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Abstract

Substantial progress has been made in building and
simulating qualitative models . However, the result s
of qualitative simulation may be difficult to under -
stand and programs for explaining them have been fe w
and have had a number of limitations . This paper
describes a system, Expound, which provides causal
natural language explanations of events in provabl y
"faithful" abstractions of behaviors produced by qual-
itative simulation . Unlike previous explanation sys-
tems, Expound explains events rather than individua l
states, producing richer and more comprehensive ex-
planations . It also does not require numeric simula-
tion, handles behavior branching, and explains change s
other than changes in active processes or in the model .
The main steps in building explanations and basic data
structures produced are discussed .

Introductio n
Several early works on qualitative reasoning saw ex-
planation as one of the field's main goals in additio n
to simulation	 that is, systems might state not jus t
what happened but also why . E.g ., (de Kleer & Brow n
1984) . Substantial progress has been made in simu-
lation and model building (Kay 1996 ; Clancy 1997) .
However, explanation has proved more difficult and th e
number of explanation systems has been small . (Forbus
1984, 1990) and (Falkenhainer & Forbus 1990, 1992 )
explained behaviors in terms of active processes . (Gau-
tier & Gruber 1993a, 1993b) causally explained tran-
sitions between different qualitative models . None of
these efforts explained qualitative changes unaccompa-
nied by changes in processes or the model . All used nu-
meric simulation to eliminate branching and thus did
not handle branching or purely qualitative behaviors .
And none provided explanations that covered multipl e
qualitative states . (Clancy, Brajnik & Kay 1997) an-
swered questions related to explanation, such as wh y
alternative behaviors are not occurring .
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My thesis work (Mallory 1998) has been to develo p
and implement. methods for automatically producing
(1) high level abstractions of complex qualitative behav-
ior graphs in order to render them comprehensible with -
out needing numeric information, and (2) reasons an d
causal explanations of events in the abstracted behav-
ior . The implementation is named Expound. The firs t
topic has been treated in (Mallory, Porter & Kuipers
1996) and will be discussed briefly here . The secon d
topic is the focus of this paper .

Behavior Abstraction
The first need in explanation is for a comprehensibl e
statement of what happened—a compact description of
the system's behavior . Qualitative simulation can pro -
duce many branching behaviors, even with tools such as
chatter elimination (Clancy & Kuipers 1997a, 1997b) .
It is often difficult to obtain a coherent overview of th e
behavior graph from this data . Automatic construction
of a comprehensible description is essential . Our system
requires abstraction criteria in the form of a selection
of the variables of primary interest (typically state vari-
ables) and aspects of their behavior to focus on (typi-
cally either the qmag or the qdir) . It then produces an
abstract behavior graph by grouping into one abstrac t
state all adjacent base (original) states that do not diffe r
in these aspects . In (Mallory, Porter & Kuipers 1996 ;
Mallory 1998) we prove that, with certain refinements ,
this provides a faithful abstraction in that it neither
adds nor omits behaviors from the base behavior graph .
As suggested above, the criteria for such abstractions
are natural and simple to supply and could be supplied
automatically . The user will typically build several dif-
ferent abstractions that highlight the behavior of indi-
vidual state variables or pairs of variables in the model .

At this point we will introduce a running example
a model of the glucose-insulin system in the human
body from (Ironi & Stefanelli 1994 ; Clancy & Kuiper s
1994) . An abstraction of the model is shown as an influ-
ence graph (Forbus 1984) in Figure 1 (the model sim-
ulated had twice as many variables) . Simulation was
performed using Qsim (Kuipers 1994) . The behavio r
graph produced by Qsim of the system perturbed from
equilibrium has 188 states and 63 behaviors and all but
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four of the behaviors loop back into the graph, so th e
behavior is difficult to understand even with substantia l
additional information from Qsim .

However, if Expound abstracts this behavior graph ,
distinguishing states based only on the magnitudes o f
glucose and insulin (specifically, whether each is above ,
below, or at its normal value), it produces the abstrac t
behavior graph with only nine states shown in Figure 2 .
It is not too difficult to see from the graph that bot h
glucose and insulin oscillate about equilibrium values
("norm"), to which they may eventually return, an d
that insulin lags behind glucose. This states perhaps
the most important conclusion about behavior of th e
two main variables in the model and thus sums up th e
behavior of the model in a comprehensible way .

Expound's abstraction algorithm was evaluated in
(Mallory, Porter & Kuipers 1996 ; Mallory 1998) using
five different models with behavior graph sizes rangin g
from 36 to 3,874 states . The reduction in the numbe r
of states and behaviors was roughly comparable to tha t
for the glucose-insulin model, with more reduction fo r
larger behavior graphs .

Building Explanations
Once we understand what happened, we can procee d
to explain why . Our objective is a causal explanation ,
which explains why a state (or selected aspects of it )
occurs .

The process of simulation seems an obvious founda-
tion for explanation but it usually fails for complex be-
haviors . For small models and simple behaviors, tech-
niques such as propagation in Qsim succeed and pro-
vide a foundation for explanation . But propagation of-
ten fails, especially in larger models . Qsim then resort s
to eliminating sometimes thousands of possible alter -
natives, leaving a handful of consistent ones . This says
why things don't happen, not why they do, and thus i s
not a source of concise or satisfying explanations .

Events support better explanations .

Indeed states themselves, even abstract states, are no t
the best foundation for causal explanation . Instead
we focus on events, such as maxima, minima, critica l
points, etc . Events occur at time points (Clancy Sr,
Kuipers 1997a, 1997b) but their descriptions and ex-
planations encompass the sur rounding time intervals .
They are larger scale, more abstract phenomena tha n
states and also more interesting . Explanations of events
explain not only the individual states involved but also
the evolution of the behavior from one state to the next .
They thus provide additional depth .

This additional depth is considerable . The simpl e
example in Table 1 suggests why . It shows a bathtu b
departing from and returning to equilibrium . We wil l
explain the behavior of the variable amount in terms
of the variables inflow and outflow, whose behaviors w e
will take as given .

Focusing on the states alone we can say the following :

State S-1 S-2 S-3
time [t0 tl] (t1 t2) [t2 t3 ]
Amount std inc std
Inflow std inc std
Outflow std inc std

Table 1 : A behavior fragment for the amount in a bath -
tub and its inflow and outflow. The qdirs of three vari-
ables are shown in three adjacent states .

• During S-1, inflow equals outflow so amount is steady .
• During S-2, inflow exceeds outflow so amount is in -

creasing .
• During S-3, inflow equals outflow so amount is steady .

This is correct but says nothing about the connectio n
between adjacent states or why the changes occurred .
A richer explanation focusing on the events or changes
occurring at tl and t2 might say the following (ne w
information is in italics) :

• During S-1, inflow equals outflow so amount is steady .
At tl, inflow and outflow both begin to increase but a t
least for a while after tl inflow increases faster than
outflow, so inflow comes to exceed outflow and thu s
amount begins increasing .

• During S-2, inflow continues to exceed outflow s o
amount is increasing .

• Some time before t2, outflow begins increasing faste r
than inflow. At tti, outflow becomes equal to inflow
and amount becomes steady . This remains the cas e
during S-3 .

This contains the first explanation and also explain s
how inflow comes to exceed outflow and how they re-
turn to equality . It thus explains the cause of amount' s
changes . The richer explanation is enabled by focusing
on events rather than states . An explanation for a n
event not only explains the variable values for the tim e
point and the surrounding intervals but also provides a
focus uniting these explanations in an overall picture of
the transition from one interval to the next .

In addition, what is interesting at the beginning of
time interval state S-2 (inflow is increasing faster tha n
outflow) differs from what is interesting at the end (th e
reverse is true) . Focusing on the events reveals this ;
focusing on the states does not .

Events are thus the focus of Expound's causal expla-
nations. Which events should be explained is enough
a matter of the user's interest that Expound leave s
that selection to the user, informed by abstract be-
havior graph . Our direction is suggested by Figure 4 ,
which shows Expound's output explaining maximum o f
insulin shown in Figure 3 .

From behavior graphs to event s

Unfortunately, the path from abstracted behaviors to
events is more difficult than it might seem . Here we wil l
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Figure 1 : Abstracted model of the glucose-insulin regulatory system as an influence graph . Only state variables
(amounts) and rates are shown . I+ and 1— denote indirect or differential influences . Q+ and Q— (for aQ+ and a Q- )
denote direct or monotonic functional influences . S+ and S— also denote monotonic functional influences except
that they become flat on one or both ends . Expound produced a specification for this graph from the Qsim QDE .
This and other graphs were drawn by dot (www .research.att .com/sw/tools/graphviz) .

Figure 2 : An abstract behavior graph for the glucose-insulin model based on the magnitudes of glucose and insulin .
The diamond and double ellipse are the initial and final states . Each state is labeled with its number (A-1, etc .) and
the qualitative magnitudes of glucose and insulin (normal ("norm"), high, or low) .

only outline the problems ; the details are in (Mallor y
1998, chapter 6) .

Passages . Identifying an event requires identifying
its path through the behavior graph, which we call a
passage . A passage's canonical form is a pair of time in-
tervals separated by a time point, at which the event oc-
curs . The passage may be a pair of abstract time inter-
val states separated by an abstract time point state, bu t
behavior abstraction and branching can make identify-
ing passages more difficult . Table 1 has two passages
from state S-1 to state S-2 through time point ti, and
from state S-2 to state S-3 through time point t2 ; the
base time point states have been abstracted into the ab-
stract states Sl and S3 . When the behavior branches ,
analysis becomes more complex. Not all the base states
in an abstract time interval state may lead to each of
the following time point states, so the set of base states
in a time interval may be distinct from the abstrac t
state ; a pair of time interval states joined by multipl e
time point states should sometimes be represented a s
one passage ; and a pair of time interval states joined by
one or more time point states and also by a sequence o f
states should sometimes be represented as two or more
passages . Expound builds a graph of passages from

the abstract behavior graph to handle these and othe r
cases and represent information about passages .

Edge qvalues. Identifying an event also requires th e
qualitative values (qvalues) of variables, particularly
their qdirs, to be determined as precisely as possibl e
before and after the event . Behavior abstraction, in-
cluding chatter elimination, often produces compound
gmags and qdirs for variables in abstract states . But ,
for example, if we only know that a variable was increas -
ing or steady before an event and steady or decreasin g
afterward, we do not know whether the variable reache d
a maximum, departed from steady, arrived at steady ,
or experienced no event at all . However, there is of-
ten some sub-interval of time adjacent to a time poin t
during which the qualitative value of the variable mus t
be more narrowly defined . In Table 1, the derivative of
the amount has qdir (inc std dec) during the interva l
(tl t2), but it must be increasing immediately after t l
and decreasing immediately before t2 if it is to be 0
at tl and t2 but positive in between . This and other
methods may be applied to narrow the qualitative val-
ues of variables during the "edges" of intervals aroun d
an event . We call these values edge qvalues . We refer t o
the edge interval before the time point as the prologue
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Figure 3 : An abstract behavior graph showing the qualitative values of insulin .

During the passage from state A-30 through state A-31 to state A-32, the amount of insulin reaches a
maximum and begins decreasing .

Before the event, in state A-30, production of insulin exceeds elimination of insulin, so the amount o f
insulin is increasing . However, production is decreasing and elimination is increasing. Eventually productio n
falls below elimination and the amount of insulin begins decreasing .

At this point, the amount of insulin reaching a maximum causes elimination to reach a maximum and t o
begin decreasing . However, production is decreasing more rapidly than elimination is decreasing and th e
amount of insulin continues to decrease .

Figure 4 : Output from Expound explaining a maximum in the amount of insulin . This explanation was produced
with reference to the constraints in Figure 1 .

of the passage, the edge interval after the time point a s
the epilogue, and the time point itself as the vertex.

Events . With passages and edge qvalues computed ,
the events in each passage are identified . Table 1 con-
tains six events at tl, all three variables depart fro m
steady, and at t2 they all arrive at steady again . Fig-
ure 3 illustrates maxima, minima, arrival at steady (qui-
escence), and crossing a landmark (norm) . The onl y
other event involving a change in qdir is a critical point .
With no change in qdir, a variable may cross a land -
mark or otherwise shift its magnitude or it may simpl y
experience a null event (no change) .

From events to reasons

To derive explanations, we need to look at them mor e
closely. Here we discuss the definition and construc-
tion of structures for representing the reasons for events ,
which underlie the explanations in natural language .

Influences have a direction of causation . Causal
explanation relates behavior to the model . When a con-
straint has a direction of causation, the behavior of th e
dependent variable is caused by the behaviors of th e
remaining, independent variables and we use this inter-
pretation to construct causal explanations .

In the QPT perspective, all influences have causal
directions (Forbus 1984, 1990) (Falkenhainer & Forbu s
1990, 1992) . In Qsim terms, unless a variable is exoge-
nous, there is a single constraint on the variable, and i t
is the collection of all the influences in which the vari-
able is the dependent variable . These influences wil l
either be all indirect (differential) or all direct (mono -
tonic functional) . In all the other constraints in which
the variable participates, it is an independent variable .

This is in accord with Iwasaki and Simon's demon-
stration that it is usually possible to deduce the causa l
direction of a constraint without using any knowledg e
from the domain (Iwasaki & Simon 1986, 1994) . As a
practical matter, we have found little difficulty in iden-
tifying the causal directions of constraints (Rickel &
Porter 1997) and have supplied that information to Ex-
pound .

Thus to explain an event, we relate the behavior o f
the event variable to the the behavior of the indepen-
dent variables in the variable's constraint .

Causal classification of variables . The first step in
this process is to assign each of the independent vari-
ables one of several possible causal classifications . The
causal classification states the independent variable' s
causal role in the event. . Specifically, an independent
variable may be classified as

• Causing the behavior of the dependent variable, b y
itself or in concert with other independent variables ;

• Opposing the behavior of the dependent variable ,
which is caused by other independent variables ;

• Steady and thus not contributing to the behavior o f
the dependent variable (unless it and all other inde-
pendent variables are also steady) ; or

• having some other less interesting causal relationship
to the dependent variable in case of chatter and cer-
tain other circumstances .

The causal classification of a variable may vary from
prologue to epilogue .

Take for example the maxima of insulin and its rat e
of elimination at state A-31 in Figure 3, explained i n
Figure 4 . The influences in Figure 1 show that the rates
of production and elimination of insulin determine the
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amount of insulin and that the rate of elimination is i n
turn a function of the amount of insulin .

For monotonic functional influences, the qdirs of th e
independent variables explain the qdir of the depen-
dent variable . The dependent variable is the signed sum
of the independent variables, or a monotonic functio n
of the independent variables, so increasing independent
variables with a positive sign and decreasing indepen-
dent variables with a negative sign tend to cause th e
dependent variable to increase, and similarly for othe r
signs and qdirs . Independent variables with qdirs tha t
tend to cause the observed qdir of the dependent vari-
able are classified as Causing and those that tend t o
cause the opposite qdir are classified as Opposing . In -
dependent variables that are steady do not affect the
qdir of the dependent variable unless all the indepen-
dent variables are steady, causing the dependent vari-
able to be steady also . In the insulin example, the rate
of elimination is a function of the amount, so the qdir o f
the amount always causes the qdir of the rate of elimi-
nation .

For differential influences (I+ and I—) the situation
is less intuitive . A variable subject to differential in-
fluences is constrained by its derivative . We will cal l
such a variable an amount, as it is in our examples . An
amount is increasing, steady, or decreasing as its deriva-
tive is positive, zero, or negative, respectively . Thus a
change in qdir of the amount corresponds to a change
in sign of the derivative, and the cause of the latter is
the cause of the former . But in any event in the qdir o f
an amount with simple (atomic) qdirs, the amount is
steady at the vertex and non-steady before and/or after .
Thus the derivative is zero at the vertex and non-zer o
before and/or after and the explanation may focus o n
why the derivative becomes zero or diverges from zer o
or both. But the latter is adequately explained if we
explain the qdir of the derivative . Thus a qdir event fo r
an amount is explained by the qdir of its derivative .

Furthermore, the derivative will be constrained b y
a functional constraint—the signed sum of the inde-
pendent variables of the differential influences so the
derivative's qdir is explained by the qdirs of its influenc-
ing variables, the inflows and outflows to the amount .
These influencing variables will have the same causa l
classifications with respect to the derivative as inde-
pendent variables in other functional constraints . We
can thus use the same set of causal classifications fo r
qdir events for variables subject to both differential an d
functional constraints . The wording of the explana-
tions themselves will, of course, differ but the under -
lying causal classifications are the same .

We will apply this to the insulin example . As sug-
gested by Figure 4, production is decreasing during th e
prologue and epilogue ; this by itself could cause th e
event, so production is classified as Causing in bot h
the prologue and epilogue . Elimination is also increas-
ing during the prologue ; this by itself could cause th e
amount to become steady, so elimination is classified as
Causing in the prologue . However, elimination is func-

tionally related to the amount of insulin (see Figure 1) ,
so when the amount experiences a maximum and then
decreases during the epilogue, so does elimination . Thi s
tends to counteract the decrease of the amount	 if the
decrease in elimination were the only change after th e
event in the variables affecting the amount, the amoun t
would not decrease after the event. Elimination is thu s
classified as Opposing during the epilogue .

Reasons and the reason graph . As in Figure 4 ,
we may wish to explain several related events together .
In Figure 4 there are only two such events maxim a
in the amount and rate of elimination of insulin. In
other models there may be chains or trees of related
events, as from one end of a causal chain to the other .
For example, in a model of the relationship between th e
turgor pressure in a plant leaf and the opening of the
stomates in the leaf, there is a chain of influences fro m
the former to the latter . The explanation of how th e
former influences the latter needs to reflect this chain .
(The model contains 12 variables and 19 influences in its
abstracted form . It would require a half page to prin t
here, so we omit it .) Expound's explanation of how
decreasing turgor pressure leads to decreasing stomata l
opening is shown in Figure 6 .

To produce coordinated explanations of such relate d
events, Expound builds the reasons for an event as a
graph. A reason is an edge from the event for som e
variable to the event for one of its influencing variables ,
labeled by the causal classifications of the influencin g
variable . The reason graph is the collection of all such
edges for a particular passage . The reason graph for th e
two events explained in Figure 4 is shown in Figure 5 .

Every variable in a model has an event in a passage ,
even if only a null event. The reason graph may have
about as many reasons as the model has influences .
However, it usually has considerably fewer because i t
is unnecessary to construct reasons for null events an d
for changes in qmag only (no qdir event) (they are ex-
plained by the qdirs of the event variables, which hav e
no event to explain) . The reason graph can be appro-
priately ordered, pruned, and traversed to obtain the
best order for explaining several related events . For ex -
ample, while the influence diagram behind Figure 6 i s
relatively linear, it does have several branches and cy-
cles . The reason graph and the causal classifications o f
the reasons enable Expound to traverse it properly .

Explanations and evaluatio n
Natural language explanations are produced from th e
reason graph, state and edge qvalues, and other sources .
See (Mallory 1998, chapter 8) . Expound uses highl y
conditionalized templates to cover the large number o f
different forms of language that seemed clearest in vari-
ous circumstances . Although not the focus of this work ,
the results have proved adequate for the examples used .
Some additional inference is needed to determine—
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Figure 5 : The reason graph for the events explained in Figure 4 and also the corresponding influences, from Figure 1 .
Behaviors and causal classifications are 3-lists for the prologue . vertex, and epilogue, respectively. Only qdirs ar e
shown for behaviors because the explanation of this particular event does not rely on the qmags .

Initially, in state A-0, the system is in equilibrium . During the passage from state A-0 to state A-1, th e
following chain of events occurs .

First, the pressure of water in the leaf symplast stops being steady and begins decreasing .
This causes synthesis of ABA in the mesophyll . . . to begin increasing .
This causes the amount of ABA in the mesophyll . . . to begin increasing .
This causes transport of ABA from the mesophyll to the guard cells . . . to begin increasing .
This causes the amount of ABA in the guard cells . . . to begin increasing .
This causes active transport of K+ from the guard cells to the accessory cells . . . to begin increasing .
This causes the amount of K+ in the guard cells . . . to begin decreasing .
This causes the opening of the stoma

	

. to begin decreasing .

Figure 6 : Expound's causal explanation of the sequence of events from decreasing leaf water pressure (turgor pressure )
to the closing of the leaf stomates . Expound was directed to omit the details of each step that are shown in Figure 4 .
The ellipsis ( . . . ) indicates editing to omit Expound's "to stop being steady and" .

Rate of eliminatio n
of insuli n

Event : maximu m
Behavior : inc, std, dec

Rate of productio n
of insuli n

Event : null
Behavior : dec, dec, de c

Causal classification :

	

\

	

Causal classification :

	

Causal classification :
causing, steady, opposing

	

\ causing, causing, causing J causing, causing, causin g

Amount of insuli n

Event : maximu m
Behavior : inc, std, de c

• The order of mention of variables and their contribu-
tions during prologue and epilogue .

• Whether comparisons are needed among competing
influences . E.g ., the explanation in Figure 4 state s
that "production is decreasing more rapidly than
elimination is decreasing " .

• How changes in causal classifications from prologu e
to epilogue affect the explanation .

• When and how to include explanations of events for
influencing variables .

However, the decisions are largely prescribed by th e
template that controls the individual case . In addi-
tion . with the possible exception of comparisons, these
inferences primarily involve presentation . It thus seem s
fair to say that the reason graph captures the essentia l
causal information that underlies the explanations .

We have evaluated Expound 's results to test whethe r
it is in fact useful for answering the kinds of question s
it addresses, and whether it is more useful than stan-
dard materials available from Qsim, which are aime d
more broadly than Expound's results . The evaluation s
clearly show that this is the case, despite the smal l
size of the sample (three participants and five differen t
models, including glucose-insulin and turgor-stomates) .

They also show that Expound's results are available t o
those with modest familiarity with Qsim .

Conclusion s
Building faithful abstractions of qualitative behaviors
and focusing on events rather than states enables th e
construction of rich, high-level explanations of qualita-
tive behaviors . Expound provides this while handlin g
behavior branching and without requiring numeric in -
formation or limiting its explanations to changes i n
active processes or in the model . The basic informa-
tion underlying the natural language explanations is a
graph of reasons which relates behavior to the mode l
and records the causal classifications of variable behav-
iors .
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