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Abstract

Spatio-temporal data sets arise when time-varying physical
fields are discretized for simulation or analysis. Examples
of time-varying fields are isothermal regions in the sea or pat-
tern formations in natural systems, such as convection rolls or
diffusion-reaction systems. The analysis of these data sets is
essential for generating gualitative interpretations for human
understanding. This paper presents Spatio-Temporal Agpre-
gation (STA), a system for recognizing and tracking qualita-
tive structures in spatio-temporal data sets. STA algorithms
record and maintain temporal events and compile event se-
quences into concise history descriptions. This is carried out
at several levels of description, from the bottom up: first, low
level events are identified and tracked, and then a subset of
those events, relevant at the next description level, is identi-
fied. The process is iterated until a high level description of
the system’s temporal evolution is obtained. STA has been
demonstrated on a class of diffusion-reaction systems in two
dimensions and has successfully generated high-leve] sym-
balic descriptions of systems similar to those produced by
scientists through carefully hand-tuned computational exper-
iments.

Introduction
Spatio-temporal data sets arise when time-varying physical
fields are discretized for the purpose of simulation or analy-
sis. Some examples are turbulent fluids, isothermal regions
in the sea, or pattern formations in natural systems, such as
convection rolls or diffusion-reaction systems. The analysis
ofthese data sets is essential in scientific visualization, mod-
eling, or generating qualitative interpretations. However,
many time-varying physical fields such as the diffusion-
reaction phenomena can exhibit extremely complex behav-
iors that are time-dependent, spatially interacting, and sen-
sitive to system parameter variations. It is often difficult, if
not impossible, to predict such behaviors through analytical
means alone. Because of recent advances in computational
methods and hardware, there has been increasing interest in
automated means for generating and classifying behaviors
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of such systems. In particular, the Spatial Aggregation (SA)
approach (Yip and Zhao, 1996) provides a framework for
the identification of structures in spatially distributed fields.

Regions of uniformity arise in a physical field because of
continuities of properties such as intensity, temperature or
pressure. A human observer would have little trouble de-
scribing events such as the formation of convection rolls in
boiling water in straightforward qualitative terms. Further-
more, such an observer would easily recognize other phe-
nomena also exhibiting convection rolls as belonging to the
same class, even if they differ in details such as the size or
the number of rolls.

A qualitative description of a physical field recognizes
several events: the existence of coherent objects (that is, ob-
jects that are internally connected, of uniform features, and
with a well-defined border), their persistence through time,
and their abrupt change. The study of such high-level events
arises frequently in many disciplines of scientific inquiry
that deal with complex systems. For example, in medicine,
it may be the high-level descriptions that provide the key to
a problem: the cells of a heart that suffers from certain kinds
of disease often do not behave differently from the cells of
a normal heart at the individual level. It is their aggregated
behavior that has gone awry (Beers and Berkow 1999). Any
attempt to study complex phenomena that generate massive,
unstructured data sets would benefit greatly from the auto-
matic generation of high-level descriptions from raw data.
Also, the classification of qualitative events based on topo-
logical and geometric characteristics of the involved objects
and the nature of the transformations they undergo yields
insight into the aggregated behavior of the system.

This paper describes Spatio-Temporal Aggregation, or
STA (Ordonez 1999), a temporal extension to Spatial Aggre-
gation. This extension addresses systems that vary over time
by recognizing and tracking structures in spatio-temporal
data sets. STA is applied to a class of diffusion-reaction
systems in two dimensions and it successfully generates
high-level symbolic descriptions about the systems. In ad-
dition, by comparing multiple system histories, STA clas-
sifies systems with different parameterizations into equiva-
lence classes, each of which contains members that exhibit
qualitatively similar behaviors. This method is applied to the
Gray-Scott (GS) model of glycolysis. It carries out an auto-
mated series of observations of temporal evolutions of this
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Figure 1: STA automatically catalogs qualitatively distinct behavioral classes, represented as spatio-temporal patterns, for a
diffusion-reaction system. The simulator generates multiple system evolutions, each of which corresponds to a different set
of system parameter values and initial condition. Each evolution, described as a sequence of qualitative events such as birth,
death, or separation of objects, in conjunction with object shape transitions, is compiled into an event history. The classifier

identifies behavioral classes from the set of event histories.

model, extracting a set of behavior-based classes of temporal
evolutions. The approach has proved usetful in that the clas-
sification scheme it generates is similar to one previously
obtained by a scientist through carefully hand-tuned compu-
tational experiments and qualitative assessment by human
observers (Pearson 1993). The operation of this application
is sketched in Figure 1.

Other researchers have addressed the problem of gener-
ating high-level descriptions of physical systems. For in-
stance, Williams and Millar (1996) develop a method for
large-scale modeling and apply it to the thermal modeling of
a smart building. STA is similar to their work in that it mod-
els complex systems through decomposition, but differs in
that STA models more complex spatio-temporal dynamics,
and produces symbolic descriptions. Crawford, Farquhar
and Kuipers (1990) automatically generate qualitative differ-
ential equations from physical models. Their work consid-
ers temporal change, but not spatially distributed systems.
Homsby and Egenhofer (1997) study qualitative represen-
tations of change, such as an object’s continuation, sepa-
ration and fusion, and construct hierarchies of change, but
they do not attempt to apply these objects to continuous
fields. Forbus, Nielsen and Faltings (1991) developed the
CLOCK project, which uses qualitative spatial reasoning to
automatically analyze and qualitatively predict the behavior
of fixed-axis mechanisms, such as mechanical clocks. Their
approach is suitable for mechanical systems of rigid parts,
while ours is best suited for continuous fields that exhibit
high-level properties such as quasi-uniform regions.

The main contribution of this paper is a computational
system that analyzes very large sets of unstructured data to
produce descriptions of qualitatively distinct aggregate ob-
jects and events. Many other spatio-temporal reasoning sys-
tems cannot address such large systems because the sheer
size of the data sets causes them problems such as combina-
torial explosions. STA avoids such problems through intel-
ligent decomposition and aggregation.

Figure 2: Three snapshots of a time-varying Gray-Scott
diffusion-reaction system

A Case Study: Diffusion-Reaction Systems

An interesting instance of time-varying nonlinear dynami-
cal systems is the set of phenomena known as Diffusion-
Reaction, These phenomena are of great scientific impor-
tance, because they are associated with the problem of Mor-
phogenesis, first addressed by Turing (1952), Particularly
interesting instances, where noticeable patterns emerge and
vary in seemingly unpredictable ways, will be examined.

The Gray Scott Model of Glycolysis

The phenomenon of glycolysis is found in virtually all liv-
ing organisms. The Gray-Scott model of glycolysis is a
diffusion-reaction system, characterized by the following
equations:

du ] 2 g
% = Dy V=u—uv” + F(1—u)
% = DJV*u+ u? — (F+ kv, (1)

where « and » are concentrations of two reactants, /), and
Dy are their diffusion rates, and F and k are reaction pa-
rameters. This system is of interest not only as a model of
glycolysis, but also because it exhibits a variety of behaviors
unlike anything observed before in theoretical or numerical
studies. Pearson (1993) first observed the strikingly varied
patterns exhibited by the GS system, such as the one seen in
Figure 2. Pearson et al. (1994) have argued that since gly-
colysis occurs inside the cell, it is possible that patterns such
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as the above could form within it. Furthermore, they ob-
serve that the process of mitosis, through which cells divide,
requires the formation of a bipolar structure known as the
mitotic spindle, which is likely governed by simple physical
processes such as chemical reactions and diffusion, rather
than by complex genetic mechanisms.,

As the parameters vary in the GS system, it undergoes
qualitative transformations in its behavior. We apply STA to
develop a program that can observe various system evolu-
tions for different parameter values, and from this observa-
tion generate descriptions of the qualitative events that took
place for each case. These descriptions are later used by the
system to classify the instances into groups of similar behav-
ior.

Spatio-Temporal Aggregation

STA significantly extends the functionality of Spatial Aggre-
gation (SA) in the temporal dimension. SA provides a uni-
form vocabulary and mechanism for representing and rea-
soning about spatial fields. It builds a multi-layer, increas-
ingly more abstract representation of a spatial field. Objects
of each layer are formed as aggregates of lower-level ob-
jects. A neighborhood graph is constructed on the set of
objects within each layer, and the objects are partitioned
into equivalence classes with respect to their features, e.g.,
color, temperature, or pressure, as well their spatial adja-
cency. Each class is then re-described as a single object
at the next higher level. The same process of aggregation,
classification, and re-description repeats with more abstract
relations at the next level. For a full description of the SA
field ontology and operators see Yip and Zhao (1996) and
Bailey-Kellogg (1999).

Temporal Changes

Existing applications of SA abstract over domains such as
phase spaces and configuration spaces, in which time is only
implicitly represented. Others deal with physical spaces in
a fixed, steady state. In all these cases the field, as an ontol-
ogy, and all the conceptual layers built on top of it, are static.
Problems that use time are not necessarily outside the do-
main of Spatial Aggregation. For example, KAM (Yip 1989)
is used to study Hamiltonian systems, which describe fric-
tionless motion. These systems are studied in phase space,
where temporal variation is implicitly represented. More in
zeneral, SA could be used to study time-varying systems as
simple static systems where time has been represented as
an exfra spatial dimension. On the other hand, STA offers,
beyond such approaches, the ability to reason about time-
varying systems without having to compute and store the en-
tire space-time volume beforehand. STA allows for the ob-
servation and representation of events as they happen, a fea-
ture that might be useful for real-time systems. For instance,
our diffusion-reaction application, as sketched in Figure 1,
records events such as the birth and death of spatial clusters
in a diffusion-reaction field.

Aggregation and Persistence

Sophisticated techniques have been developed to address the
problem of temporal tracking in fields (Silver and Wang

1997). It would seem natural to find whether there is a gener-
alization of these tracking approaches, which would let them
deal with not just one, but multiple abstraction layers, in the
SA style.

The main addition made to the SA standard vocabulary
by STA is the update operator, which takes a field or an ob-
ject space and applies a set of transformations corresponding
to the passage of a time interval, This operation allows for
changes in an object’s features, position and existence, and
it affects all levels of conceptual entities: objects, neighbor-
hood graphs, equivalence classes and inter-layer mappings.
The notion of update implies the premise that these concep-
tual entities are persistent. Thus, a neighborhood graph ona
particular abstraction layer at time 2+ 1 should be conceived
as a revision of the graph on that layer at time ¢, rather than
as a new construct built from scratch, For instance, the dark
areas in the fields seen in Figure 2 are objects, which may
change in shape or position, while preserving their identities,

e Updates on Neighborhood Graphs: For a set of objects S,
a neighborhood graph is a relation R € 5 x S that does
not contain any elements of the identity relation. When
the objects in space come into existence, cease to exist
or change positions, their adjacencies may be modified
(thus changing R by removing elements from or adding
elements to it). The changes in the neighborhood graph
due to a change in a single object may remain localized
in space, or may propagate everywhere, depending on the
nature of the graph,

e Updates on Object Classes: Adjacency is a fundamental
criterion to establish object equivalence in STA. There-
fore, changes in adjacencies may cause objects to cease
to belong to a certain class or to start belonging to a new
class. Classes are connected sets of objects (for any two
elements in a class, there is a path between them made
of elements of R); therefore, changes in A may affect
classes. On the other hand, even if the adjacencies are
not altered, changes in the intrinsic properties of the ob-
jects may also affect the way they are classified. Changes
in classification are annotated as sets of objects added or
removed from each class, as well as classes that are newly
formed or newly dececased.

e Updates on Re-described Objects: Changes in classes of
objects may affect the way higher level objects are re-
described, depending on what features are kept in the
re-description process and which are abstracted away.
For example, if clusters of objects in space constitute
classes and they are re-described as convex hulls, inter-
nal changes in the clusters do not affect the higher level
objects as long as they do not involve the hull. There-
fore it is necessary to have mechanisms that detect lower-
level changes that affect the structure of higher-level re-
described objects.

Kinetic Data Structures: Reasoning about
Change Detection

STA employs ideas from Kinetic Data Structures (KDS)
to maintain the consistency of neighborhood graphs, object



classes and re-described objects. KDS have been developed
in robotics to maintain a set of geometric relations among
distributed data (Basch, Guibas and Hershberg 1997). The
problem KDS address consists of determining under which
conditions the structure of certain geometric constructs is al-
tered given that the elements are subject to particular motion
laws.

Structural failure in a KDS is detected by maintaining a
set of validity certificates, predicates that determine the con-
ditions under which the current conditions of the system are
valid. When a certificate is violated, an event is said to occur.
The event is then processed and the certificates are updated
to reflect the new conditions.

The existing corpus of research on finding and maintain-
ing good certificates for various data structures is rich and
varied. We are much less concerned with the particulars
of each data structure and its maintenance algorithm than
with the fact that such algorithms exist, and that they all fit
within a single model of change as a violation of a certifi-
cate. Because STA addresses various levels of description,
it is necessary to add conceptual mechanisms to determine
the relevance of each certificate for the structure at the next
abstraction level.

Update Mechanisms

We enhance the static SA to include certificate-violation
based update mechanisms adapted from KDS. This is done
first at the neighborhood graph level, by associating the
graph (namely, its vertices and its adjacencies) with a set of
certificates that establish how much deformation the graph
can take without undergoing a structural change. The clas-
sifier operator now does not only map objects to classes via
the neighborhood graph, but it also maps graph changes due
to certificate violations to class changes.

The certificate-violation mechanism is extended to in-
clude the detection of non-geometrical change, namely,
change in intrinsic object properties and existential change.
The former kind of certificates exist at the classifier level,
but not at the neighborhood graph level; typically it will
consist of simple inequalities that test whether certain ob-
ject features are within certain ranges. The latter exists at
all levels. Also, detection at the re-description level requires
being able to determine what low-level objects are relevant
to the structure of higher-level objects. Because we know
which objects are involved in which certificates, all certifi-
cates that contain relevant lower-level objects are needed for
re-description. Such a filtering scheme is general, and al-
lows for a unifying method to reason about abstraction of
change.

Tracking Change in Time

We have developed a unifying reasoning scheme to deal with
the propagation of change through an aggregation chain. We
now focus on how to provide support for mechanisms that
seek to interpret this change,

Keeping track of change in a system may be useful in
many applications. For example, when studying transitional
phases in self-organizing systems (such as the formation of
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Figure 3: The flow diagram of STA application to the anal-
ysis of diffusion-reaction systems. The field simulator gen-
erates system evolutions, which are sampled and tracked by
the particle system engine. A chain of aggregation, classifi-
cation and re-description is maintained on top of the particle
system, to identify and track high-level objects. Qualitative
changes are later detected, generating event histories. The
history aggregator and classifier take multiple histories and
identify behavioral classes.

convection rolls in boiling water), researchers need to de-
termine which kinds of events precede such transitions, We
need, thus, to have a generic methodology to represent a his-
tory. More specifically, we require the ability to register a
sequence of events that take place at various aggregation lev-
els, namely changes in spatial objects, neighborhood graphs
and object classes.

A history should register relevant change. The ease with
which this can be done depends on how well the update
mechanisms at various levels work. On one extreme, there
is no attempt at any updates, and all structures are recon-
structed from scratch at fixed intervals. In such conditions,
finding relevant change is very difficult, since there is no
knowledge to start with to draw correspondences. On the
other extreme, there is a good update mechanism that oper-
ates on structures with a high degree of locality and that ex-
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plicitly generates all change events. Such approach requires
virtually no extra work from a history-tracking mechanism,
which only needs to log these changes with their respective
time stamps.

Application to Diffusion-Reaction Systems

We present a structure-identification algorithm for describ-
ing and classifying instances of diffusion-reaction systems
that exhibit highly organized spatio-temporal structure. The
algorithm is based on the central idea that qualitative struc-
tures of a spatial field can be constructed from an adap-
tive spatial subdivision rather than directly from a regularly
discretized field. This adaptive subdivision changes as the
field changes, but the identity of its structural components is
persistent. The persistence of these components simplifies
the correspondence between successive temporal snapshots.
Figure 3 illustrates the operation of the algorithm,

Tracking High-Level Structures

The existence of coherent structures in a field implies that
there are rezions of approximately uniform characteristics.
In the GS model, each region clearly belongs to one of two
classes, low or high pH. The fewer the number of classes ob-
served, and the larger the regions of uniform attributes are,
the higher the organization perceived by an observer. These
two global attributes of a field may vary with relative inde-
pendence of each other, and each contributes significantly to
the perception of coherence. For these reasons, local unifor-
mity is one of the main features to look for when studying
patterns. Once regions of uniformity are identified, char-
acteristics such as topology and temporal behavior can be
studied. The Field Simulation module (see Figure 3) gener-
ates the field and its changes, but is unaware of the existence
of high-level structures.

Sampling Through a Particle System

Diffusion-reaction fields are sampled by the STA algorithm
using particle systems (see corresponding block in Figure 3).
Particles have the advantage of being persistent: they have
discrete identities and hence whatever happens to them can
be tracked in time with ease. Furthermore, any structures
constructed by aggregating particles can also be tracked, be-
cause the identities of such constructs can be established re-
cursively through a simple heuristic from the identities of its
components. For example, one such simple heuristic is the
following: if constructs A and B, existing at different time
instants, share a majority of their components, they can be
said to be identical. The particles must behave in such a way
that they sample the field accurately. Therefore they must
exist in large densities wherever the field gradient is large,
and in low densities where it is small.

We consider a simple algorithm that allows the particle
system to adapt itself to changes in the field, always main-
taining an adequate sampling. The algorithm is a modifica-
tion of a method introduced by Witkin and Heckbert (1994).
It allows particles to move across the field, repelling each
other, thereby occupying space uniformly. For this purpose,
a Gaussian energy function is used. For any two particles i

and j, their mutual energy is

B |ri "J
Bij = ac” 3007, )
where « is a global constant and r;; is their distance. The
energy for each particle is given by

E';=Zf'?e;;+f'3ji- (3)

i=1

Particles are assigned a velocity that is negatively propor-
tional to the gradient of energy, such that their local energy
(for particle 1, the part of its energy that does not depend
on ;) is minimized. Moreover, they modify their distribu-
tion and density to compensate for under or over-sampling,
by adaptively changing each o; to maintain the local energy
of each particle constant, and splitting or dying when this
parameter falls outside of a pre-defined range.

Aggregating a Particle System

The sampling particles are used to construct a spatial subdi-
vision. The subdivision is computed by dividing the space
into simplices whose vertices are the particles, and whose
edges constitute a neighborhood relation for the particles.
The simplices need to be small and non-sharp, so a Delau-
nay triangulation is used. It offers the added advantage that
it can be computed efficiently in two dimensions. Also, this
triangulation is a superset of the closest-neighbor graph, and
therefore it captures the notion of spatial locality: local vari-
ations in a particle’s position cause changes in the triangula-
tion that do not propagate beyond its immediate vicinity.

As the field varies in time, so does the position of the par-
ticles, This, in turn, causes the spatial subdivision to change:
some edges cease to exist and some new ones arise at every
time step. However, given the assumption that the under-
lying field changes slowly, the vast majority of edges and
triangles are preserved through successive time steps, even
though their shape is slightly changed. Because of the local
nature of the Delaunay triangulation, these updates do not
propagate far.

The static construction of a neighborhood graph consti-
tutes the aggregation operator in SA. The corresponding
block in Figure 3 represents the enhanced STA aggregate
operation, which maintains the neighborhood graph as the
particle system changes.

Description through Iso-Lines

Cluster boundaries are associated with field regions of high
gradient. Those regions can be identified using iso-lines,
continuous zones of uniform or near-uniform field value.
The ratio of field value change to the distance between
iso-lines gives an estimation of the gradient. Therefore, a
field that is characterized by near-uniform regions that vary
smoothly is well described by iso-lines that sample evenly
spaced field values. Temporal variations in fields will be
studied through the examination of geometric and topologi-
cal change in iso-lines.

The particle placement algorithm previously described is
used to approximate iso-line contours of uniform regions,
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Figure 4: Subdivision generated from a particle system that
samples a diffusion-reaction system

This algorithm requires the ability to do two things: to deter-
mine class equivalence between particles (the classification
block in Figure 3), and to evaluate distances between par-
ticles that take the field into consideration. Since this case
study is of two-dimensional diffusion-reaction systems, the
distances between particles can be computed by using the
field values as additional dimensions, with an appropriate
scaling constant. Class equivalence for adjacent particles is
computed by thresholding the distance between the particles
in feature space, that is, by considering only the values of
their properties. The extraction of structures from the spa-
tial subdivision is analogous to a pixel-based region growing
algorithm, with the difference that the element of aggrega-
tion is not the pixel, but the sampling particle. The block that
does this in Figure 3 is labeled redescription. In Figure 4 the
result of carrying out this process is exemplified.

Keeping Track of Shape Changes

STA records not only catastrophic events (such as object col-
lisions), but also events that involve a single object modify-
ing its shape. We use a shape-recognition and classification
method called the Multiple Curvature Segmentation Algo-
rithm, introduced by Dudek and Tsotsos (1997). Objects are
placed in a shape space, and they are clustered by similarity.
When an objects moves from one shape cluster to another, a
qualitative shape transformation is said to have taken place
(see the Shape Space Aggregation block in Figure 3).

Putting it All Together: Extracting Behavioral
Descriptions

The STA algorithmic components we have described so far
take as input a time-evolving diffusion-reaction system and
produce the following descriptions:

¢ A detailed history of qualitatively significant events, in-
cluding births, deaths, collisions and fusions of objects,
and their changes in shape, specified as transitions from
one shape cluster to another, and

o A summary of significant events that have taken place in
the history, including records of the most common shapes
and the most common events.

The last two blocks of Figure 3 indicate the final summa-
rization process of the STA application: multiple histories as
generated above are compared, and then classified according
to behavioral similarity,

Figure 5: Successive snapshots of the evolution of a Gray-
Scott diffusion-reaction system

At step 88 body 3 was born

At step 88 body 2 was born

At step 88 body 1 was born

At step 88 body 0 was born

At step 229 bodies 0 (born 88), 3
(born 88) fused into body 1

At step 237 body 2 (born 88) fused
into body 1

Table 1: A segment of a history: each entry is a time-
stamped event, Notice that two fusion events are recorded.
In them, the larger object preserves its identity, and the
smaller ones are said to have fused to it.

A Sample Session: Classifying Patterns According
to Behavior

We now present a short run of the history-generation part of
the program.,

The program records the events that take place in an
evolving diffusion-reaction field. For instance, when a sys-
tem such as that shown in Figure 5 evolves, the program can
generate a history file such as that of Table 1.

The program can also compare several histories and group
them into classes of similar behavior. For the systems on
Figure 6, the groups in Table 2 were discovered. Compare
these with the classes discovered by Pearson (1993), shown
in Figure 7: cluster 4 corresponds to pattern (b): cluster 2 to
(c) and cluster (5) to (a).

Conclusions

This paper has described a novel computational system,
STA, for reasoning about time-varying fields such as
diffusion-reaction systems. STA extends Spatial Aggrega-
tion to make explicit the representation of time and tem-

(hy

Figure 6: Snapshots for DR system evolutions. Histories
were later classified into groups of similarity.
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Cluster 1: History (h)

Cluster 2: Histories (e) and (g)
Cluster 3: History (b)

Cluster 4: Histories (¢), (d) and (f)
Cluster 5: History (a)

Table 2: Behavioral classes discovered by the STA applica-
tion

(b)

Figure 7: Patterns discovered by Pearson (1993) on the
Gray-Scott system. His classification is similar to that pro-
duced by the STA application presented in this paper.

poral change. For this purpose, various abstract operations
were introduced to represent the notions of persistence and
change. Common qualitative events such as birth, death,
collision, separation, acquisition or loss of components or
properties were identified for objects in spatio-temporal do-
mains.

STA has been demonstrated on a complex dynamical sys-
tem that exhibits multiple, qualitatively different behaviors.
This demonstration accounts for approximately 83% of the
observations meticulously carried out by Pearson as docu-
mented in his 1993 paper. Our STA application classified
multiple instances of this system using not only the appear-
ance of static snapshots, but also the full extension of the
behavior of the systems through a relatively long time inter-
val. What this research contributes that had not been done
before is the automatic differentiation of pattern classes by
behavior.

STA makes use of various techniques, namely, operations
of abstraction of change, kinetic data structures and geomet-
ric shape classification. How well would these techniques
do if applied outside of this domain? We expect that a
straightforward application of STA to problems that require
extensive contextual and non-geometric knowledge would
not work as well. For example, tracking objects for com-
puter vision requires solving problems such as that of ob-
ject occlusion and representation from incomplete informa-
tion, not to mention the existence of multiple perspectives,
different levels of illumination and reflectance, etc. In or-
der to address those problems, STA needs to integrate ad-
ditional domain specific techniques from computer vision.
Similarly, the problem of examining weather patterns also
requires extensive domain knowledge. While this problem
seems more amenable to treatment from a STA perspective,
it would still require integrating specific techniques such as
those developed by Huang and Zhao (2000) with the STA
tracking mechanism.
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