from the underlying set. But we also give
examples there that show that, earlier claims to the contrary, the path consistency
algorithm is not exact for PA nor for SIA networks and we develop an O(n*) four-
consistency algorithm that is exact.

An improved solution. Here we give an algorithm for finding all feasible relations
that, under certain assumptions, takes O(n®) time for PA networks with n points.
The algorithm is of more practical use than the previously known O(n*) algorithm.

Our strategy for developing an algorithm for PA is to first identify why path con-
sistency is sufficient if we exclude % from the language and is not sufficient if we
include #. Fig. 3 gives the smallest counter-example showing that the path con-
sistency algorithm is not exact for PA. The graph is path consistent. But it is easy to
see that not every relation in the set of possible relations between s and ¢ is feasible.
In particular, asserting s =t forces v and w to also be equal to s and ¢ (pointer to
previous section). But this is inconsistent with v # w. Hence, the = relation is not

75

.

feasible as it is not capable of being part of a consistent scenario. The label between s
and ¢ should be <.

Fig. 3. “Forbidden" Subgraph

This is one counter-example of four vertices. But are there other counter-
examples for n > 4? The following theorem answer this question and is the basis of an
algorithm for finding all feasible relations for PA networks.

Theorem 2 (van Beek & Cohen [28]). The network in Fig. 3 is the smallest counter-
example to the exactness of path consistency for PA and, up to isomorphism, vs the
only counter-example of four vertices. Also, any larger counter-example must have a
subgraph of four vertices tsomorphic to the example.

We shall solve the feasible relations problem by first applying the path con-
sistency algorithm and then systematically searching for ‘‘forbidden’” subgraphs and
appropriately changing the labels (see Fig. 4; the path consistency algorithm is slightly
simplified because of properties of the algebras). The algorithm makes use of adja-
cency lists. For example, adj<(v) is the list of all vertices, w, for which there is an
edge from v to w that is labeled with ‘<’. We assume w € adj,(v) only if v < w so
that we only process each such vertex once.

Changing the label on an edge (s, t) from ‘< to ‘<’ may further constrain other
edges. The question immediately arises of whether we need to again apply the path
consistency algorithm following our search for ‘‘forbidden’ subgraphs to propagate the
newly changed labels? Fortunately, the answer is no. Given a new label on the edge
(s, t), if we were to apply the path consistency algorithm, the set of possible triangles
that would be examined is given by { (s, t, k), (k, s, t) | 1 <k<nk#s, k#*t}
(see procedure RELATED_PATHS in Fig. 4). Thus there are two cases. For both, we
can show that any changes that the path consistency algorithm would make will
already have been made by procedure FIND_SUBGRAPHS.

76

-8 =

Input: A PA network represented as a matrix C where element C;; is the set of possible relations on
edge (1, 7).

Output: The set of feasible relations for Cj;, 1, =1, ...,n.

procedure FEASIBLE

begin
PATH_CONSISTENCY
FIND_SUBGRAPHS

end

procedure PATH_CONSISTENCY
begin
Q +~ U RELATED_PATHS (1, j)
1<i<j<n
while @ is not empty do begin
select and delete a path (1, k,) from @
t —Ci;N Cy - Cyy
if (¢ # C;;) then begin
CI‘J' — 1
Cjy < CONVERSE (t)
Q@ +— Q U RELATED_PATHS (1, j)
end
end
end

procedure RELATED_PATHS (i, j)
return { (i, 5, k), (k, i,) |1 <k <n, ki k#j)

procedure FIND_SUBGRAPHS
begin
for each v such that adj.(v) # & do
for each & € adj>(v) do
for each t € adjv) do
if (adjs) N adju(v) N adjy(t) # &) then begin
Cy ~ <
C“ b (>'
end
end

Fig. 4. Feasible Relations Algorithm for PA Networks

Case 1: (s,t, k). Changing the label on the edge (s, t) from ‘< to ‘< will
cause the path consistency algorithm to change the label on the edge (s, k) only in two
cases:

s <t,t<k,and s <k
s <t,t=k,and s <k

In both, the label on (s, k) will become ‘<’. For (s, t) to change we must have the
situation depicted in Fig 3., for some v and w. But v <t and w <1{ together with
t <k (ort ==k)imply that v <k and w < k (we can assume the relations were pro-
pagated because we applied the path consistency algorithm before the procedure for

7

-9 -

finding “‘forbidden” subgraphs). Hence, (s, k) belongs to a ‘“‘forbidden” subgraph and

. the label on that edge will have been found and updated.

Case 2: (k, s, t). Similar argument as Case 1.

" Theorem 3. The algorithm in Fig. 4 correctly solves the feasible relations problem

for PA and SIA networks.

Note that for SIA networks we just first translate the network into a PA net-
work, solve, then translate back. A desirable feature of procedure FIND_SUBGRAPHS
is that its cost is proportional to the number of edges labeled #. For a worst case
bound, the path consistency algorithm is O(n®) [18], so the algorithm is O(n®) if we
assume that the adjacency lists are represented as bit vectors and that intersecting
them takes one unit of time. This is a reasonable assumption since even for n up to
100 this only takes a few instructions on most computers. The algorithm was imple-
mented and tested on random problems up to size 100. It was found that about 90%

of the time was spent in the path consistency algorithm and only about 2% in
FIND_SUBGRAPHS.

Some applications of the results. Song & Cohen [23] and Nokel [22] both use a sub-
set of SIA so the algorithm given in Fig. 4 is applicable (although both restrict them-
selves to the subset of SIA that does not need #, the results here show that the
expressive power of their temporal language could be expanded without compromising
efficiency or exactness). Finally, the algorithm will be shown to be useful in designing
algorithms for IA (Sec. 4.2).

4. The Full Interval Algebra

In this section we examine the computational problems of finding consistent scenarios
and finding the feasible relations between intervals for the full interval algebra, IA.
Vilain & Kautz [29, 30] show that both of these problems are NP-Complete for the
interval algebra. Thus the worst cases of the algorithms that we devise will be
exponential and the best we can hope for is that the algorithms are still useful in prac-
tice. We discuss to what extent this is achieved below.

4.1. Finding Consistent Scenarios

Review of previous solutions. Allen [2] proposes using simple backtracking search
to find one consistent scenario of an IA network or report inconsistency. Valdés-Pérez
[25] gives a dependency-directed backtracking algorithm. Both search through the
alternative singleton edge labelings. As well, there has been much work on improving
the performance of backtracking that could be applied to this problem (see [7] and
references therein).

An improved solution. Here we show how the results for the point algebra can be
used to design a backtracking algorithm for finding one consistent scenari- that is
shown to be useful in practice.

78
-10 -

The key idea is that the O(n?) decision procedure for SIA networks (Step 1 of
Fig. 1) can be used effectively to decide whether a partial solution found so far is con-
sistent and so might be part of a solution to the whole problem. Instead of searching
through alternative singleton labelings, as Allen and Valdés-Pérez do, we can now
decompose the labels into elements of SIA. For example, if the label on an edge is {b,
bi, m, o, oi, si }, there are six alternative singleton edge labelings but only two when
decomposed into elements of SIA: {b, m, o} and {bi, oi, si}. It is easy to see that this
is guaranteed to be better since, for any choice of a singleton label, we can choose a
label of larger cardinality that is a superset of the singleton label. If the singleton label
is consistent, so is the larger label. And, of course, there will be times when the larger
label is consistent and the singleton label is not. The output of the backtracking algo-
rithm will be a consistently labeled SIA network and the scenario algorithm for SIA
(Fig. 1) is then used to find a consistent scenario.

The algorithm was implemented and tested on random instances from a distribu-
tion designed to approximate planning applications (as estimated from a block-stacking
example in [5]). For a problem size of n = 20, the average time to find a solution was
about seven seconds of CPU time (25 tests performed). For n = 40, it was 74 seconds
(average over 21 tests). This seems surprisingly fast. However, it should be noted that
four of the tests for n = 40 were not included as they were stopped before completion
as a limit on the number of consistency checks was exceeded. We are currently exa-
mining the best order in which to search through the labels (for example, perhaps the
most restrictive relations should be tried first) to further avoid this occasional thrash-
ing behaviort.

Some applications of the results. In planning, as formulated by Allen and Koomen
[5] and Hogge [10], actions are associated with the intervals they hold over and the full
interval algebra is used. Finding one consistent scenario corresponds to finding an ord-
ering of the actions that will accomplish a goal. Hence, the results here are directly
applicable.

4.2. Determining the Feasible Relationships

A solution. A similar backtracking algorithm as in the previous section can be
designed for finding all the feasible relations. Again, instead of searching through the
alternative singleton (or basic) labelings of the edges, we search through the alternative
decompositions of the labels into elements of SIA. For each labeling of the network
with elements of SIA that is consistent (determined using the decision portion of the
algorithm in Sec 3.1), we find the feasible relations (using the algorithm in Sec 3.2).
The feasible relations for the IA network is then just the union of all such solutions.
Initial experience, however, suggests this method is practical only for very small
instances of the problem (but there exists methods of decomposing large problems into
smaller ones (3, Dechter]), or for instances where only a few of the relations between
intervals fall outside of the special subset SIA. We conclude that in most cases a

t It would be interesting to compare with the dependency-directed backtracking approach of
Valdés-Pérez. To the best of our knowledge no practical experience has been reported and no
implementation made (Valdés-Pérez, personal communication).

73

==

better approach is to, if possible, accept approximate solutions to the problem (Allen
[2], van Beek [26]).

Some applications of the results. The approach given above may be useful when
much preprocessing time is available or exact answers are important. One example is
the construction of a plan library for plan recognition. Here the construction is done
once and the library is used many times to recognize plans (see [11] for the use of IA in
this setting).

80
- -

References

1
2]
3]
4]

15]

(9]

[10]
[11]
12]
[13]
[14]
[15]
[16]
17]

(18]

Aho, A. V., J. E. Hopcroft, and J. D. Ullman. 1974. The Design and Analysis of Com-
puter Algorithms. Addison-Wesley.

Allen, J. F. 1983. Maintaining Knowledge about Temporal Intervals. Comm. ACM 28,
832-843.

Allen, J. F. 1984. Towards a General Theory of Action and Time. Artificial Intelligence
23, 123-154.

Allen, J. F., and H. Kautz. 1985. A Model of Naive Temporal Reasoning. In Formal
Theories of the Commonsense World, J. Hobbs and R. Moore (eds.), Ablex, 251-268.

Allen, J. F., and J. A. Koomen. 1983. Planning Using a Temporal World Model. Proc. of
the Eighth International Joint Con ference on Artificial Intelligence, Karlsruhe, W. Ger-
many, 741-747.

Dean, T., and D. V. McDermott. 1987. Temporal Data Base Management. Artificial
Intelligence 32, 1-55.

Dechter, R., and 1. Meiri. 1989. Experimental Evaluation of Preprocessing Techniques in
Constraint Satisfaction Problems. Proc. of the Eleventh International Joint Con ference
on Artificial Intelligence, Detroit, Mich., 271-277.

Dechter, R., I. Meiri, and J. Pearl. 1989. Temporal Constraint Networks. Proc. of the
First International Con ference on Principles of Knowledge Representation and Reason-
ing, Toronto, Ont., 83-93. -

Ghallab, M., and A. Mounir Alaoui. 1989. Managing Efficiently Temporal Relations
Through Indexed Spanning Trees. Proc. of the Eleventh International Joint Con ference
on Artificial Intelligence, Detroit, Mich., 1297-1303.

Hogge, J. C. 1987. TPLAN: A Temporal Interval-Based Planner with Novel Extensions.
Department of Computer Science Technical Report UIUCDCS-R-87, University of Illinois.

Kautz, H. A. 1987. A Formal Theory of Plan Recognition. Ph.D. thesis available as
University of Rochester Technical Report 215, Rochester, N.Y.

Knuth, D. E. 1973. Sorting and Searching. Addison-Wesley, 258-265.

Koubarakis, M., J. Mylopoulos, M. Stanley, and A. Borgida. 1989. Telos: Features and
Formalization. Knowledge Representation and Reasoning Technical Report KRR-TR-89-4,
Department of Computer Science, University of Toronto.

Ladkin, P. B. 1989. Metric Constraint Satisfaction with Intervals. Technical Report
TR-89-038, International Computer Science Institute, Berkeley, Calif.

Ladkin, P. B., and R. Maddux. 1988. On Binary Constraint Networks. Technical Report,
Kestrel Institute, Palo Alto, Calif.

Ladkin, P. B.,, and R. Maddux. 1988. The Algebra of Constraint Satisfaction Problems
and Temporal Reasoning. Technical Report, Kestrel Institute, Palo Alto, Calif.

Mackworth, A. K. 1977. Consistency in Networks of Relations. Artificial Intelligence 8,
99-118.

Mackworth, A. K., and E. C. Freuder. 1985. The Complexity of Some Polynomial Net-
work Consistency Algorithms for Constraint Satisfaction Prolilems. Artificial Intelligence
25, 65-74.

[19]

[20]
21]

122]

(23]

[24]
(25]

[26]

27]

(28]

(29]

[30]

(31]

gl

- 13-

Malik, J., and T. O. Binford. 1983. Reasoning in Time and Space. Proc. of the Eighth
International Joint Con ference on Artificial Intelligence, Karlsruhe, W. Germany, 343-
345.

Miller, S. A., and L. K. Schubert. 1988. Time Revisited. Proc. of the Seventh Canadian
Con ference on Artificial Intelligence, Edmonton, Alta., 39-45.

Montanari, U. 1974. Networks of Constraints: Fundamental Properties and Applications
to Picture Processing. Inform. Sci. 7, 95-132.

Nokel, K. 1989. Temporal Matching: Recognizing Dynamic Situations from Discrete
Measurements. Proc. of the Eleventh International Joint Con ference on Artificial Intel-
ligence, Detroit, Mich., 1255-1260.

Song, F., and R. Cohen. 1988. The Interpretation of Temporal Relations in Narrative.
Proc. of the Seventh National Con ference on Artificial Intelligence, Saint Paul, Minn.,
745-750.

Tarjan, R. 1972. Depth-First Search and Linear Graph Algorithms. SIAM J. Comput. 1,
146-160.

Valdés-Pérez, R. E. 1987. The Satisfiability of Temporal Constraint Networks. Proc. of
the Sizth National Con ference on Artificial Intelligence, Seattle, Wash., 256-260.

van Beek, P. 1989. Approximation Algorithms for Temporal Reasoning. Proc. of the
Eleventh International Joint Con ference on Artificial Intelligence, Detroit, Mich., 1291-
1296.

van Beek, P. 1990. Reasoning about Qualitative Temporal Information (Extended ver-
sion). Dept. of Computer Science Technical Report, University of Waterloo.

van Beek, P., and R. Cohen. 1989. Approximation Algorithms for Temporal Reasoning
(Extended version). Department of Computer Science Technical Report CS-89-12, Univer-
sity of Waterloo.

Vilain, M., and H. Kautz. 1986. Constraint Propagation Algorithms for Temporal Reason-
ing. Proc. of the Fifth National Con ference on Artificial Intelligence, Philadelphia, Pa.,
377-382.

Vilain, M., H. Kautz, and P. van Beek. 1989. Constraint Propagation Algorithms for Tem-
poral Reasoning: A Revised Report. In Readings in Qualitative Reasoning about Physical
Systems, D. S. Weld and J. de Kleer (eds.), Morgan-Kaufman, 373-381.

Weld, D. S,, and J. de Kleer. 1989. Introduction to Chapter 4, History-Based Simulation
and Temporal Reasoning. In Readings in Qualitative Reasoning about Physical Systems,
Morgan-Kaufman, 351-352.

