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Abstract

Compositional modeling provides a number of advantage s
over conventional simulation software in explanation genera-
tion mainly because of its causal interpretation of data . How -
ever, little work was done with regard to a supporting algo-
rithm that can generate cogent explanations from the simula-
tion values and causal graphs of model parameters . Earlier
attempts did not solve the problem of irrelevant details intro -
duced by using compositional modeling ; as a result of whic h
misleading references resulted in attempting explanation o f
device behavior. This was mainly because they were base d
merely on equation tracing and did not try to infer anythin g
about the working phenomena from the causal order graph .
We present a domain independent algorithm that interprets
causal order graphs in terms of working template phenom -
ena rather than in terms of quantities defined in the equatio n
model . A byproduct of this is in capturing the user's psychol -
ogy in terms of phenomena rather than in terms of mathemat -
ical equations defined by some other person . The explanation
is in the form of natural language rather than graphs of nu -
merical variables . We also describe a number of extensions
of the algorithm to handle issues such as scalability and rank -
ing by significance .

Introduction
We present an algorithm for generating explanations of de -
vice behavior characterized by systems of mathematica l
constraints over model parameters and quantities ; withou t
using domain-specific knowledge . Such models are widely
used in engineering for dynamical systems, such as elec-
tromechanical and thermodynamic control systems . Con-
ventional simulation software can predict and plot the val-
ues of these quantities over time given the mathematica l
equations describing the model . However, this mass of data
would be difficult to interpret without any correlation to th e
structure of the modeled system or the working physica l
laws .

In engineering tasks requiring design and diagnosis ,
causal and functional interpretations of data, rather tha n
graphs of numerical variables would prove very useful i n
anticipating and understanding system behavior . In this pa -
per, we focus on causal interpretations and how we can pro -
duce explanations without using knowledge of the domain ;
interpreting causal order graphs in terms of active templat e
physical phenomena .

The CML (Compositional Modeling Language) (Falken-
hainer and Forbus 1991) provides formalisms for integrat-
ing models from modular pieces called model fragments ,
and the DME (Device Modeling Environment) (Iwasaki and
Low 1993) provides the environment for their qualitativ e
and numerical simulation along with explanation capabili-
ties . A separate report introduces the intended explanatio n
architecture and describes the text generation and huma n
interface techniques (Gruber and Gautier 1993) . Compo-
sitional modeling and causal ordering (Kumar 2000), are ef-
fective in providing the formalism for capturing much of th e
knowledge that typically resides in the mind of the designe r
and is otherwise never communicated to the user. However,
the formalism is not complete in itself unless it has a sup -
porting algorithm that extracts the encoded knowledge bac k
to a human-consumable form .

The algorithm presented, works independently of domai n
knowledge and tries to infer template phenomena of muta-
tion and evolution from causal order graphs which are them -
selves inferred at run time (Kumar 2000) during simulation .
This approach is natural and fits perfectly with the psychol-
ogy of the user who would be concerned only with the activ e
phenomena and not with the actual equations and intermedi-
ate quantities defined in the equation model of the designer .
The users can remain oblivious of the peculiarities and par-
ticulars in the lines of thought of the designer and the inter-
mediate parameters used in the equation model . This woul d
help them understand and predict the system behavior with -
out any knowledge of the design issues involved in compos-
ing the model .

In the next section, we describe two running example s
to which we will apply our algorithm and try to illustrate
the usefulness of the explanations produced . In the follow-
ing two sections, we analyze why it works, explaining ho w
combining the techniques of compositional modeling an d
causality with the supporting algorithm makes it possible
to achieve the desired requirements . The final two sections
provide a summary and compare related work . The actual
algorithm along with other motivating ideas and extension s
are described progressively in intermediate sections .

Running Examples
We choose to illustrate the algorithm with the help of tw o
physical settings which are both simple . We choose them in
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FIG 1 : Interconnected Pipeline s

particular because they are examples where earlier attempt s
fail but the new algorithm succeeds . Readers can also con-
vince themselves why the algorithm would apply to any ar-
bitrary scenario .

Interconnected Pipeline s
In this scenario [Fig 1], pipes are interconnected in a wa y
that flow at a point is related to flow at other points throug h
equations of conservation . We may want to be able to query
why the flow at a particular point changed .

Mass and Spring
In this scenario [Fig 2], the mass is connected to a sprin g
hanging from a horizontal rigid structure . The dynamics o f
the system would be defined in terms of the gravitationa l
constant, force constant of the spring etc . We will conside r
the case in which the gravitational constant depends on th e
distance from the surface of the earth (i .e . related to x) .

Compositional Modeling and Explanation
Engineering models used to describe and predict the behav-
ior of systems are typically mathematical models specifie d
by constraints over continuous variables . The world out-
side the system's abstraction is captured in terms of exoge-
nous quantities and approximations . Model formulation i s
the task of constructing a model from available primitive s
to answer some query. Typically, engineering models are
constructed by hand by an expert in that domain from back-
ground knowledge of physics and engineering .

In the compositional modeling approach (Falkenhainer
and Forbus 1991) to model formulation, engineering mod-
els are constructed from modular pieces, called model frag-
ments . It is an attempt to relegate the expertise and intelli-
gence required on the side of the designer to a system which

can compose sophisticated models from model fragments . A
model fragment is an abstraction of some physical domain ,
mechanism, structure, or other constituent of a model that
contributes constraints and partial descriptions to the over-
all behavior description of a model . Model fragments can
represent idealized components such as resistors, transistors ,
logical gates, electrical junctions, and pipes, and physical
processes such as flows .

Each model fragment has a set of activation condition s
that specify when an applicable model holds in a given sim-
ulation . (e .g . the model of flow of current in an electrica l
circuit can only hold when there is a voltage source and a
closed loop of conductors) . Each model fragment has con -
sequences specified in the form of algebraic and logical con-
straints on the values of simulation variables . The composi-
tional modeling approach assembles a mathematical mode l
from a library of model fragments . Model formulation and
simulation are interleaved . During a simulation, the activa-
tion conditions of model fragments are monitored ; at each
state, the system combines the equations of active mode l
fragments into a set called the equation model which it use s
to derive a numerical simulation . An equation model char-
acterizes a qualitative state which is a period during which
the equation model remains unchanged . Within a qualitativ e
state, the numeric values of quantities can change within a
certain boundary. When a quantity crosses a boundary, th e
system triggers the proposal of a new equation model un-
der a new qualitative state . Boundary values are determined
by a particular set of model fragments which get activate d
in that region because of their activation conditions gettin g
satisfied . An equation model changes when new model frag-
ments not originally present in the working model, get acti-
vated or some of the already present model fragments ge t
deactivated by virtue of their activation conditions gettin g
satisfied or not respectively. Changes in equation model s
mark the transitions in qualitative states . These transition s
are kept track of by DME and used towards explanation gen-
eration .
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Interpreting the data produced in simulation requires an
understanding of the knowledge used in formulating th e
model, such as physical mechanisms and component struc-
tures underlying the equations . If the engineer looking at
the output is not the person who built the model, or if th e
model is complex and contains hidden assumptions, then it
can be difficult for the engineer to make sense of the sim-
ulation output . DME's explanation services are intended t o
address this problem by relating predicted data to the un-
derlying modeling choices and qualitative state transition s
which are associated with the formulation of new equatio n
models .

CML and DME play an essential role for explanation b y
providing the derivation of the equations from the mode l
fragments . This derivation information is exploited in sev-
eral ways by the algorithm presented in this paper for causa l
explanation of events occurring in the system .

Causal Ordering and Explanation Generatio n
DME infers the causal ordering at run time . We use an adap -
tation of the procedure (developed by the Author) (Kuma r
2000) which performs a topological sort on the PreCondi-
tion graphs over active model fragments . Here, a partial
order is created over active model fragments based on the
relation of subsumption of preconditions and defining quan-
tities of model fragments . We make use of a number of prin -
ciples of meta-physics like the principle of modularity in in-
ferring the causal edges from the topology of the graph . Thi s
algorithm is unlike the procedure developed by Simon an d
Iwasaki (Iwasaki and Simon 1986) which makes simplisti c
assumptions and therefore does not scale well to comple x
scenarios . The major defeating assumption that it makes i s
that the causal order graphs are acyclic and that relationship s
among model parameters always occur in a way such that w e
never need to solve simultaneous equations . A complete de-
scription of the algorithm developed by the Author appear s
in a separate research paper (Kumar 2000) .

Interpretation of the Causal Order Graph - from
Quantities to Phenomen a
In the causal order graph that results, each arc represents a n
influence . We use this graph for generating explanations fo r
the behavior of a physical system . The following thoughts
and observations inspire us to come up with the algorith m
presented later :

• If there are cycles in the graph, then the system evolve s
along those cycles ; each quantity influencing the others
continuously .

• If a considered path is not a cycle, then it represents a flo w
of influence from an exogenous quantity controlled by a
discrete event to the other quantities in that path .

• The observation that (1) exhibits a continuous flow of in-
fluence and (2) reflects a discrete flow of influence is sim-
ilar to the reproduction and mutation stages in evolutio n
with simulation states corresponding to generations .

• As in the case of biological theories which try to answe r
the queries related to a generation of individuals by refer -

ences to their ancestors in previous generations and possi -
ble mutations in that generation, we try to explain obser-
vations about quantities in a simulation state by reference s
of the continuous phenomena to the previous simulation
states and the discrete phenomena to the present simula-
tion state. Thus, the algorithm reasons across differen t
simulation states .

Apart from these inspirations, the user psychology is cap-
tured in a way that translates into ideas that fit well with this .
This part is introduced at a later stage after the explanatio n
of the notion of Causal Colorings .

The Algorithm
The algorithm proceeds in phases each of which tries to cap-
ture some crucial notions towards producing cogent expla-
nations .

Causal Colorings
Our first task in explanation generation is to characteriz e
how a quantity is influenced . There are two ways possibl e
for anything to affect a quantity.

• The cycles with which it is involved .

• Other exogenous quantities that have reachability to thi s
quantity along a directed path of causal influences . A
quantity q is reachable from a quantity p if there exist s
a directed path from p to q .

In what follows, the terms quantity and node are used inter-
changeably . We imagine a bag at each node in the causa l
order graph that is eventually going to contain informatio n
about how that quantity is influenced . At this point, let u s
define a color to be a characteristic of an influence of a con -
tinuous or a discrete happening . There are colors associated
with each cycle in the graph as well as with each exogenou s
quantity . We assume that each color is distinct .

In the first step of this phase of the algorithm, all the ex-
ogenous quantities add their colors to the bags of all th e
nodes that are reachable along directed edges from that
quantity . In the second step, whenever a cycle is detected ,
each member of that cycle gets a color characterizing tha t
cycle in its bag . Cycles can be detected easily as a side -
effect of finding reachability graphs . At the end of it all ,
each quantity ends up having a bag of colors which charac-
terize what phenomena affect its changes .

Causal Frontiers and Incremental Explanation -
Capturing the Psychology of the Use r
This is the part of the algorithm that tries to capture the psy -
chology of the user in the sense that when a user querie s
about what caused the changes in a quantity at a given sim-
ulation state, he does not expect mere equation tracing . For
example, previous attempts (Gruber and Gautier 1993) tried
to report each of its causal parents and tried to skip a parent i f
it had just one other parent. This is too naive an idea because
it fails in very simple settings such as the one described i n
the interconnected pipelines scenario [Fig 1 ] . If nothing els e
has changed except for Flow and the user queries about th e
cause for the change in v 4 , he is made to go through all the
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potentially many intermediate flow points v3 , v 2 . . etc . Thi s
can be very misleading and confusing to the user . This i s
precisely the drawback of working with quantities that are
used in equations, rather than trying to infer something abou t
the physical phenomena that the designer is trying to encode
through those equations . The following idea based on th e
assignment of colors to each bag obtained after the Causa l
Coloring phase, captures these expectations of the user.

• set S = {Parents of query node }

• Until there is no change to S do
for t in S such that all parents oft are either in S or are of
the same colour bag as that oft, set S = S - {t} U Parents(t )

• Maintain a list so that once a node is considered an d
deleted, we rule out the possibility of adding it again . Thi s
is just to avoid infinite loops .

The above procedure defines a causal frontier for each
query; which is the set S which results from the above al-
gorithm . Finally, the explanation is attributed to some sim-
ulation state (which will be decided later) of all the nodes i n
this causal frontier .

There is a psychological reason behind why the user wil l
expect explanations attributed to the causal frontier that get s
defined as above - the reason is that the user thinks in term s
of what phenomena may have caused the change ; not in
terms of what equations might have affected the quantity .
Also, if the user expects incremental explanations in a step
by step fashion, then he would expect an explanation or a
reference to the set of phenomena that got added or deleted
from the set which he presently imagines to be in the work-
ing model . The colors rightly capture the different phe-
nomena that cause influence flows and the causal frontie r
just described, rightly captures the psychology of incremen-
tal explanations . The property that we are ensuring durin g
deletion of a node from the set S is that the set of phenom-
ena remains the same in the working model ; but at the sam e
time, we are maximizing the depth of the reference . It is th e
trade-off between the dual goals of incremental explanatio n
and removing irrelevance .

Causal Stages - Deciding Simulation States
As was explained earlier, as to why we would like to asso-
ciate continuous changes with previous simulation states and
discrete changes with the current simulation state, we no w
find for each quantity in the causal frontier, the correspond-
ing cycles and paths involving itself and the query quan-
tity ; and generate the appropriate references (text strings) fo r
each such cycle or path . Any straightforward text generatio n
procedure to produce an interface similar to the one show n
in the examples may be used . The assumption is that the
equations associated with edges in the graph are kept trac k
of, so that we could retrieve that information during actual
explanation text output .

Behavior on Running Example s
In the interconnected pipelines scenario, earlier attempts t o
query for what changed flow at v4 ? caused explanation s
attributed to v 3 v 2 . .etc and then this whole chain of poten-
tially many such points had to be traversed ; even though the

Bag(x) = (K, M, <y,x>, <x,y,g>, <x,g> )
Bag(y) = (K, M, <y,x>, <x,y,g> }
Bag(g) = {<x,y,g>, <x,g> }
Bag(K) = (K )
Bag(M) = {M I

y = D/Dt D/Dt x

FIG 3 : Causal Order Graph and Bags fo r
Mass and Spring Scenari o

actual cause might have been just the change in Flow . It i s
easy to verify that this algorithm identifies that easily . The
causal order graph for this scenario is shown in [Fig 1] . Ini-
tially, the parents of v 4 are v 3 and Flow . However, v 3 can
be removed from S and replaced by v 2 because of v2 havin g
the same color bag as that of v i ({Flow, EFlow}) and the
other parent of v 3 , namely Flow, already being in S . Sim-
ilarly, v2 can be eliminated and replaced by v l . However,
v i cannot be eliminated because its parent EFlow is neithe r
already in S nor has the same color bag as v l (color bag o f
EFlow = {EFlow}) . Therefore, the causal frontier for v 4
would consist of Flow and v l . An intermediate explanatio n
point directly at v i is produced for further querying becaus e
it is only here that there is a possibility of EFlow havin g
caused the change too . An extension of the algorithm de -
scribed under a later section, introduces the idea ofRanking
and Significant Changes with which we can directly attribute
the change in value of v4 to Flow if we know that EFlow ha s
not changed over the concerned time interval .

The corresponding bag assignments for the spring an d
mass scenario is shown in [Fig 3] . Notice here that we hav e
ignored the dependence of g on R e (radius of the earth) and
go . It is trivial and inconsequential to add them in . The read-
ers can verify the relevance of the explanations produce d
upon querying a simulation value of a quantity . For ex-
ample, the references combined with a few straightforwar d
NLP techniques might produce something like :
Q: What changed the value of the length of the spring ? ?
A: In the previous state it had a value [] and its secon d
derivative had a value [] which affected it in this state be -
cause of the fact that it is the second derivative .
[In The Previous State ]
Q: What changed the value of the second derivative ? ?
A : In the state before, x had a value [] which affected i t
through the equations [] along the evolutionary cycle [] .
Also, in the state before, g had a value [] which affecte d
x through the equations [] along the evolutionary cycle [] .
In this state however, it was also affected by the new value s
of K = [] mutating it through the equations [] and M = []
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mutating it through the equations H .
It is possible for the system to use more domain specific

strings called pretty strings (Gruber and Gautier 1993), in -
stead of the words evolutionary and mutating when these are
provided by the user. This information can be incorporated
at different levels of modularity during model composition .

Extension s

Ranking and Significant Changes An important exten-
sion of the algorithm is that of ranking the explanations pro-
duced in terms of their importance . For example, although
many quantities might have a causal influence on a give n
quantity, it is not wise to treat these causal influences stat-
ically . We might be interested in giving references to th e
quantities that have varied significantly over the period of in-
terest as our primary explanation and giving the other stati c
references as an aside to the user . For example, in Q2, where
K and M usually do not vary, the references to them ar e
produced last or perhaps only upon user request . This ap-
proach requires the definitions for specifying quantitatively ,
how much a quantity has varied in its recent history . Also ,
analysis of how much a small variation in one quantity af-
fects the other, should be made . A perturbation analysis can
be done over the quantities ; at least approximately, from th e
equations provided .

Incorporation of this feature in the algorithm would b e
reflected as an ordering on the nodes of the causal frontie r
based on a measure of the variation of quantities depend-
ing upon their simulation values across different simulatio n
states . The metric of variation may be something similar
to the adjustment of process priorities in operating system s
(solaris) where we give more importance to variations in the
near past . The system can be given parameters for definin g
thresholds towards ignoring quantities that rarely change .
For example, we may not want any references to K or M
if we know that they are not going to change throughout th e
simulation. Typically, such quantities fall under the through-
out conditions specified in the definition of scenarios using
CML . However, explicit requests for actual equation trac-
ing can also be made. Sometimes, it may be difficult to ge t
a total ordering on the quantities in the causal frontier. I n
practice however, a partial order is good enough for signifi-
cantly improving the quality of explanations produced .

Incremental Version Since causal order graphs are dy-
namic ; in the sense that new quantities and dependencie s
may get established, depending upon new model fragment s
getting activated, we feel the necessity of an incrementa l
algorithm. An incremental step upon the addition of extra
nodes or edges in the graph can be taken towards develop-
ing an incremental version of the algorithm that copes with
the requirements . If the new node is an exogenous quantity ,
we just construct its reachability graph and add its color t o
the bag of colors at all those nodes . If it is not an exoge-
nous quantity, then we first cater to its incoming edges b y
letting its bag of colors to be the union of all the colors of
its in-neighbors and then we construct its reachability grap h
and add to all reachable nodes, all the colors in its bag . If
the addition of the node creates cycles, which we can de-

tect in computation of its reachability graph, we add a cycl e
characteristic color to each member of the cycle . Creation of
multiple cycles is also detected in the same way . Incremen-
tal addition of edges have a very similar treatment excep t
that no new colors by virtue of exogenous nodes enter th e
system. Similarly, deletion of edges and nodes can be don e
by imagining the notion of anti-colors which cancel out th e
presence of a particular color when added to a bag that con-
tains the color; and which have no effect on a bag that doe s
not contain the color.

Summary and Analysis
The use of compositional modeling and causal orderin g
techniques is responsible for several desired properties o f
the explanation approach we have presented .

First, it is possible to generate causal interpretations o f
models that are designed for engineering analysis and sim-
ulation, rather than being crafted specially for explanation .
Because explanation is integrated with compositional mod-
eling, explanations of the causes of changes in qualitativ e
state can be determined by an analysis of the logical pre -
conditions of model fragments that are activated and deacti-
vated . The set of conditions to report need not be anticipated
in advance, and it can change as the model fragment library
evolves .

Second, the explanations can be presented in a suitable
format for human consumption . Ultimately, this is the fea-
ture that is the most required and crucial . This is ensured
by the algorithm described in this paper which makes us e
of the formalisms that CML provides in inferring the activ e
phenomena that the designer is attempting to model . The
approach taken in doing this independently of the domain ,
is to characterize phenomena as falling under templates o f
evolution and mutation and inferring them from the causa l
order graph (which is itself inferred at run time from the Pre-
Condition graph over active model fragments ; using genera l
principles of meta-physics (Kumar 2000)) . This provides
great advantages in generating explanations of device behav-
ior which are cogent enough to the user who knows nothin g
about the design issues or the internal parameters and quan-
tities the designer used in building the equation model .

The explanation module can reason across different sim-
ulation states and relate present behavior of the system to it s
past, allowing the user to query and know about the com-
plete history of the system and understand why it followe d
a particular course of behavior . Since explanation is in the
form of natural language and not graphs of numeric vari-
ables, the user can be provided with a causal interpretatio n
of the events occurring in the system . None of the explana-
tion code knows anything about flows, or junctions . It know s
only about the structure of model fragments-activation con-
ditions, behavior constraints, quantity variables, and som e
algorithms for extracting knowledge captured in these mode l
fragments towards text generation for explanation of syste m
behavior . Furthermore, the model builder may add textua l
annotations incrementally which the system would compos e
to more informative labels . This capability is possible be-
cause of the modularity and compositionality enabled by th e
compositional modeling .
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Related Work
Much of the work in explanation has concentrated on the
generation of high-quality presentations in natural languag e
based on discourse planning and user modeling ((Feiner an d
McKeown 1990), (Forbus 1984), (Suthers, Woolf and Cor-
nell 1992)) . There have been various efforts in the past to -
wards the task of giving a causal interpretation to device
behavior ((de Kleer and Brown 1986), (Iwasaki and Simo n
1986), (Top and Akkermans 1991)) . Some of the approache s
include context sensitive causality (Lee, Compton and Jan -
son 1992), bond graphs (Top and Akkermans 1991) etc .
These methods differ in the information they require and th e
class of models they accept . The algorithm described in thi s
paper can be coupled with any of these techniques ; it is no t
tailored specifically for the causal order graphs produced i n
DME alone .

In QUALEX (Douglas and Liu 1989), a causal graph i s
computed from a set of confluences (de Kleer and Brow n
1984), and the graph is interpreted by the propagation o f
qualitative perturbations . However, the confluence equa-
tions can only predict the sign of the first derivative and d o
not scale well with dynamically changing models . Althoug h
in general, Qualitative models do not scale well, they have
been used to generate explanations in tutoring and trainin g
systems (White and Frederiksen 1990) . DME uses QSI M
(Kuipers 1986) for simulation of Qualitative models .

SIMGEN ((Falkenhainer and Forbus 1992), (Falken-
hainer and Forbus 1990)) employs compositional modelin g
approach to build parallel qualitative and quantitative mode l
libraries, analyze the possible qualitative state transitions fo r
a given scenario description, and compile out an efficien t
numeric simulator. While DME determines model fragmen t
activation and assembles equation models at run time, SIM-
GEN precomputes and stores the information relating th e
quantitative model and the qualitative model . SIMGEN rea-
sons only across single-step influences and does not summa-
rize chains of influences .

The algorithm described in this paper, has been imple-
mented (by the Author) at the Knowledge Systems Labora-
tory, Stanford University and applied in a number of sce-
narios involving physical systems and devices (much more
complicated than those illustrated in this paper), and suc-
cessful explanations for system behavior produced .
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