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Abstract

Recent works carried out within the Qualitativ e
Reasoning (QR) research framework are centred on th e
exploitation of QR techniques to address the proble m
of quantitative system Identification (SI) with the goa l
to enhance the overall process, namely the selection o f
a proper model identifier and the parameter estimatio n
procedure . Traditional Si, both parametric and non-
parametric, may be really problematic for those applica -
tion domains, such as the medical/physiological one, o f
which either the available knowledge is incomplete o r
the structural model is not identifiable or the observe d
data are poor in number and in quality . This paper deal s
with the application of an hybrid method, which build s
a fuzzy system identifier upon a qualitative structura l
model, to solve identification problems of the intracel -
lular kinetics of Thiamine (vitamin Br ) . The model ob -
tained is not as much informative as a purely structura l
one but robust enough to be used as a simulator, an d
then to provide physiologists with a deeper understand -
ing of the Thiamine metabolism in the cells .

Introduction
The identification of quantitative structural models of the dy-
namics of complex real-world systems offers potential bene-
fits to the deep comprehension of the system at study as wel l
as to the performance of certain tasks . If we focus our at-
tention on physiology and medicine, such models provide a
concise description of complex dynamics, allow for the cal-
culation of physiological quantities that can not be directl y
measured, allow the physiologist to formulate hypothese s
dealing with the physiological and biochemical structur e
of the system, help the clinician to formulate and test di -
agnostic hypotheses as well as to plan therapeutical treat-
ments . Unfortunately, structural modeling of a large number
of patho-physiological mechanisms may be hampered by th e
incompleteness of the available knowledge of the underlyin g
nonlinear dynamics . In such cases, the system dynamics i s
often studied under the hypothesis that minimal perturba-
tions affect the system, that is under the linearity assump-
tion . Although the resulting model captures limited aspect s
of the system dynamics, it may give useful information ; nev-
ertheless, also the linear formulation may be prohibitive a s
identifiability problems may occur .

In theory, a valid alternative to structural modeling, al -
though potentially less informative, could be represented b y
non-parametric black-box modeling approaches to sI (Jan g
1993 ; Khannah 1990 ; Wang 1994) . But, in practice, suc h
models, which learn the nonlinear dynamics of the syste m
from input-output data, result to be very inefficient and no t
robust when the available experimental data are poor eithe r
in number or in quality . Such a situation is not rare in th e
fields of physiology and medicine .

Motivated by these considerations, we started a projec t
which aims at the design and implementation of an effi-
cient and robust method capable to make the most of bot h
the available structural knowledge and the observed data .
The method, that we call FS-QM, is domain-independent an d
results from the integration of qualitative models, namel y
QSIM models, and fuzzy systems (Bellazzi et al . 1998 ; Bel-
lazzi, Guglielmann & Ironi 1999) . As both frameworks have
been introduced to cope with the complexity of real-worl d
systems, their combination should benefit from the analyti-
cal power of the former one as well as from the approxima-
tion properties of the latter.

In outline, the method exploits the incomplete structura l
knowledge to build a QSIM model of the system dynamics ,
and then it infers, through simulation, all of its possible be-
haviors . The set of behaviors is mapped, in accordance wit h
the a priori expert knowledge, into a fuzzy rule-base, wher e
each rule may be seen as a measure of the possible transi-
tion from states to the next ones . The mathematical inter-
pretation of such a rule-base properly defines and initialize s
a nonlinear functional approximator, which is then tuned t o
the experimental data . The emphasis of this paper is rathe r
on applicative aspects than on methodological issues . We
discuss the identification problems which arise from model-
ing a system in the physiological domain, the intracellula r
thiamine kinetics, and the solutions given by the applicatio n
of our method (Bellazzi et al . 1998; Bellazzi, Guglielman n
& Ironi 1999) . The comparison of our results with those ob-
tained by means of a traditional application of fuzzy system s
to SI (Wang 1994) highlights the good performance of ou r
method when applied to derive a simulator of the thiamin e
kinetics in the intestine cells . The significant improvemen t
in terms of efficiency and robustness of FS-QM over tradi-
tional methods is due to the good initialization of both th e
structure of the fuzzy identifier and its parameters built by
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encoding the system dynamics captured by its qualitative be-
haviors (Bellazzi, Guglielmann & Ironi 2000) .

For the sake of completeness, let us remark that the ide a
of exploiting QR techniques for Si is not new within the Q R

community . Most of the work done addresses the prob-
lem of the automation of the traditional process of Si . tha t
is the automation of both structural identification and th e
choice of the most appropriate numerical techniques for pa-
rameter estimation and their initialization (Bradley, Stoll e
1996 ; Bradley, O'Gallagher & Rogers 1997 ; Easley, Bradley
1999 : Capelo, Ironi & Tentoni 1996; Capelo, Ironi & Ten-
toni 1998 : Ironi, Tentoni 1998) . Another piece of work deal s
with a method for Si capable to deal with states of incom-
plete knowledge (Kay, Rinner & Kuipers 1999) in whic h
both the candidate model space and the stream of obser-
vations are defined semi-quantitatively . What distinguishe s
this piece of work from the other ones is its capability to
deal with systems characterized by both incomplete struc-
tural knowledge and poor stream of data .

Modeling problems in th e
physiological/medical domai n

The application of mathematical modeling techniques to th e
study of a wide spectrum of metabolic and endocrine pro-
cesses has been largely described in the literature (Carson ,
Cohelli & Finkenstein 1983). A metabolic system may be
essentially viewed as a system of chemical reactions an d
t r ansport processes controlled by substances produced b y
the endocrine system . The description of the dynamics of
such systems, even in the most simple cases, is a reall y
complex task, and it has been made tractable by the com-
partmental modeling methodology (Atkins 1974 ; Jacquez
1972) . Within this framework, a system is decompose d
into a finite set of subsystems, called compartments, and the
compartments interact either with each others or with the
environment by exchanging material .

A compartment is fundamentally an idealized store of a
substance, which may often be adequately assumed homo-
geneously distributed . The transfer of material through th e
system that occu r s by physical transport or chemical reac-
tions is represented as transfer from one compartment to
another. The model equations are expressed by ordinary
Differential Equations (ODE) in terms of the state variable s
of the system, denoted by (t), that represent the concentra-
tion or amount of substance in the i—th compartment whic h
exchanges matter with other compartments at time t . Then,
the rate of change of each x i (t) is based on the mass balanc e
law :

= .fio +
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where .1, denotes the time derivative of x, ; Li denotes the
rate of mass transfer into the i —tit compartment from the j-
th compartment . In general, the transfer of material depend s
on the quantity or concentration of material in the sourc e

indicated as compartment 0

compartment and may also be dependent on the quantity o r
concentration in some other compartments, that is :

fz~ = .fiJ (xi : xi, xn, , - . .)

	

( 2 )

where x i denotes the state variable of the source compart-
ment, whereas :r t , a: nz , . . indicate the variables controllin g
f2i . The mathematical model of a compartmental structure
then consists of a set of ODE's which are fully defined whe n
the functional relations (2) are explicitly stated . Mostly ,
given the complexity of the processes dealt with, such re-
lations are naturally nonlinear, and their definition may ver y
often be intractable due to the incompleteness of the avail -
able knowledge . However, for systems intrinsically nonlin-
ear . a linearity assumption (fii (a; i ) = k i1 :ri ) may be rea-
sonably adopted when the observed dynamics is obtained i n
response to a small-signal perturbation around the syste m
steady-state condition produced by the administration of a
tracer material . The next step in the system identificatio n
process deals with the estimation of the unknown parame-
ters from data . Also in the linear case, this step may be criti -
cal if the a priori identifiability condition is not satisfied, tha t
is, if from the ideal data that the experiment would generat e
it is not possible to determine uniquely the theoretical esti-
mate of the unknown parameters . However, as real data are
not noise-free, theoretical identifiability does not guarante e
that the estimation results are accurate enough to identify a
good model of the system dynamics, i .e . a posteriori iden-
tifiability. A model can be considered valid, and then giv e
useful information if the identifiability conditions are satis-
fied . Methods for testing both a priori and a posteriori iden-
tifiability are discussed in the literature (Cobelli, DiStefan o
III 1980, Ljung 1987) .

The intracellular thiamine kinetics :
Identification problems and solution s

Thiamine (Th), also known as vitamin B t , is one of the ba-
sic micronutrients present in food and essential for health .
In particular, Th is contained in dried yeast, meat, nuts ,
legumes and potatoes . Within the cells, Th participate s
in the carbohydrate metabolism, in the central and periph-
eral nerve cell function and in the myocardial function .
Deficiency of Th causes beriberi with peripheral neuro-
logic, cerebral and cardiovascular manifestations (Merck
Sharp and Dohme 1987) . More in detail, after its absorp-
tion in the intestinal mucosa, Th is released into plasm a
for the distribution to the other tissues, either in its orig-
inal chemical form (Th) or in a mono-phosphorilated on e
(ThMP) . Th is transported through the cell membrane b y
means of an enzyme-mediated mechanism, and is then di-
rectly transformed into a higher energy compound, Thi-
amine Piro-Phosphate (ThPP) ; ThPP is dephosphorylate d
into ThMP, and it is in equilibrium with Thiamine Tri -
Phosphate (ThTP) . ThPP is the active element that partici-
pates in the carbohydrate metabolism. The chemical reac-
tions occurring within the cells are described in Fig . I .

Identification of the structural mode l
Since early 80's several studies have been carried out t o
quantitatively assess the Th metabolism in the cells (Rindi
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Figure 1 : The chemical pathway of Th within cells . Th transform s
into ThPP ; ThPP transforms into ThMP, that is transformed bac k
into Th . ThPP also transforms in a reversible way into ThTP .

et al . 1980; Rindi et at . 1992). All these studies were
performed on rats, and had the basic goal to quantitatively
define the normal and pathological conditions underlyin g
Th chemical transformations and cellular uptake and re -
lease . Since the Th metabolism is intrinsically nonlinear, th e
first exploratory approach to its quantitative characterizatio n
consists in its analysis around the steady state conditions .
Therefore, from an experimental viewpoint, all these studie s
were based on tracer experiments, in which a small amoun t
of labeled (radio-active) Th was injected in plasma or i n
peritoneum ; the specific activity (radioactivity per gram) o f
labeled Th was subsequently measured in plasma and in th e
cells . From a modeling viewpoint, a linear compartmenta l
model has been used to study the Th kinetics in several orga n
tissues, with particular reference to the nervous ones . Let u s
observe that the ThTP form can be neglected in the model .
As a matter of fact, the fast chemical pathway between ThP P
and ThTP and the relatively low concentration of ThTP al -
lows us to consider ThTP in equilibrium with ThPP . Then ,
the model, whose structure is shown in Fig . 2, is described
by the following ODE ' S :

t k19x4 + k 13 x 3 — (kow + k 21 )x i (3 )

.7; 2 k2t xt — k 32 :r 2 (4 )

:r3 ksax2 + k 35 :r 5 — ( kos + kt3)x3 (5 )

4:4 k40 a, 4 — k t4 x,t (6)

:cs ksou2 — k35 :r 5 (7)

where x i is the intracellular Th, x 2 is the intracellular ThPP,
x 3 is the intracellular ThMP, x 4 is the quantity of Th in th e
cell membrane while x 5 is the quantity of ThMP in the cel l
membrane ; it ' is the plasmatic Th and u2 is the plasmatic
ThMP. Finally, the parameters kz 1 are the transfer coeffi-
cients to be estimated from data . As a matter of fact, th e
compartments denoted by 4 and 5 are fictitious as they d o
not correspond to any chemical form of Th, but they are jus t
used to model the absorption process of Th in the cells . The
model (3-7) proved to satisfy a priori identifiability condi-
tions when a bolus injection in plasma is delivered .

The same model and the same experimental setting were
applied to study the intestine tissue metabolism in norma l
subjects and in subjects suffering from diabetes (one of th e
main disfunctions of carbohydrate metabolism), both treated
and non treated rats . In this case, the main purpose of th e
study was to quantitatively evaluate the differences in th e
transfer constants and turnover rates in the three differen t
classes of subjects ; on the basis of this evaluation it woul d
also be possible to understand if insulin treatment is able

Plasm a
u i

	

u ,

Figure 2 : The compartmental model of the Th metabolism withi n
cells . The inputs of the system are the quantity in plasma of Th an d
ThMP (measured as the concentrations wr and u2, respectively) .
The flows between the quantity x i (Th), x 2 (ThPP) and reflects
the chemical pathway described in Figure 1 .

to re-establish quasi-normal conditions in Th metabolism .
Unfortunately, the compartmental model identification wa s
unsuccessful, even using different optimization techniques ,
ranging from standard nonlinear estimation procedures to
Bayesian ones . This results in an a posteriori unidentifia-
bility of the model . The main reason of this failure may b e
explained by the intrinsical problems related to the experi-
mental setting : as mentioned before, the intracellular labeled
Th is measured after a bolus in plasma . However, the physi-
ological Th pathway in the intestine tissue presents a Th ab-
sorption way directly from the intestinal mucosa and a sub-
sequent release into the plasma tissue . On the contrary, it i s
completely unknown how the Th quantity is physiologicall y
absorbed by intestine cells from plasma, and also how suc h
absorption is regulated . Therefore, the linearity assumptio n
for the transport process from plasma into cells results t o
be completely inadequate . This problem hampers the use o f
compartmental modeling techniques for analyzing the data ,
and, at a first glance, the use of the data themselves . This
is particularly dramatic for this kind of experiments : at each
sampling time four rats are sacrificed, and a single measure-
ment is derived as the mean of the four subjects . The effort s
and costs of the experimental setting motivate the exploita-
tion of other techniques for data modeling .

The need for a novel approach

An alternative solution to structural identification is to resor t
to the so-called "non-parametric" modeling methods . This
term is somehow misleading, since the models are alway s
characterized by a set of equations and parameters ; however ,
such parameters do not have a precise physical meaning, an d
this gives the reason for the "non-parametric" wording . The
non-parametric methods aim at reproducing the functiona l
relationships between the observable variables only on th e
basis of the available data, without requiring knowledge o n
the physiological system at hand . In our case, due to th e
complexity of the problem, a natural choice is to exploi t
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nonlinear dynamic discrete models, known as Nonlinea r
AutoRegressive models with exogenous inputs (MARX) . In
such a framework the system dynamics of an output variabl e
y is described by the input-output equation :

?/A+l = .f . . .

	

2l k—h )

	

(8 )

where u E Sp " —1 and y E s}2 are discrete-time sequences, 1
and h are known observability indexes, and the function f ( . )
is in general unknown . Assuming 1, = h = 0, equation (8 )
may be written as follows :

v+- 1 = f ( a : A, ), where x; k =

In this context, methods recently proposed to find a func-
tion approximator of f are Feed-forward Neural Networks ,
Radial Basis Functions, wavelet Functions, Fuzzy systems .
However, to build f with the desired accuracy only from th e
observations, all these approximation schemes usually re -
quire sufficiently large data sets . As far as our application i s
concerned, such schemes cannot be applied, since no more
than 17 measurements are available for each Th chemica l
form . Moreover, the identification problem is a nonlinear
one : the treatment of nonlinear problems is not straightfor-
ward and demands some prior information to properly stat e
a reasonable initial guess on the parameter values, and the n
to get convergence to their optimal estimate . The method s
mentioned above, except Fuzzy Systems (FS), are not ca-
pable to embed prior knowledge, and therefore the initia l
values of the parameters are randomly chosen . In this set-
ting . the adoption of a non-parametric model able to exploi t
also the available structural knowledge seems the natural so-
lution for effectively coping with the problems mentione d
above . As a matter of fact, FS's are able to embed the a pri-
ori knowledge of the domain under the form of inferentia l
linguistic information, called Fuzzy Rules (FR), but in prac-
tice, the information in the linguistic form about a comple x
system is often poor or unavailable, and then the function f
is usually inferred only from the data .

This paper deals with the application of an hybrid metho d
(Bellazzi, Guglielmann & Ironi 2000), based on the integra-
tion of QSIM models (Kuipers 1994) and FS's (Wang 1994) ,
called FS-QM, which builds a fuzzy identifier upon the avail -
able a priori knowledge . The idea underlying our method i s
simple : the set of behaviors {13 1 . . B ~} generated by th e
simulation of a QSIM model of the system at study is mappe d
into 1 VI FR's which, as a whole, capture the structural an d
behavioral knowledge of the system dynamics . As a matter
of fact, such a mapping is possible whenever the availabl e
knowledge allows us to define a bijective mapping betwee n
the quantity-space Qr,, in the QSIM representation, and the
fuzzy-quantity space Qr ; , whose elements are fuzzy sets . In
outline, the main steps of the method are sketched in Fig . 3 .

The mathematical interpretation of the generated rules ,
through suitable fuzzy operators, such as the singleton fuzzi-
tier, the product inference rule, the center average defuzzi-
tier, and the characterization of fuzzy sets by Gaussian mem-
bership functions, allows us to initialize the approximator fo

-Without loss of generality we consider here nonlinear Multipl e
Input-Single Output systems

QSIM homework
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Figure 3 : Main step of FS-QM .
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where : { . } and {QJ } are the parameters characterizing th e
Gaussian membership function which is related to the inpu t
variable a: and appears in the j-th rule, .i/' is the point where
the membership function of the output, or equivalently of
the consequent, in the j-th rule reaches its maximum value .
Such an expression allows us to interpret the nonlinear func -
tion approximation problem with a FS as the process of tun -
ing on a set of data the vector of parameters H = { y , , Q} ,

initialized by the vector B in equation (9) . The approxima-
tor derived in equation (9) is known to possess the universa l
approximation property, i .e . the capability of approximatin g
any continuous function with an arbitrary degree of accuracy
(Wang 1994) .

A non-parametric model of Thiamine kinetic s
Although a complete knowledge on the mechanism of T h
transport in the intestine cells from plasma is not known, th e
overall structure of the model in Fig . 2 still remains valid :
the fluxes and the compartments in plasma and in the cell s
reflect the available information on the system . On the con-
trary, the number of compartments that model the membran e
and the functional relationships describing the cellular ab-
sorption are not completely known . Therefore, we can ig-
nore the compartments 4 and 5, and consequently the equa-
tions (6-7), and directly model the plasmatic Th absorptio n
process .

As data sets for all the state variables are available, a non -
parametric model of the overall system can be obtained (i )
by splitting it into three decoupled subsystems, related to th e

1 ,
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f
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(9)
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Variable s
x (nCi/g) Q (nCi/g )

0 Low 0 1 3
x i (0Th*) Medium 30 1 3

Th* High 60 1 3
0 Low 5 30

X 2 (OThPP*) Medium 80 30
ThPP* High 165 35

0 Low 0 22
X3 (OThMP*) Medium 50 20

ThMP* High 130 44
0 Low 20 400

u t (0 U1S) Medium 1000 400
U1S High 2000 400

(U1S inf) Very High 3000 400
0 Low 70 140

U 2 (0 U2S) Medium 330 70
U2S — High 470 50

(U2S inf) Very High 600 60

Table 1 : Mapping between Q L and QF related to each variable . The last two columns report, respectively, the values of :'i- and a .

three Th chemical forms (Th, ThPP and ThMP) obtained i n
response to the tracer input signals . namely plasmatic T h
(ur) and ThMP (u 2 ), and (ii) by formulating a NARX mode l
for each of them. Such models can be written as follows :

:/;I k.+ ,

	

= fl(x ik) x3k, n1k) ( 10)

x2 k+ ,

	

_ .f2(x2 k , x r k ) (I1 )

.7;3 k+1 f3(X 3 k , X2k, u2k) ( 12 )

The first step consists in the identification of fl , f2 , f3

in normal subjects . Our final goal deals with the construc-
tion of a simulator of the overall nonlinear intracellular T h
kinetics . Such a simulator will allow us to understand th e
discrepancies in the Th metabolism between the differen t
classes of subjects, namely normal, diabetic either treated
or not, by comparing the results obtained by the simulato r
against the actual data .

Construction of the fuzzy identifier s

The construction of each proceeds as sketched in Fig . 3 ,
and starts with the construction of the QSIM models of each
decoupled subsystem . Each model is described by a singl e
Qualitative Differential Equation (QDE) .

1 - Th subsystem : The Th dynamics is described by the QDE :

:i; I = S+ (u i ) +M+ (x 3 ) — M+ (x i )

	

(13 )

—S+ and M+ have the usual QSIM meaning ;
—S+ (un ) models the nonlinear absorption process whic h
governs the transfer of Th from plasma . The saturable func-
tional relation is justified by the limited quantity of the me-
diating enzyme in the time unit ;
—M+ (x 3 ) models the chemical reaction of ThMP into Th .
Let us observe that x 3 is modeled as a triangular shaped
function : this modeling assumption is based on the knowl-
edge of the tracer qualitative behavior in the cells .

— M+ (x i ) models the chemical reaction of Th into ThPP .

2 - ThPP subsystem : The dynamics of ThPP is modeled by :

x2 = M+ (x i) — M+(x2)

	

(14 )

— M + (x 2 ) models the reaction of ThPP into ThMP. x i

is analogously modeled as .x 3 , and M+ (x i ) has the sam e
meaning as above .

3 - ThMP subsystem : The equation modelling the dynamic s
of ThMP is :

X3 = S+ (21,2) + M+ (X2, — M+ (x 3 )

	

(15 )

The functional constraints are analogously defined as in th e
other subsystems .

The input-output variables in (10-12) assume values i n
R+ , and their qualitative representations in both QSIM an d
FS frameworks are defined by their respective QL's and
Q F 's . Table 1 summarizes the Q L 's and QF 's of each x i

and u i , and highlights the one-to-one correspondence be-
tween each Q 1; and the respective Q F . Let us observe that
the elements of Q F are represented in the linguistic form
as well as through the values of the parameters which char-
acterize the related membership functions . In our context ,
such parameters are the mean values (f) and standard devia-
tions (a) and have been derived on the basis of the availabl e
physiological knowledge . Since the data used for Sl com e
from tracer experiments, each subsystem is simulated start-
ing from x i (0) = 0, i = 1, 2, 3 . For the same reason, amon g
all of the generated behaviors we consider only those one s
that reach the system quiescent state . The translation of th e
generated Quiescent Qualitative Behaviors (QQB) into fuzz y
rules is preceded by their analysis with the aim of (i) aggre-
gating those behaviors that do not present any difference s
with respect to the variables of interest, (ii) filtering thos e
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FS-QM - Loops 64, Threshold error 0 .0001

	

FS-OM - Loops 32, Threshold error 0 .0001

	

FS-QM - Loops : 32, Threshold error: 0.0001
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Figure 4 : FS-QM identification results related to x i (A), x 2 (B), x3 (C) . The results have been obtained with a threshold error equal t o
0.0001 .

behaviors which are inconsistent with physiological con-
straints not explicitely embedded in the model . The remain-
ing Admissible Behaviors (AQB) are automatically mapped
into FR's . Table 2 summarizes, for each model, the numbe r
of QQB's, of AQB's, and of the generated IF-THEN rules . Let
us remark that the set of AQB's does not include spuriou s
behaviors, which, on the other hand, would have been easil y
filtered on the basis of the a priori knowledge of the admis-
sible experimental profiles . Generally, the absence of an y
spurious behavior in the AQB set is not guaranteed : in suc h
a case, a reduction in FS-QM efficiency might be caused .

Table 2: Results of the qualitative simulation of the 3 models, i n
terms of the number of the generated QQB's . and of the AQB's . Th e
number of the generated IF-THEN rules from the translation of th e
AQB's into the fuzzy framework is also reported .

The mathematical interpretation of each set of rules, i n
accordance with the choices underlying equation (9), allow s
us to derive a good initialization of each approximator fi0 ,
and then the system is described by :

fi1 1 ( t't, x3,'t1 1) _
1 — :f 1

E f I x t[e
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X denotes the mean value of the membership functio n
which belongs to Q F of x,, , and appears in the consequen t
part of the j-th rule . The vector of parameters in each ap-
proximator, initialized in accordance with the values in Ta-
ble 1, provides a good initial guess for the optimization pro-
cedure for parameter estimation from data .

Results
In order to make significant the comparison of the perfor-
mance of our method with a data-driven approach , we look
at each equation in (16-18) as a three-layer feedforward neu-
ral network, and exploit the Back Propagation algorithm (BP )
for parameter estimation . As data-driven approach, we con-
sider fuzzy-neural identifiers (Fs-DD) whose structures are
dimensionally fixed equal to the instantiated values of M
in (16-18) but built from the numerical evidence . Let us
observe that, since we exploit information derived from th e
qualitative simulation to fix the dimension, the performanc e
of FS-DD is here improved with respect to its traditional ap-
plication where also its structur al dimension has to be de -
rived from the data .

The application of our method to identify the system fo r
simulation purposes follows a three-steps scheme :

1. identification : for each fin , the values of parameters are
tuned on a set of real data by using the BP algorithm i n
order to get an estimate 6 of 6 . starting from the initia l
guess B provided as explained above ;

2. validation : the accuracy of fi , derived at step 1, is tested
in accordance with a parallel scheme' on a new data set ;

3 1n a parallel scheme, the next value of the output variable i s
calculated given the current measurements of the input variable s
and the simulated value of the current output : ;y~.+ 1 = f

# QQB' s
20
6

42

# AQ B ' s
2
6
7

# FR ' S

1 1
9

1 2

	 1 2 —( s01	 1 ) 2
e

	

.° 1e
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e
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e

( '1	 T l )2	 	 3)2 _( vl 	 " 1)2
(16 )

(17)
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Figure 5 : Fs-lm identification results related to x i : (A) - number of BP loops equal to 350 : (B) - number of BP loops equal to 200000 . Th e
training errors do not change .

Samples
A

3 . simulation : the accuracy of all of the three f, as a whol e
model is tested on a new data set in accordance with a
parallel scheme where only the current inputs to the over -
all system (n 1 . 11 2 ) are measured data whereas the curren t
output and input to each subsystem are simulated values .

Identification . Figure 4 shows the results we obtained wit h
the application of our method in the identification phase o f
each :c ; with a threshold error equal to 0 .0001 by using a
data set observed in normal subjects . Although the proble m
is ill-posed clue to the small number of data, FS-QM perform s
quite well : this can be explained by the goodness of the ini-
tialization of both the identifier structures and the guesses o f
parameters . On the contrary, FS-DD, initialized by exploit-
ing only the data, does not converge to the solution but i t
gets trapped in a local minimum . Let us fix our attention o n
the results of FS-DI) identification of x i : Fig . 5 highlights
that, although the number of BP loops is highly increase d
from 350 (Fig . 5A) to 200000 (Fig . 5B), the training er-
ror remains constant, and there is no way to reach the fixed
threshold error. Moreover, we can observe a perfect fit on th e
first I 1 data . Such a fit does not derive from identification
but is rather imputable to the construction of the requeste d
I I rules .

Validation and simulation . Each identified f; has been val-
idated on a new set of data collected in an independent ex-
periment, still on normal subjects .

Our final goal is the construction of a simulator of th e
overall system dynamics that is capable to reproduce the sys -
tem behavior in response to any input signals, at least in th e
range of the experimental settings previously defined . Suc h
a simulator is defined through the equations :

A+I

	

fl(LIA.,~3k+~~It•~

(19 )

=

	

.f3( .13k, .x2k( u2 k )

where .i: ;r, =

	

, and u ;, .,Vk, are the input data to the sys-
tem . The simulation results on the new data set (Fig . 6)

clearly show the robustness and validity of FS-QM as an al-
ternative methodology to identify nonlinear systems .

Remark . Clearly, within this approach the possibility o f
identifying parameters with a precise meaning is lost . bu t
the reliable simulator at our disposal makes possible to en -
rich the knowledge of Th kinetics and to provide diagnosti c
and therapeutic information to physiologist : in particular, i t
will be possible to fit the main goal of the study, that is th e
understanding of insulin action on the Th metabolism in th e
cell . An indirect evaluation of the effects of diabetes on T h
metabolism may be obtained by comparing the profiles sim-
ulated by (19) against the data of pathological subjects eithe r
treated or not . From a preliminary analysis of the results ob-
tained, we can reasonably affirm that ThPP exhibits the same
behavior both in normal and treated subjects .

Discussion
Mathematical modeling is often used in biomedical science s
to obtain a quantitative description of the (patho-)physiolog y
underlying a physical system . Compartmental models rep -
resent a powerful class of such approaches : they are abl e
to describe the mechanisms of release and uptake of a cer-
tain physiological substrate by contemporaneously express-
ing the system dynamics through a set of ODE ' s and quanti-
fying the fluxes of substrate between compartments throug h
a set of parameters . When the available data do not allow t o
identify the model parameters, due to measurement errors ,
inaccurate sampling time or, more simply, to inadequacy o f
some model assumptions, the model itself is revised or dis-
carded . An alternative solution is to resort to non-parametric
modeling, that describes the dynamics of the system at han d
relying on very general nonlinear functions, moulded by th e
available data . In this context, the structural assumption s
made by compartmental models are relaxed, and only a de-
scriptive quantitative knowledge may be derived .

Unfortunately, it may happen that also non-parametric ap-
proaches are likely to fail : as a matter of fact, since a pos-
teriori unidentifiability may be also due to the lack of eithe r
a sufficient number or a sufficient quality of data, the search
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Figure 6 : Fs—QM simulation results related to x i (A), x2 (B), x3 (C) .

for a robust non-parametric description turns out to be un-
feasible in most cases .

In this paper we have described the successful application
of a novel methodology that aims at filling the gap betwee n
the parametric (compartmental) and non-parametric model-
ing . Thanks to the application of QR techniques, the struc-
tural assumptions on the relationships between the proble m
variables are retained ; moreover, thanks to the application of
FS's, such assumptions are translated into a non-parametri c
model, whose parameters are properly initialized on the ba-
sis of a priori knowledge . Finally, the approximator of th e
system dynamics derived is robust enough for the purpose s
of the study.

From the application viewpoint, our proposed approach
enabled us to draw physiologically sound conclusions fro m
a set of data, that revealed to be unexploitable by classica l
compartmental modeling .

In conclusion, the results presented in this paper confirm
our belief in the potential usefulness of our methodology fo r
several classes of domains, among which medicine repre-
sents a prominent field : the presence of structural knowledg e
and the availability of costly data set, poor in number an d
in quality . motivate the development of approaches able t o
combine qualitative and quantitative information . The mar-
riage of QR and fuzzy-based methods allows us to smoot h
down the distinction between mathematical models identi-
fication and Data mining approaches, moving towards ne w
approaches able to intelligently analyze the available data .
In our future work, our aim will be to better systematize FS -
QM in order to allow for its broader application in differen t
areas .

Acknowledgemen t
We would especially like to thank A . Nauti and C . Patrin i
who provided us with the experimental data and physiologi-
cal knowledge .

References
Atkins . G . 1974 . Multiconrpartnrental Models in Biologi-
cal Systems . London : Chapman and Hall .

Bellazzi . R . ; Ironi, L . ; Guglielmann, R . ; and Stefanelli . M .
1998 . Qualitative models and fuzzy systems : an integrated
approach for learning from data . Artificial Intelligence in
Medicine 14 :5-28 .

Bellazzi, R . ; Guglielmann, R . ; and Ironi, L. 1999 . A
qualitative-fuzzy framework for nonlinear black-box sys-
tem identification . In Dean, T., ed ., Proc . Sixteenth Inter-
national Joint Conference on Artificial Intelligence (IJCA I
99), volume 2, 1041-1046 . Stockholm : Morgan Kauf-
mann, San Francisco .

Bellazzi, R . ; Guglielmann, R . ; and Ironi, L . 2000 . How to
improve fuzzy-neural system modeling by means of quali-
tative simulation . IEEE Trans . on Neural Networks I I (I ) :

249-253 .

Bradley, E ., and Stolle, R . 1996 . Automatic constructio n
of accurate models of physical systems . Annals of Mathe-
matics and Artificial Intelligence 17 :1-28 .

Bradley, E . ; O'Gallagher, A. ; and Rogers, J . 1997. Globa l
solutions for nonlinear systems using qualitative reason-
ing . In Ironi, L ., ed ., Proc. 11th International Workshop o n
Qualitative Reasoning, 31-40 . Cortona : Istituto di Analis i
Numerica - C .N.R., Pavia .

Capelo, A . C . ; Ironi, L . ; and Tentoni, S . 1996 . The need fo r
qualitative reasoning in automated modeling : a case study.
In Proc . 10th International Workshop on Qualitative Rea-
soning, 32-39 .

Capelo, A . ; Ironi, L . ; and Tentoni, S . 1998. Automated
mathematical modeling from experimental data : an appli-
cation to material science . IEEE Trans. SMC 28(3) :356-
370 .

Carson, E . ; Cobelli, C . ; and Finkenstein, L . 1983 . The
Mathematical Modeling of Metabolic and Endocrine Sys -
tents. New York : Wiley .

Cobelli, C ., and DiStefano III, J .J 1980. Parameter an d
structural identifiability concepts and ambiguities : a criti-
cal review and analysis . Am. J. Ply Biol . 239 :R7-R24 .

Easley, M., and Bradley, E . 1999. Generalized physica l
networks for automated model building . In Dean, T., ed .,



17

Proc . Sixteenth International Joint Conference on Artificia l
Intelligence (IJCAI 99), volume 2, 1047-1052 . Stockholm :
Morgan Kaufmann, San Francisco .

Ironi, L ., and Tentoni, S . 1998 . An integrated quantitative -
qualitative approach to automated modeling of visco-
elastic materials from experimental data . In Teti, R. ,
ed ., Proc. 1CME 98 - CIRP International Seminar o n
Intelligent Computation in Manufacturing Engineering ,
Capri, 1-3 July 1998, 381–388. CUES-Salerno & RES
Communication-Naples .

Jacquez, J . A. 1972 . Compartmental Analysis in Biolog y
and Medicine .

Jang, J . 1993 . Anfis : Adaptive network based fuzzy infer-
ence system . IEEE Trans. on Systems, Man and Cybernet-
ics 23 :665–685 .

Kay, H . ; Rinner, B . ; and Kuipers, B . 1999. Semi -
quantitative system identification . Technical Report TR
AI99-279 .

Khannah, T. 1990 . Foundations of neural networks . Read-
ing, MA : Addison-Wesley .

Kuipers, B . J . 1994 . Qualitative Reasoning : modeling and
simulation with incomplete knowledge . Cambridge MA :
MIT Press .

Ljung, L . 1987 . System Identification - Theory for th e
User . Englewood Cliffs : Prentice-Hall .

1987 . The Merck Manual . Merck Sharp and Dohme Re -
search Laboratories .

Rindi, G . ; Patrini, C . ; Comincioli, V. ; and Reggiani, C .
1980 . Thiamine content and turnover rates of some rat ner-
vous region, using labeled thiamine as a tracer . Brain Res .
181 :369–380 .

Rindi, G . ; Reggiani, C . ; Patrini, C . ; Gastaldi, G . ; and
Laforenza, U . 1992. Effect on ethanol on the in vivo kinet-
ics of thiamine phosphorilation and dephosphorilation i n
different organs-ii . Acute effects Alcohol and Alcoholism
27 :505–522 .

Wang, L . 1994 . Adaptive Fuzzy Systems and Control :
design and stability analysis . University of California a t
Berkeley : Englewood Cliff, NJ :Prentice–Hall .


	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10



