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Abstract

Recent works carried out within the Qualitative
Reasoning (QR) research framework are centred on the
exploitation of QR techniques to address the problem
of quantitative System Identification (S1) with the goal
to enhance the overall process, namely the selection of
a proper model identificr and the parameter estimation
procedure.  Traditional Si, both parametric and non-
parametric, may be really problematic for those applica-
tion domains. such as the medical/physiological one. of
which either the available knowledge is incomplete or
the structural model is not identifiable or the observed
data are poor in number and in quality. This paper deals
with the application of an hybrid method, which builds
a fuzzy system identifier upon a qualitative structural
model, 1o solve identification problems of the intracel-
lular kinetics of Thiamine (vitamin By). The model ob-
tained is not as much informative as a purely structural
one but robust enough to be used as a simulator, and
then to provide physiologists with a deeper understand-
ing of the Thiamine metabolism in the cells.

Introduction

The identification of quantitative structural models of the dy-
namics of complex real-world systems offers potential bene-
fits to the deep comprehension of the system at study as well
as to the performance of certain tasks. If we focus our at-
tention on physiology and medicine, such models provide a
concise description of complex dynamics, allow for the cal-
culation of physiological quantities that can not be directly
measured, allow the physiologist to formulate hypotheses
dealing with the physiological and biochemical structure
of the system, help the clinician to formulate and test di-
agnostic hypotheses as well as to plan therapeutical treat-
ments. Unfortunately, structural modeling of a large number
of patho-physiological mechanisms may be hampered by the
incompleteness of the available knowledge of the underlying
nonlinear dynamics. In such cases, the system dynamics is
often studied under the hypothesis that minimal perturba-
tions affect the system, that is under the linearity assump-
tion. Although the resulting model captures limited aspects
of the system dynamics, it may give useful information; nev-
ertheless, also the linear formulation may be prohibitive as
identifiability problems may occur,

In theory, a valid alternative to structural modeling, al-
though potentially less informative, could be represented by
non-parametric black-box modeling approaches to SI (Jang
1993; Khannah 1990; Wang 1994). But, in practice, such
models, which learn the nonlinear dynamics of the system
from input-output data, result to be very inefficient and not
robust when the available experimental data are poor either
in number or in quality. Such a situation is not rare in the
fields of physiology and medicine.

Motivated by these considerations, we started a project
which aims at the design and implementation of an effi-
cient and robust method capable to make the most of both
the available structural knowledge and the observed data.
The method, that we call FS-QM, is domain-independent and
results from the integration of qualitative models, namely
QsiM models, and fuzzy systems (Bellazzi et al. 1998; Bel-
lazzi, Guglielmann & Ironi 1999). As both frameworks have
been introduced 1o cope with the complexity of real-world
systems, their combination should benefit from the analyti-
cal power of the former one as well as from the approxima-
tion properties of the latter.

In outline, the method exploits the incomplete structural
knowledge to build a QSiM model of the system dynamics,
and then it infers, through simulation, all of its possible be-
haviors. The set of behaviors is mapped, in accordance with
the a priori expert knowledge. into a fuzzy rule-base, where
each rule may be seen as a measure of the possible transi-
tion from states to the next ones. The mathematical inter-
pretation of such a rule-base properly defines and initializes
a nonlinear functional approximator, which i1s then tuned to
the experimental data. The emphasis of this paper is rather
on applicative aspects than on methodological issues. We
discuss the identification problems which arise from model-
ing a system in the physiological domain, the intracellular
thiamine kinetics, and the solutions given by the application
of our method (Bellazzi et al. 1998; Bellazzi, Guglielmann
& Ironi 1999). The comparison of our results with those ob-
tained by means of a traditional application of fuzzy systems
to S1 (Wang 1994) highlights the good performance of our
method when applied to derive a simulator of the thiamine
kinetics in the intestine cells. The significant improvement
in terms of efficiency and robustness of FS-QM over tradi-
tional methods is due to the good initialization of both the
structure of the fuzzy identifier and its parameters built by
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encoding the system dynamics captured by its qualitative be-
haviors (Bellazzi, Guglielmann & Ironi 2000).

For the sake of completeness, let us remark that the idea
of exploiting QR techniques for SI is not new within the QR
community. Most of the work done addresses the prob-
lem of the automation of the traditional process of SI, that
is the automation of both structural identification and the
choice of the most appropriate numerical techniques for pa-
rameter estimation and their initialization (Bradley, Stolle
1996; Bradley. O’ Gallagher & Rogers 1997; Easley, Bradley
1999: Capelo, Ironi & Tentoni 1996; Capelo, Troni & Ten-
toni 1998; Ironi, Tentoni 1998). Another piece of work deals
with a method for SI capable to deal with states of incom-
plete knowledge (Kay, Rinner & Kuipers 1999) in which
hoth the candidate model space and the stream of obser-
vations are defined semi-quantitatively. What distinguishes
this piece of work from the other ones is its capability to
deal with systems characterized by both incomplete struc-
tural knowledge and poor stream of data.

Modeling problems in the
physiological/medical domain

The application of mathematical modeling techniques to the
study of a wide spectrum of metabolic and endocrine pro-
cesses has been largely described in the literature (Carson,
Cobelli & Finkenstein 1983). A metabolic system may be
essentially viewed as a system of chemical reactions and
transport processes controlled by substances produced by
the endocrine system. The description of the dynamics of
such systems. even in the most simple cases, is a really
complex task, and it has been made tractable by the com-
partmental modeling methodology (Atkins 1974; Jacquez
1972).  Within this framework, a system is decomposed
into a finite set of subsystems, called compartments, and the
compartments interact either with each others or with the
environment ' by exchanging material.

A compartment is fundamentally an idealized store of a
substance. which may often be adequately assumed homo-
geneously distributed. The transfer of material through the
system that occurs by physical transport or chemical reac-
tions is represented as transfer from one compartment to
another. The model equations are expressed by ordinary
Differential Equations (ODE) in terms of the state variables
of the system, denoted by x; (1), that represent the concentra-
tion or amount of substance in the i—th compartment which
exchanges matter with other compartments at time ¢. Then,
the rate of change of each a;(f) is based on the mass balance
law:
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where #; denotes the time derivative of z;: fi; denotes the
rate of mass transter into the i —#h compartment from the j—
th compartment. In general, the transfer of material depends
on the quantity or concentration of material in the source

'indicated as compartment 0

compartment and may also be dependent on the quantity or
concentration in some other compartments, that is:

f-ij :fvlj('r,j;xh:'cm‘“') (2)
where x; denotes the state variable of the source compart-
ment, whereas x;, w,,,.. indicate the variables controlling
fij. The mathematical model of a compartmental structure
then consists of a set of ODE’s which are fully defined when
the functional relations (2) are explicitly stated. Mostly,
given the complexity of the processes dealt with. such re-
lations are naturally nonlinear, and their definition may very
often be intractable due to the incompleteness of the avail-
able knowledge. However, for systems intrinsically nonlin-
ear, a linearity assumption (f;;(2;) = kjjx;) may be rea-
sonably adopted when the observed dynamics is obtained in
response to a small-signal perturbation around the system
steady-state condition produced by the administration of a
tracer material. The next step in the system identification
process deals with the estimation of the unknown parame-
ters from data. Also in the linear case, this step may be criti-
cal if the a prioriidentifiability condition is not satisfied, that
is, if from the ideal data that the experiment would generate
it is not possible to determine uniquely the theoretical esti-
mate of the unknown parameters. However, as real data are
not noise-tree, theoretical identifiability does not guarantee
that the estimation results are accurate enough to identify a
good model of the system dynamics, i.e. a posteriori iden-
tifiability. A model can be considered valid, and then give
useful information if the identifiability conditions are satis-
fied. Methods for testing both a priori and a posteriori iden-
tifiability are discussed in the literature (Cobelli, DiStefano
IIT 1980, Ljung 1987).

The intracellular thiamine kinetics:
Identification problems and solutions
Thiamine (Th), also known as vitamin By, is one of the ba-
sic micronutrients present in food and essential for health.
In particular, Th is contained in dried yeast. meat, nuts,
legumes and potatoes. Within the cells, Th participates
in the carbohydrate metabolism, in the central and periph-
eral nerve cell function and in the myocardial function,
Deficiency of Th causes beriberi with peripheral neuro-
logic, cerebral and cardiovascular manifestations (Merck
Sharp and Dohme 1987). More in detail, after its absorp-
tion in the intestinal mucosa, Th is released into plasma
for the distribution to the other tissues, either in its orig-
mal chemical form (Th) or in a mono-phosphorilated one
(ThMP). Th is transported through the cell membrane by
means of an enzyme-mediated mechanism, and is then di-
rectly transformed into a higher energy compound, Thi-
amine Piro-Phosphate (ThPP); ThPP is dephosphorylated
into ThMP, and it is in equilibrium with Thiamine Tri-
Phosphate (ThTP). ThPP is the active element that partici-
pates in the carbohydrate metabolism. The chemical reac-

tions occurring within the cells are described in Fig. |.

Identification of the structural model

Since early 80’s several studies have been carried out to
quantitatively assess the Th metabolism in the cells (Rindi
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Figure 1: The chemical pathway of Th within cells. Th transforms
into ThPP; ThPP transforms into ThMP, that is transformed back
into Th. ThPP also transforms in a reversible way into ThTP.

et al. 1980; Rindi et al. 1992). All these studies were
performed on rats, and had the basic goal to quantitatively
define the normal and pathological conditions underlying
Th chemical transformations and cellular uptake and re-
lease. Since the Th metabolism is intrinsically nonlinear, the
first exploratory approach to its quantitative characterization
consists in its analysis around the steady state conditions.
Theretore. from an experimental viewpoint, all these studies
were based on tracer experiments, in which a small amount
of labeled (radio-active) Th was injected in plasma or in
peritoneum; the specific activity (radioactivity per gram) of
labeled Th was subsequently measured in plasma and in the
cells, From a modeling viewpoint, a linear compartmental
model has been used to study the Th kinetics in several organ
tissues, with particular reference to the nervous ones. Let us
observe that the ThTP form can be neglected in the model.
As a matter of fact, the fast chemical pathway between ThPP
and ThTP and the relatively low concentration of ThTP al-
lows us to consider ThTP in equilibrium with ThPP. Then,
the model, whose structure is shown in Fig. 2, is described
by the following ODE’s:

Ty = kywg + kygry — (ko + kar)x (3)
oy = ki — kaoirs (4)
ty = kaawa + kasws — (kos + kis)as (5)
By = kaour — Kpaing (6)
5 =  ksoup — kasas (7

where i1 is the intracellular Th, a2 1s the intracellular ThPP,
a4 18 the intracellular ThMP, 4 is the quantity of Th in the
cell membrane while x5 is the quantity of ThMP in the cell
membrane; w1, is the plasmatic Th and s is the plasmatic
ThMP. Finally, the parameters k;; are the transfer coeffi-
cients to be estimated from data. As a matter of fact, the
compartments denoted by 4 and 5 are fictitious as they do
not correspond to any chemical form of Th, but they are just
used to model the absorption process of Th in the cells. The
model (3-7) proved to satisfy a priori identifiability condi-
tions when a bolus injection in plasma is delivered.

The same model and the same experimental setting were
applied to study the intestine tissue metabolism in normal
subjects and in subjects suffering from diabetes (one of the
main disfunctions of carbohydrate metabolism), both treated
and non treated rats. In this case, the main purpose of the
study was to quantitatively evaluate the differences in the
transfer constants and turnover rates in the three different
classes of subjects: on the basis of this evaluation it would
also be possible to understand if insulin treatment is able
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Figure 2: The compartmental model of the Th metabolism within
cells. The inputs of the system are the quantity in plasma of Th and
ThMP (measured as the concentrations wu; and wy. respectively).
The flows between the quantity @1 (Th), x2 (ThPP) and a5 reflects
the chemical pathway described in Figure 1.

to re-establish quasi-normal conditions in Th metabolism.
Unfortunately, the compartmental model identification was
unsuccessful, even using different optimization techniques,
ranging from standard nonlinear estimation procedures to
Bayesian ones. This results in an a posteriori unidentifia-
bility of the model. The main reason of this failure may be
explained by the intrinsical problems related to the experi-
mental setting: as mentioned before, the intracellular labeled
Th is measured after a bolus in plasma. However, the physi-
ological Th pathway in the intestine tissue presents a Th ab-
sorption way directly from the intestinal mucosa and a sub-
sequent release into the plasma tissue. On the contrary, it is
completely unknown how the Th quantity is physiologically
absorbed by intestine cells from plasma. and also how such
absorption is regulated. Therefore, the linearity assumption
for the transport process from plasma into cells results to
be completely inadequate. This problem hampers the use of
compartmental modeling techniques for analyzing the data,
and, at a first glance, the use of the data themselves. This
is particularly dramatic for this kind of experiments: at each
sampling time four rats are sacrificed, and a single measure-
ment is derived as the mean of the four subjects. The efforts
and costs of the experimental setting motivate the exploita-
tion of other techniques for data modeling.

The need for a novel approach

An alternative solution to structural identification is to resort
to the so-called “non-parametric” modeling methods. This
term is somehow misleading, since the models are always
characterized by a set of equations and parameters; however,
such parameters do not have a precise physical meaning, and
this gives the reason for the “non-parametric” wording. The
non-parametric methods aim at reproducing the functional
relationships between the observable variables only on the
basis of the available data, without requiring knowledge on
the physiological system at hand. In our case, due to the
complexity of the problem, a natural choice is to exploit
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nonlinear dynamic discrete models, known as Nonlinear
AutoRegressive models with exogenous inputs (NARX). In
such a framework the system dynamics of an output variable
y is described by the input-output equation®;

Yt = S Wy ooy Ykmty Vg oo oy U ) (8)
where u € R"~! and y € R are discrete-time sequences, [
and & are known observability indexes, and the function f(-)
is in general unknown. Assuming I = h = 0, equation (8)
may be written as follows:

Yrs1r = flxy), where z; = {yi«.a'_f&k}

In this context, methods recently proposed to find a func-
tion approximator of f are Feed-forward Neural Networks,
radial Basis Functions, Wavelet Functions, Fuzzy Systems.
However, to build f with the desired accuracy only from the
observations, all these approximation schemes usually re-
quire sufficiently large data sets . As far as our application is
concerned, such schemes cannot be applied, since no more
than 17 measurements are available for each Th chemical
form. Moreover, the identification problem is a nonlinear
one: the treatment of nonlinear problems is not straightfor-
ward and demands some prior information to properly state
a reasonable initial guess on the parameter values, and then
to get convergence to their optimal estimate. The methods
mentioned above, except Fuzzy Systems (FS), are not ca-
pable to embed prior knowledge, and therefore the initial
values of the parameters are randomly chosen. In this set-
ting, the adoption of a non-parametric model able to exploit
also the available structural knowledge seems the natural so-
lution for effectively coping with the problems mentioned
above. As a matter of fact, FS’s are able to embed the a pri-
ori knowledge of the domain under the form of inferential
linguistic information, called Fuzzy Rules (FR), but in prac-
tice, the information in the linguistic form about a complex
system is often poor or unavailable, and then the function f
is usually inferred only from the data.

This paper deals with the application of an hybrid method
(Bellazzi, Guglielmann & Ironi 2000), based on the integra-
tion of QSIM models (Kuipers 1994) and FS’s (Wang 1994),
called FS-QM, which builds a fuzzy identifier upon the avail-
able a priori knowledge. The idea underlying our method 1s
simple: the set of behaviors {B,,.., B,,} generated by the
simulation of a QSIM model of the system at study is mapped
into M FR’s which, as a whole, capture the structural and
behavioral knowledge of the system dynamics. As a matter
of fact, such a mapping is possible whenever the available
knowledge allows us to define a bijective mapping between
the quantity-space (Jr., in the QSIM representation, and the
fuzzy-quantity space (J ., whose elements are fuzzy sets. In
outline, the main steps of the method are sketched in Fig. 3.

The mathematical interpretation of the generated rules,
through suitable fuzzy operators, such as the singleton fuzzi-
fier, the product inference rule, the center average defuzzi-
fier, and the characterization of fuzzy sets by Gaussian mem-
bership functions, allows us to initialize the approximator fo

*Without loss of generality we consider here nonlinear Multiple
Input-Single Output systems

QSIM framework | FUZZY framework
Bijt:dlive Mapping
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QDE
Simulation
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Figure 3: Main step of FS-QMm.

of f:
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where: {Z]} and {7} are the parameters characterizing the
Gaussian membership tunction which is related to the input
variable 2; and appears in the j-th rule, §7 is the point where
the membership function of the output, or equivalently of
the consequent, in the j-th rule reaches its maximum value.
Such an expression allows us to interpret the nonlinear func-
tion approximation problem with a FS as the process of tun-
ing on a set of data the vector of parameters 8 = {§,%. 0},
initialized by the vector 8, in equation (9). The approxima-
tor derived in equation (9) is known to possess the universal
approximation property, i.e. the capability of approximating
any continuous function with an arbitrary degree of accuracy
(Wang 1994).

A non-parametric model of Thiamine Kinetics

Although a complete knowledge on the mechanism of Th
transport in the intestine cells from plasma is not known, the
overall structure of the model in Fig. 2 still remains valid:
the fluxes and the compartments in plasma and in the cells
reflect the available information on the system. On the con-
trary, the number of compartments that model the membrane
and the functional relationships describing the cellular ab-
sorption are not completely known. Therefore, we can ig-
nore the compartments 4 and 5, and consequently the equa-
tions (6-7), and directly model the plasmatic Th absorption
process.

As data sets for all the state variables are available, a non-
parametric model of the overall system can be obtained (i)
by splitting it into three decoupled subsystems, related to the



| Variables Q1 Qr |
x (nCi/g) | o (nCi/g)

0 Low 0 13

T (0 Th™) Medium 30 13
Th* High 60 13

0 Low 5 30

To (O ThPP*) Medium 80 30
ThPP* High 165 35

0 Low 0 22

T3 (0 ThMP*) | Medium 50 20
ThM P~ High 130 44
0 Low 20 400
iy (0 U1S) Medium 1000 400
Ul1s High 2000 400
(1S inf) | Very High 3000 400
0 Low 70 140

[ (0 U28) Medium 330 70
U2S | High 470 50

(U2S inf) | Very High 600 60

13

Table 1: Mapping between (). and (¢ related to each variable. The last two columns report. respectively, the values of & and a.

three Th chemical forms (Th, ThPP and ThMP) obtained in
response to the tracer input signals. namely plasmatic Th
(t¢1) and ThMP (u3). and (ii) by formulating a NARX model
for each of them. Such models can be written as follows:

2 = fl(mlg.,s'r3ksu]k) (IO)
Ty, = falwg,,m1,) (11)
"'F'.:.H-*] = ff!‘(:r::ik 13:2;_. 3 u‘?j‘-) (12}

The first step consists in the identification of fi, fa, fi
in normal subjects. Our final goal deals with the construc-
tion of a simulator of the overall nonlinear intracellular Th
kinetics. Such a simulator will allow us to understand the
discrepancies in the Th metabolism between the different
classes of subjects. namely normal, diabetic either treated
or not. by comparing the results obtained by the simulator
against the actual data.

Construction of the fuzzy identifiers

The construction of each f; proceeds as sketched in Fig. 3,
and starts with the construction of the QSIM models of each
decoupled subsystem. Each model is described by a single
Qualitative Differential Equation (QDE).

| - Th subsystent: The Th dynamics is described by the QDE:
iy = ST (uy) + M (x3) — M (xy) (13)

— 8% and M have the usual QSIM meaning;

— S*(uy) models the nonlinear absorption process which
governs the transfer of Th from plasma. The saturable func-
tional relation is justified by the limited quantity of the me-
diating enzyme in the time unit;

~ M (&3) models the chemical reaction of ThMP into Th.
et us observe that x5 is modeled as a triangular shaped
function: this modeling assumption is based on the knowl-
edge of the tracer qualitative behavior in the cells.

— M*(z1) models the chemical reaction of Th into ThPP.
2 - ThPP subsystem: The dynamics of ThPP is modeled by:
igzﬂf+(l‘1)—M+(I2) (14)

— M™T(x5) models the reaction of ThPP into ThMP.
is analogously modeled as x3, and M (x) has the same
meaning as above.

3 - ThMP subsystem: The equation modelling the dynamics
of ThMP is:

:'33 = 5+('U,2) + ﬂ/f* (;1‘}2) - ﬂf+(ﬂ',‘3) (IS}

The functional constraints are analogously defined as in the
other subsystems.

The input-output variables in (10-12) assume values in
R, and their qualitative representations in both QSIM and
FS frameworks are defined by their respective ()p’s and
() p’s. Table | summarizes the (1’s and @ p's of each x;
and 1w, and highlights the one-to-one correspondence be-
tween each @, and the respective (Q . Let us observe thal
the elements of Qg are represented in the linguistic form
as well as through the values of the parameters which char-
acterize the related membership functions. In our context,
such parameters are the mean values () and standard devia-
tions (o) and have been derived on the basis of the available
physiological knowledge. Since the data used for 81 come
from tracer experiments, each subsystem is simulated start-
ing fromz;(0) = 0, ¢ = 1,2, 3. For the same reason, among
all of the generated behaviors we consider only those ones
that reach the system quiescent state. The translation of the
generated Quiescent Qualitative Behaviors (QQB) into fuzzy
rules is preceded by their analysis with the aim of (i) aggre-
gating those behaviors that do not present any differences
with respect to the variables of interest, (i1) filtering those
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behaviors which are inconsistent with physiological con-
straints not explicitely embedded in the model. The remain-
ing Admissible Behaviors (AQB) are automatically mapped
into FR's. Table 2 summarizes, for each model, the number
ot QOR’s, of AQB’s, and of the generated IF-THEN rules. Let
us remark that the set of AQB’s does not include spurious
behaviors, which, on the other hand, would have been easily
filtered on the basis of the a priori knowledge of the admis-
sible experimental profiles. Generally, the absence of any
spurious behavior in the AQB set is not guaranteed: in such
a case, a reduction in FS-QM efficiency might be caused.

Subsystem | # QQB’s | # AQB’s | # FR’s
1 20 2 11
2 6 6 9
3 42 7 12

Table 2: Results of the qualitative simulation of the 3 models, in
terms of the number of the generated QQB's, and of the AQB's. The
number of the generated 1F-THEN rules from the translation of the
AQB's into the fuzzy framework is also reported.

The mathematical interpretation of each set of rules, in
accordance with the choices underlying equation (9), allows
us to derive a good initialization of each approximator f;,,
and then the system is described by:

fislzy mg, 1) =
g T . R
S kil A e A e
: — (16)
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2. validation: the accuracy of f;, derived at step 1, is tested
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X! denotes the mean value of the membership function
which belongs to Q of x;, and appears in the consequent
part of the j-th rule. The vector of parameters in each ap-
proximator, initialized in accordance with the values in Ta-
ble 1, provides a good initial guess for the optimization pro-
cedure for parameter estimation from data.

Results

In order to make significant the comparison of the perfor-
mance of our method with a data-driven approach , we look
at each equation in (16-18) as a three-layer feedforward neu-
ral network, and exploit the Back propagation algorithm (8p)
for parameter estimation. As data-driven approach, we con-
sider fuzzy-neural identifiers (FS-DD) whose structures are
dimensionally fixed equal to the instantiated values of M
in (16-18) but built from the numerical evidence. Let us
observe that, since we exploit information derived from the
qualitative simulation to fix the dimension, the performance
of FS-DD is here improved with respect to its traditional ap-
plication where also its structural dimension has to be de-
rived from the data.

The application of our method to identify the system for
simulation purposes follows a three-steps scheme:
|. identification: for each f;, . the values of parameters are

tuned on a set of real data by using the BP algorithm in

order to get an estimate @ of f, starting from the initial
guess 6 provided as explained above;

in accordance with a parallel scheme* on a new data set:

*In a parallel scheme. the next value of the output variable is
calculated given the current measurements of the input variables

and the simulated value of the current output: §rs1 = f(gr. 1)
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training errors do not change.

3. simularion: the accuracy of all of the three f; as a whole
model is tested on a new data set in accordance with a
parallel scheme where only the current inputs to the over-
all system (wy, u2) are measured data whereas the current
output and input to each subsystem are simulated values.

Identification. Figure 4 shows the results we obtained with
the application of our method in the identification phase of
each x; with a threshold error equal to 0.0001 by using a
data set observed in normal subjects. Although the problem
is ill-posed due to the small number of data, FS-QM performs
quite well: this can be explained by the goodness of the ini-
tialization of both the identifier structures and the guesses of
parameters. On the contrary, FS-DD, initialized by exploit-
ing only the data, does not converge to the solution but it
gets trapped in a local minimum. Let us fix our attention on
the results of Fs-pb identification of xy: Fig. 5 highlights
that, although the number of BP loops is highly increased
from 350 (Fig. 5A) to 200000 (Fig. 5B), the training er-
ror remains constant, and there is no way to reach the fixed
threshold error. Moreover, we can observe a perfect fit on the
first 11 data. Such a fit does not derive from identification
but is rather imputable to the construction of the requested
11 rules.

Validation and simulation. Each identified f; has been val-
idated on a new set of data collected in an independent ex-
periment, still on normal subjects.

Our final goal is the construction of a simulator of the
overall system dynamics that is capable to reproduce the sys-
tem behavior in response to any input signals, at least in the
range of the experimental settings previously defined. Such
a simulator is defined through the equations:

.’}"1*_+| = fl('._ﬁlk-lj::;ﬁl‘l"‘l&)
T, = fz(ﬂ_‘-m.eiu) (19)
T3, = [fal&a, T, uz,)

where z;, = x;,, and u;, , ¥k, are the input data to the sys-
tem. The simulation results on the new data set (Fig. 6)

clearly show the robustness and validity of FS-QM as an al-
ternative methodology to identify nonlinear systems.

Remark. Clearly, within this approach the possibility of
identifying parameters with a precise meaning is lost, but
the reliable simulator at our disposal makes possible to en-
rich the knowledge of Th kinetics and to provide diagnostic
and therapeutic information to physiologist: in particular, it
will be possible to fit the main goal of the study, that is the
understanding of insulin action on the Th metabolism in the
cell. An indirect evaluation of the effects of diabetes on Th
metabolism may be obtained by comparing the profiles sim-
ulated by (19) against the data of pathological subjects either
treated or not. From a preliminary analysis of the results ob-
tained, we can reasonably affirm that ThPP exhibits the same
behavior both in normal and treated subjects.

Discussion

Mathematical modeling is often used in biomedical sciences
to obtain a quantitative description of the (patho-)physiology
underlying a physical system. Compartmental models rep-
resent a powerful class of such approaches: they are able
to describe the mechanisms of release and uptake of a cer-
tain physiological substrate by contemporaneously express-
ing the system dynamics through a set of ODE’s and quanti-
fying the fluxes of substrate between compartments through
a set of parameters. When the available data do not allow to
identify the model parameters, due to measurement errors,
inaccurate sampling time or, more simply, to inadequacy of
some model assumptions, the model itself is revised or dis-
carded. An alternative solution is to resort to non-parametric
modeling, that describes the dynamics of the system at hand
relying on very general nonlinear functions, moulded by the
available data. In this context, the structural assumptions
made by compartmental models are relaxed, and only a de-
scriptive quantitative knowledge may be derived.
Unfortunately, it may happen that also non-parametric ap-
proaches are likely to fail: as a matter of fact, since a pos-
teriori unidentifiability may be also due to the lack of either
a sufficient number or a sufficient quality of data, the search
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Figure 6: F$-QM simulation results related to @y (A), x2 (B). x5 (C).

for a robust non-parametric description turns out to be un-
feasible in most cases.

In this paper we have described the successful application
of a novel methodology that aims at filling the gap between
the parametric (compartmental) and non-parametric model-
ing. Thanks to the application of QR techniques, the struc-
tural assumptions on the relationships between the problem
variables are retained; moreover, thanks to the application of
FS's, such assumptions are translated into a non-parametric
model, whose parameters are properly initialized on the ba-
sis of a priori knowledge. Finally, the approximator of the
system dynamics derived is robust enough for the purposes
of the study.

From the application viewpoint, our proposed approach
enabled us to draw physiologically sound conclusions from
a set of data, that revealed to be unexploitable by classical
compartmental modeling.

In conclusion, the results presented in this paper confirm
our belief in the potential usefulness of our methodology for
several classes of domains, among which medicine repre-
sents a prominent field: the presence of structural knowledge
and the availability of costly data set, poor in number and
in quality, motivate the development of approaches able to
combine qualitative and quantitative information. The mar-
riage of QR and fuzzy-based methods allows us to smooth
down the distinction between mathematical models identi-
fication and Data Mining approaches, moving towards new
approaches able to intelligently analyze the available data.
In our future work, our aim will be to better systematize FS-
QM in order to allow for its broader application in different
dreas.
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