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Abstract

Contoured charts are widely used to visualize 2D phys-
ical fields . Experts can identify global patterns and
structures in a contoured chart by looking at the iso-
curves and reasoning about their spatial relations . We
develop an algorithm for computing the topological ad-
jacency relations between iso-contours . The algorithm
is novel in that it grounds the computation of spatia l
relations between aggregate spatial objects upon th e
computation of relations between the constituents . I t
is scale-independent and efficient . We present an ap-
plication of the algorithm to weather data analysis for
extracting patterns from numerical weather datasets .

Introduction
Contoured charts have been widely used to visualize 2 D
physical fields . They abstract out local fluctuations and
retain global patterns, and are a concise and qualitative
intermediary representation often suitable for studying
the global behaviors of physical fields . For example ,
in weather analysis, contoured charts are a primar y
tool used by meteorologists to read weather conditions .
From the charts, they detect different patterns such a s
pressure systems, troughs and fronts, and use them t o
forecast weather .

A contoured chart comprises a group of iso-curves .
These curves are non-intersecting : they do not self-
intersect or intersect each other . They are also separat-
ing: each curve divides the chart into two disconnected
parts . Patterns in a contoured chart are formed as qual-
itatively distinct spatial configurations of the curves .
To computationally identify a pattern, it is essential to
quantify the spatial relations between the curves . One
spatial relation of particular importance is the topolog-
ical adjacency (TA) relation : two curves are topolog-
ically adjacent if they are not separated by any othe r
curves .

Topological adjacency relations are useful in group-
ing iso-curves relevant to a pattern, and in serving as
links between curves to form the structure of a pattern .
The computation of the relations is a key component
in our larger research effort in automating global spa-
tial reasoning and pattern identification, the kinds of
reasoning tasks routinely performed by meteorologists

in analyzing weather data sets . It provides a set of ba-
sic spatial relations upon which more global, aggregat e
structural descriptions such as troughs, thermal pack-
ing, as well as features such as cold/warm fronts can b e
efficiently derived (Huang 2000 ; Huang & Zhao 2000b) .

In this paper, we study the properties and the tran-
sitivity rules of the topological adjacency relations ,
develop an efficient algorithm to compute them, an d
present an application of the algorithm to weather anal-
ysis for extracting high/low pressure centers . The algo-
rithm first determines an initial, partial set of topolog-
ical adjacency relations for curves from more primitive
relations on points, and then uses the partial adjacenc y
information together with higher-level structural knowl-
edge about adjacency graphs to recover the additional
adjacency information .

Related Work
Topological spatial relations between regions have bee n
studied mainly from two directions : the Region Con-
nection Calculus (RCC) (Randell, Cui, & Cohn 1992 ;
Bennett 1994 ; Cohn et al. 1997 ; Renz & Nebel 1999 )
in Al, and the 9-intersection model (Egenhofer 1991 ;
Engenhofer & Mark 1995) in GIS . RCC adopts a re-
gion topology in which regions are primary objects an d
the connection relation is the primary relation . Other
relations between regions are defined upon the connec-
tion relation with a set of axioms and Boolean function s
using first-order logic . RCC research (Bennett 1994 ;
R,enz & Nebel 1999) studies the composition rules o f
different spatial relations and uses these rules to un-
cover unknown relations from known ones .

The 9-intersection model adopts a point-set topol-
ogy in which points are primary objects and region s
are defined as sets of points . A topological rela-
tion between two regions is classified as one of th e
nine possible intersections between the interiors, exte-
riors and boundaries of the two regions (only empty
and non-empty are distinguished) . This classifica-
tion of adjacency relations has been used in defin-
ing spatial query languages (Svensson & Zhexue 1991 ;
Hadzilacos & Tryfona 1992) .

RCC and the 9-intersection model work at differen t
levels . The 9-intersection model works at the point
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Figure 1 : A group of separating, non-intersecting curves
in a 2D space. Examples of the topological adja-
cency relation are : TA(A, B), TA(B,C), TA(C,G) ,
-TA(A, C), -,TA(A, G) . Examples of the same-side
relation are : SS(A, B, C), SS(A, C, D), SS(B, E, D) ,
-,SS(B, F, E), -SS(A, D, C), -,SS(D, F, E) .

level and requires detailed descriptions of regions . RCC
works at the region level and requires only qualitativ e
descriptions of regions ; thus, it avoids expensive point -
level computations . A limitation of the 9-intersection
model is that a relation between two regions has to b e
completely determined by the two regions involved ; the
model is not able to compute binary relations that are
dependent on other regions, such as the topological ad-
jacency relation studied in this paper . RCC exploit s
the transitivity of relations using a logic approach and
is not restricted by this limitation . Though RCC rea-
sons about regions, in real applications it has to rel y
on point-level computation to build the base relation s
that it can reason upon. A problem for both RCC and
9-intersection is that the relations they study are often
too general to express rich spatial constraints found i n
many applications .

This paper studies topological relations between con-
strained aggregate spatial objects, i .e ., separating an d
non-intersecting curves, on which more specific rela-
tions can be defined . It develops an algorithm which
utilizes both point-level computations and curve-level
reasoning . The point-level computations are different
from the ones used in the 9-intersection model in tha t
when computing point relations between two curves ,
the points of other curves are also considered . The con-
straints imposed upon the curves enable the definitio n
of new spatial relations and the discovery of new tran-
sitivity rules which have not been previously studie d
using RCC .

Topological Adjacency Relation and
Topological Adjacency Grap h

In this section we examine the topological adjacenc y
relation defined on a group of separating and non -
intersecting curves in a 2D space . Common examples
of such curve groups are the iso-contours in contoure d
2D charts . Fig . 1 shows an example of such a group o f
curves, with relations to be defined shortly .

The separating and non-intersecting properties ar e
only meaningful to a curve when it is a member o f
a group of curves in a 2D space . For conciseness, i n
this paper we often do not mention explicitly the curve
group and the 2D space to which a curve belongs ; and
when we refer to a curve, it is assumed to be a membe r
of a group of separating and non-intersecting curves in
a 2D space . Due to the page limit, we will also omi t
some lengthy proofs and algorithms in the following sec -
tions . Interested readers should consult (Huang & Zha o
2000a) .

We first define topological adjacency and same-side
relations, and study their properties such as transitivity .
We then study properties of a graph defined on a grou p
of curves by their topological adjacency relations .

The Topological Adjacency Relation
Definition 1 (Topologically Adjacent) Two dif-
ferent curves A and B are topologically adjacen t
(denoted as TA(A, B)) if they are not separated by an y
other curves . A curve is not topologically adjacent t o
itself.

Definition 2 (Same-side) Two curves A and B are
on the same side of a curve C (denoted as SS(A, B, C) )
if both A and B are in the same part of the space par-
titioned by C .

Examples of these two kinds of relations are given
in Fig. 1 . The topological adjacency (TA) relation i s
a binary relation . It is symmetric but not transitive .
Whether it is reflective depends on definition . We define
it to be non-reflective so that it can induce a graph nat-
urally. The same-side relation is a ternary relation . One
of its basic properties is : SS(A, B, C)

	

SS(B, A, C) .

Lemma 1 Let A, B be two curves . Then TA(A, B )
VC V {A, B}, SS(A, B, C) .

This lemma describes the connections between the
two relations : if two curves are topologically adjacent ,
then they are on the same side of any other curves ; i f
two curves are not topologically adjacent, then there
exists another curve that separates them . The lemm a
is straight-forward from the definitions of the SS and
TA relations .

Although the TA relation is not transitive, it become s
transitive if the three curves involved satisfy a same-sid e
relation :

Lemma 2 Let A, B and C be three different curves .
Then TA(A, B)ATA(B, C)ASS(A, C, B) TA(A, C) .

Proof - by contradiction :
Assume - TA(A, C) . Then there exists a curve D ,

s .t . -iSS(A, C, D), i .e ., A and C belong to different
parts of the space D partitions . Since B can only be
in one the two parts of the space partitioned by D, we
have -SS(A, B, D)V- SS(C, B, D) . Therefore, we have
-,TA(A, B) V --,TA(B, C) . Contradiction . <
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Figure 2 : The T-graph (a) and the clique tree (b) of
the curves in Fig . 1 . The A-nodes of the T-graph ar e
B, C and E, and the NA-nodes are A, D, F and G . This
T-graph has four largest cliques . They are drawn as el-
lipses in (b) and are labeled by the curves they contain .
An edge between two cliques is labeled by the A-curv e
the two cliques share, which is also the only curve the
two cliques share .

Lemma 3 Let PoP1 . . .P,- be a sequence of curves,
in which any two consecutive curves Pi and P2+ 1
are topologically adjacent. Then di, 0 < i < n ,
SS(PP-1, P2+1, Pi) = TA(Po, Pn ) .

Lemma 3 is a generalization of Lemma 2 and can be
proven by induction . It can be used for reasoning about
whether two curves are topologically adjacent throug h
a chain of topologically adjacent curves .

Next we study the graph defined by the topologica l
adjacency relations .

The Topological Adjacency Graph and It s
Propertie s
Definition 3 (Topological Adjacency Graph )
The Topological Adjacency graph (T-graph) of a se t
of curves is a two tuple : (V, E), where V is the set of
curves, and E is the set of all unordered pairs of curve s
A and B in V that satisfy TA(A, B) .

The T-graph of the curves in Fig . 1 is shown in Fig . 2
(a) . In a T-graph, each node is a curve and each edge i s
a topological adjacency between two curves . The node s
in a T-graph can be classified into two types :

Definition 4 (A-node (A-curve)) An A node (A-
curve) is an articulation node 1 in a T-graph .

Definition 5 (NA-node (NA-curve)) A NA-nod e
(NA-curve) is a non-articulation node in a T-graph .

A NA-curve can bound a region, together with th e
boundary of the space if necessary. This is because a
NA-curve partitions a space into two parts such that
all other curves are in one part and none are in th e

'An articulation node is a node of a connected grap h
whose removal will disconnect the graph .

other. Therefore, the part contains no curves is a region
bounded by the NA-curve alone . On the other hand, a n
A-curve cannot bound a region by itself because bot h
the two parts it partitions contain other curves . Exam-
ples of NA-curves and A-curves are given in Fig . 2 .

A graph can be represented by all its largest cliques .
Next we show that the largest cliques of a T-graph have
some interesting properties .

Lemma 4 Let a and be two different largest clique s
in a T-graph . Then a and ,Q share at most one node ,
and the node, if it exists, is an A-node of the T-graph .

Proof : Omitted due to space limitation .

Theorem 1 Define a graph G = (V, E) using a T-
graph T, where V = {a : a is a largest clique of T} ,
and E = {(a,13) : a and are in V and share a node} .
Then G is a tree .

Proof :
Since a T-graph is a connected graph, its clique graph

is also connected. Each edge in a clique graph corre-
sponds to an A-node in a T-graph, whose removal will
disconnect the T-graph. Hence, removing an edge o f
the clique graph will also disconnect the clique graph .
Therefore, every edge of a clique graph is a bridge and
the graph is a tree . a

Each of the largest cliques in the T-graph represent s
a connected region in the space which is bounded b y
all the curves in the clique . The tree structure of a
clique graph can also be understood from the point o f
view of regions . N separating, non-intersecting curve s
divide a 2D space into N + 1 regions . On the other
hand, suppose there are M A-curves and N — M NA-
curves . Each NA-curve can bound a region by itself . So
N — M NA-curves produce N — M regions . M A-curve s
correspond to the M edges in the clique tree, so there
are M + 1 largest cliques in the tree that bound M + 1
regions . The total number of regions counted from thi s
way is also (N — M) + (M + 1) = N + 1 . The cliqu e
tree of the curves in Fig . 1 is given in Fig . 2 (b) .

Corollary 1 A cycle in a T-graph is contained in one
and only one of the largest cliques of the T-graph .

Proof : Follows from Theorem 1 .

Corollary 2 Let A and B be two nodes of a T-graph G ,
TA(A, B) . Then a path between A and B is containe d
in the largest clique of G that contains both A and B .

Proof : Follows from Corollary 1 .

Computing the Topological-Adjacenc y
Graph

In this section, we study how to compute the T-grap h
of a group of separating, non-intersecting curves in a
convex 2D planar space . We first present an algorith m
for computing a sub-graph of a T-graph . We then de-
scribe how to use this sub-graph to compute the T -
graph. Finally, we present the entire algorithm and
study its complexity . The algorithm requires each curv e
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be represented as a sequence of points . This is not a
severe restriction since many contour charts in practic e
are generated from numerical grid data .

The D-graph

(a) Inpu t

P

o \~y~~ ~4rl,ggv ~\ /~--

~~~~~~!vvV

	

%Tt*Ai
Ail

(b) Delaunay neighborhood grap h

/

(c) D-graph

Figure 3 : A sample run of Algorithm 1 . Input (a) is a
set of iso-curves contoured from a 2D pressure dataset .
Each curve is represented as a sequence of points (dar k
dots) . A Delaunay triangulation of all the points o f
the iso-curves is shown in (b) . A D-graph (c) is then
computed by Algorithm 1 . In (c), gray lines represent s
iso-curves and dark lines curve adjacencies . A curve
adjacency is determined by the shortest Delaunay edge
between two curves .

A T-graph is a very useful neighborhood graph on a
group of curves . A curve is an aggregate object whose
constituent objects are points . We use a relation aggre-
gation approach (Huang & Zhao 1999) to build a neigh-
borhood graph of curves . In this approach, each edge
in a neighborhood graph is treated as a neighborhoo d
relation . The neighborhood relations between aggre-
gate objects are built by aggregating the neighborhoo d
relations between the constituent objects .

Algorithm 1 computes a neighborhood graph of
curves . We call such a neighborhood graph a D-graph .

Algorithm 1 The D-graph computing algorithm
• Input: a group of separating, non-intersecting curves ,

each curve is represented as a sequence of points .

• Output: a graph whose nodes are all the curves .

• The algorithm :

– Build a Delaunay triangulation neighborhoo d
graph on all the points of the given curves .

– Relation aggregation :
* Examine every edge in the Delaunay neighbor -

hood graph, if a edge connects two points tha t
are on two different curves, establish an adjacenc y
between the two curves if such an adjacency has
not been established .

The algorithm first builds a Delaunay triangulation o n
all the points of the given curves . It then checks ev-
ery Delaunay edge and builds an adjacency between
two curves if the edge checked connects the two curves .
The result is a D-graph . A run of the algorithm i s
given in Fig . 3 . The algorithm has a time complex-
ity of 0(Mlog(M)), where M is the total number of
points . A Delaunay triangulation takes O(Mlog(M) )
time (Lee & Shachter 1980), and the relation aggrega-
tion step takes only O(M) time since there are O(M )
edges in a Delaunay neighborhood graph, which is a
planar graph .

A D-graph is connected and has the same node-se t
as its corresponding T-graph . Next we show that whe n
the points in each curve are dense enough, a D-grap h
is a sub-graph of its corresponding T-graph .

Definition 6 (The closeness condition) Let e be
the minimum distance between any two points on differ-
ent curves and let d be the maximum distance between
any two consecutive points on a same curve . The set of
points satisfies the closeness condition if A,e > d .

Theorem 2 If the points of all given curves satisfie s
the closeness condition, then the D-graph computed b y
Algorithm 1 is a subgraph of the T-graph .

To prove Theorem 2, we only need to prove that tw o
points on two non-topologically-adjacent curves will no t
be connected by a Delaunay edge . Since such an edge
will have to cross between two consecutive points on a
curve, when consecutive points are closer to each other ,
the edge will be too close to both the two points i t
crosses, and it will be excluded by Delaunay triangula-
tion . The formal proof of Theorem 2 is omitted .

Computing a T-graph using a D-graph
Since a D-graph is connected, any two nodes of th e
graph can be connected by a path . According to Corol-
lary 2, when a D-graph is a sub-graph of a T-graph, al l
the paths of the D-graph have the following properties :

1 . If the two end nodes of a path are topologically ad-
jacent, then all the nodes in the path are topologi-
cally adjacent to each other because they are in the
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Figure 4 : Determining which side of a curve C anothe r
curve A is on . Curves A and C are adjacent in the
D-graph. P1 Q is a Delaunay edge between them . P2
and Po are the next and previous points of P1 in curve
C, following the default traversing direction of C. Thi s
figures shows the configuration when curve C is turnin g
right at point P1 . Q as drawn is on the right side o f
curve C. The three gray dots are the other three possi-
ble positions of point Q with respect to lines Po P1 and
Pi P2 , in which Q would be on the left side of curve C .

same largest clique . Further more, for every thre e
consecutive nodes Pi , Pi+1 and Pi+2 in the path ,
SS(Pi, Pi+2, Pi,+1) .

2 . If the two end nodes of a path are not topologicall y
adjacent, then there exist three consecutive nodes in
the path Pi , Pi+1 and Pi+2, s .t . -ISS(Pi, Pi+2, Pi+1) .

Therefore, whether two curves are topological ad-
jacent can be decided by finding a path that con-
nects their corresponding nodes in the D-graph, an d
checking whether any three consecutive nodes Pi , Pi+ 1
and Pi + 2 in the path have the same-side relation :
SS(Pi , Pi+2, Pi+1) . We have developed a clique-
building algorithm to compute all largest cliques of a
T-graph from a D-graph by building depth-first-search
trees of a D-graph and examining the same-side rela-
tions between a node, its parent and its grandparen t
in the trees . The algorithm has a time complexity of
O(N 2 ), where N is the number of curves . The details
of the algorithm are omitted here .

Determining the Same-Side Relation

The clique-building algorithm requires the computatio n
of SS(A, B, C) when A and B are both adjacent to C
in the D-graph . This can be done by selecting a defaul t
traversing direction of curve C, and using this travers-
ing direction to determine which side (left or right) of
the curve C the curves A and B are on .

When two curves A and C are adjacent in the D -
graph, there exists a Delaunay edge connecting them .
This edge can be used to determine the side of curv e
C on which curve A is located, as illustrated in Fig . 4 .
The side of curve C on which point Q (and curve A )
is located can be determined by examining the spatia l
configurations between the four points Po, P1 , P2 and Q .

Fig. 4 shows the configuration when curve C is turnin g
right at point P1 . In this configuration, if Q is on th e
right side of both lines PoP1 and P1 P2, then Q is on th e
right side of curve C; if Q is on the left side of either
line Po P1 or line P1 P2 (i .e ., positioned as the three gray
dots in the figure), Q is on the left side . Likewise, the
configuration when Curve C is turning left at point P1
can be similarly solved .

The above method of determining side requires that
the Delaunay edge P1 Q between two curves does not
intersect the two curves at points other than P1 and Q .
This means there should be no cross edges - Delaunay
edges that cross between two consecutive iso-points o n
a same curve. To guarantee no cross edges, a highe r
sampling density than the one specified in the closenes s
condition is required. One property of Delaunay trian-
gulation proved in (Amenta, Bern, & Eppstein 1998)
is that when a set of sample points S r-samples 2 a
group of smooth curves, r < 1, then the Delaunay tri-
angulation of S contains the polygonal reconstruction o f
the curves . So if the iso-points 1-sample the iso-curves ,
there will be no cross edges and the above method o f
determining side can guarantee correct result .

Complexity Analysis
Combining the D-graph algorithm and the clique-
building algorithm, we obtain an algorithm for con-
structing a T-graph . The algorithm has a time com-
plexity of O(Mlog(M) + N 2 ), where M is the number
of points and N is the number of curves . In real ap-
plications such as computing the topological adjacenc y
relations of iso-contours in a weather chart, N is usu-
ally a small number (typically less than 100) and the
term N 2 can be ignored .

Results and Comparison
Fig . 5 and Fig . 6 give two T-graphs computed by ou r
algorithm from the iso-contours of two pressure charts .
The curves in Fig . 5 are the same as the curves in Fig . 3 .
The iso-contours are obtained by contouring pressur e
datasets using a 2D version of the marching-cube algo-
rithm (Lorenson & Cline 1987) .

The topological adjacency relation can also be com-
puted using the coloring algorithm for computing the
inside/outside relation described by Ullman (Ullma n
1984) . The curves are first mapped into a binary im-
age, where curve pixels are set as black and other pixel s
white . Then all white pixels are activated to form con-
nected regions . Two curves are topologically adjacen t
if they are the boundaries of a same region. The color-
ing algorithm is scale-dependent . Its time complexity is
O(H•V), where H and V are the horizontal and verti-
cal resolutions of the binary image used . Our algorithm

2A set of sample points r-sample a curve if for each poin t
p on the curve, the distance from p to its nearest sample
point is less than r * LFS(p), where LFS(p) is the loca l
feature size of p, i .e ., the distance from p to the medial axis
of the curve .



72

(a )

(b )

(a) D-graph

(b) T-graph

Figure 5 : The D-graph (a) and T-graph (b) of th e
curves in Fig . 3(a) computed by our algorithm . Node s
of a graph are drawn as dark dots located on the central
points of their corresponding curves . Edges of a grap h
are drawn as lines between the dots . The D-graph in
(a) is the same as the D-graph in Fig 3 (c) but draw n
in a different format for better comparison with the T-
graph .

Figure 6 : The T-graph computed by our algorithm us-
ing another group of iso-curves in a contoured chart .

is not scale-dependent and does not require curves be-
ing mapped to a binary image. Its time complexit y
is O(Mlog(M)), where M is the number of points o n
curves . It can be much more efficient than the colorin g
algorithm when M has the same magnitude as H and
V .

Our T-graph algorithm does not check the close-
ness condition, neither does it check if the iso-points
r-sample (r=1) the iso-curves . So the Delaunay trian-
gulation computed may contain cross edges to corrupt
the T-graph computation. This problem rarely occur s
(in fact never occurred during our experimentations of
the algorithm on tens of weather datasets) . It also can
be eliminated by modifying Algorithm 1 in the follow-

Figure 7 : Labeling high/low pressure centers . A high
pressure center is labeled by a "H" , and a low pressur e
center is labeled by a "L" . The NA-curves are drawn in
dark and A-curves in gray . The numbers besides curve s
are their contour levels . A high (low) pressure center i s
identified by a local maximum (minimum) NA-curve i n
the T-graph.

ing way. After a Delaunay triangulation is built, check
whether there is a Delaunay edge between every tw o
consecutive points on every curve . If there is no such
an edge for two consecutive points P and Q of curve C ,
subsample C by adding the midpoint of segment P Q
into the curve, and build a new Delaunay triangulatio n
incrementally. Repeat this step until every two con-
secutive points of every curves have a Delaunay edge .
Now the Delaunay triangulation is guaranteed to have
no cross edges and Algorithm 1 is guaranteed to outpu t
correct results .

Weather Application s
T-graphs can be used to label high/low pressure center s
in a pressure chart . A high (low) pressure center is a
region of local maximum (minimum) pressure value s
compared with its neighbor regions in a pressure chart .
It can be identified by a local maximum (minimum )
NA-curve 3 in a T-graph . Fig. 7 shows the results o f
the labeling on the two pressure charts used in previou s
sections .

Conclusion

This paper describes a novel algorithm for building an
important spatial relation on a group of curves . It use s

3 Only an NA-curve can encompass a region by itself .
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both local spatial relations (among points) and higher -
level knowledge about graph structures to build mor e
global spatial relations (among curves) . The algorithm
is scale-independent and efficient . We give a simple
application of the topological adjacency relation to ex-
tracting high/low pressure centers for illustration . The
topological relation, as well as the relation aggrega-
tion mechanism for building global relations using loca l
ones, have been used in identifying more complicate d
weather patterns such as pressures troughs and weathe r
fronts from spatial weather datasets (Huang & Zhao
2000b ; Huang 2000) .
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