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Abstract

Spatio-temporal data sets arise when time-varying physica l
fields are discretized for simulation or analysis. Example s
of time-varying fields are isothermal regions in the sea or pat -
tern formations in natural systems, such as convection rolls o r
diffusion-reaction systems . The analysis of these data sets is
essential for generating qualitative interpretations for huma n
understanding . This paper presents Spatio-Temporal Aggre -
gation (STA), a system for recognizing and tracking qualita -
tive structures in spatio-temporal data sets . STA algorithm s
record and maintain temporal events and compile event se -
quences into concise history descriptions . This is carried out
at several levels of description, from the bottom up : first, low
level events are identified and tracked, and then a subset o f
those events, relevant at the next description level, is identi -
fied. The process is iterated until a high level description o f
the system ' s temporal evolution is obtained. STA has been
demonstrated on a class of diffusion-reaction systems in two
dimensions and has successfully generated high-level sym -
bolic descriptions of systems similar to those produced b y
scientists through carefully hand-tuned computational exper -
iments .

Introduction
Spatio-temporal data sets arise when time-varying physica l
fields are discretized for the purpose of simulation or analy-
sis . Some examples are turbulent fluids, isothermal region s
in the sea, or pattern formations in natural systems, such as
convection rolls or diffusion-reaction systems . The analysi s
of these data sets is essential in scientific visualization, mod-
eling, or generating qualitative interpretations . However,
many time-varying physical fields such as the diffusion -
reaction phenomena can exhibit extremely complex behav-
iors that are time-dependent, spatially interacting, and sen-
sitive to system parameter variations . It is often difficult, if
not impossible, to predict such behaviors through analytica l
means alone . Because of recent advances in computationa l
methods and hardware, there has been increasing interest i n
automated means for generating and classifying behaviors
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of such systems . In particular, the Spatial Aggregation (SA )
approach (Yip and Zhao, 1996) provides a framework fo r
the identification of structures in spatially distributed fields .

Regions of uniformity arise in a physical field because o f
continuities of properties such as intensity, temperature o r
pressure . A human observer would have little trouble de -
scribing events such as the formation of convection rolls i n
boiling water in straightforward qualitative terms . Further-
more, such an observer would easily recognize other phe-
nomena also exhibiting convection rolls as belonging to th e
same class, even if they differ in details such as the size o r
the number of rolls .

A qualitative description of a physical field recognize s
several events : the existence of coherent objects (that is, ob-
jects that are internally connected, of uniform features, and
with a well-defined border), their persistence through time ,
and their abrupt change . The study of such high-level events
arises frequently in many disciplines of scientific inquiry
that deal with complex systems . For example, in medicine,
it may be the high-level descriptions that provide the key t o
a problem: the cells of a heart that suffers from certain kinds
of disease often do not behave differently from the cells o f
a normal heart at the individual level . It is their aggregated
behavior that has gone awry (Beers and Berkow 1999) . Any
attempt to study complex phenomena that generate massive ,
unstructured data sets would benefit greatly from the auto-
matic generation of high-level descriptions from raw data .
Also, the classification of qualitative events based on topo-
logical and geometric characteristics of the involved object s
and the nature of the transformations they undergo yield s
insight into the aggregated behavior of the system .

This paper describes Spatio-Temporal Aggregation, o r
STA (Ord6iiez 1999), a temporal extension to Spatial Aggre-
gation . This extension addresses systems that vary over time
by recognizing and tracking structures in spatio-tempora l
data sets . STA is applied to a class of diffusion-reactio n
systems in two dimensions and it successfully generate s
high-level symbolic descriptions about the systems . In ad-
dition, by comparing multiple system histories, STA clas-
sifies systems with different parameterizations into equiva-
lence classes, each of which contains members that exhibit
qualitatively similar behaviors . This method is applied to th e
Gray-Scott (GS) model of glycolysis. It carries out an auto -
mated series of observations of temporal evolutions of this
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Figure 1 : STA automatically catalogs qualitatively distinct behavioral classes, represented as spatio-temporal patterns, for a
diffusion-reaction system. The simulator generates multiple system evolutions, each of which corresponds to a different se t
of system parameter values and initial condition . Each evolution, described as a sequence of qualitative events such as birth ,
death, or separation of objects, in conjunction with object shape transitions, is compiled into an event history . The classifier
identifies behavioral classes from the set of event histories .

model, extracting a set of behavior-based classes of tempora l
evolutions . The approach has proved useful in that the clas-
sification scheme it generates is similar to one previousl y
obtained by a scientist through carefully hand-tuned compu-
tational experiments and qualitative assessment by human
observers (Pearson 1993) . The operation of this application
is sketched in Figure 1 .

Other researchers have addressed the problem of gener-
ating high-level descriptions of physical systems. For in -
stance, Williams and Millar (1996) develop a method for
large-scale modeling and apply it to the thermal modeling o f
a smart building . STA is similar to their work in that it mod-
els complex systems through decomposition, but differs i n
that STA models more complex spatio-temporal dynamics ,
and produces symbolic descriptions . Crawford, Farquhar
and Kuipers (1990) automatically generate qualitative differ-
ential equations from physical models . Their work consid-
ers temporal change, but not spatially distributed systems .
Hornsby and Egenhofer (1997) study qualitative represen-
tations of change, such as an object's continuation, sepa-
ration and fusion, and construct hierarchies of change, bu t
they do not attempt to apply these objects to continuous
fields . Forbus, Nielsen and Faltings (1991) developed the
CLOCK project, which uses qualitative spatial reasoning to
automatically analyze and qualitatively predict the behavior
of fixed-axis mechanisms, such as mechanical clocks . Thei r
approach is suitable for mechanical systems of rigid parts ,
while ours is best suited for continuous fields that exhibi t
high-level properties such as quasi-uniform regions .

The main contribution of this paper is a computationa l
system that analyzes very large sets of unstructured data to
produce descriptions of qualitatively distinct aggregate ob-
jects and events . Many other spatio-temporal reasoning sys-
tems cannot address such large systems because the sheer
size of the data sets causes them problems such as combina-
torial explosions . STA avoids such problems through intel-
ligent decomposition and aggregation .

Figure 2 : Three snapshots of a time-varying Gray-Scot t
diffusion-reaction system

A Case Study : Diffusion-Reaction System s
An interesting instance of time-varying nonlinear dynami-
cal systems is the set of phenomena known as Diffusion -
Reaction . These phenomena are of great scientific impor-
tance, because they are associated with the problem of Mor-
phogenesis, first addressed by Turing (1952) . Particularly
interesting instances, where noticeable patterns emerge and
vary in seemingly unpredictable ways, will be examined .

The Gray Scott Model of Glycolysi s
The phenomenon of glycolysis is found in virtually all liv-
ing organisms . The Gray-Scott model of glycolysis is a
diffusion-reaction system, characterized by the followin g
equations :

at
8v

Du 7 2 u — uv 2 +F(1 — u)

_
at

	

— DT,V 2v + v.v 2 — (F + k)v, ( 1 )

where It and v are concentrations of two reactants, Du an d
Dv are their diffusion rates, and F and k are reaction pa-
rameters . This system is of interest not only as a model o f
glycolysis, but also because it exhibits a variety of behavior s
unlike anything observed before in theoretical or numerica l
studies . Pearson (1993) first observed the strikingly varie d
patterns exhibited by the GS system, such as the one seen i n
Figure 2 . Pearson et al . (1994) have argued that since gly-
colysis occurs inside the cell, it is possible that patterns such
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as the above could form within it. Furthermore, they ob-
serve that the process of mitosis, through which cells divide ,
requires the formation of a bipolar structure known as th e
mitotic spindle, which is likely governed by simple physical
processes such as chemical reactions and diffusion, rather
than by complex genetic mechanisms .

As the parameters vary in the GS system, it undergoe s
qualitative transformations in its behavior . We apply STA to
develop a program that can observe various system evolu-
tions for different parameter values, and from this observa-
tion generate descriptions of the qualitative events that too k
place for each case . These descriptions are later used by the
system to classify the instances into groups of similar behav -
ior .

Spatio-Temporal Aggregatio n
STA significantly extends the functionality of Spatial Aggre -
gation (SA) in the temporal dimension . SA provides a uni-
form vocabulary and mechanism for representing and rea-
soning about spatial fields . It builds a multi-layer, increas-
ingly more abstract representation of a spatial field . Objects
of each layer are formed as aggregates of lower-level ob-
jects . A neighborhood graph is constructed on the set o f
objects within each layer, and the objects are partitioned
into equivalence classes with respect to their features, e .g . ,
color, temperature, or pressure, as well their spatial adja-
cency. Each class is then re-described as a single object
at the next higher level . The same process of aggregation ,
classification, and re-description repeats with more abstract
relations at the next level . For a full description of the SA
field ontology and operators see Yip and Zhao (1996) and
Bailey-Kellogg (1999) .

Temporal Change s
Existing applications of SA abstract over domains such as
phase spaces and configuration spaces, in which time is only
implicitly represented . Others deal with physical spaces in
a fixed, steady state . In all these cases the field, as an ontol-
ogy, and all the conceptual layers built on top of it, are static .
Problems that use time are not necessarily outside the do -
main of Spatial Aggregation . For example, KAM (Yip 1989 )
is used to study Hamiltonian systems, which describe fric-
tionless motion . These systems are studied in phase space ,
where temporal variation is implicitly represented . More in
general, SA could be used to study time-varying systems a s
simple static systems where time has been represented a s
an extra spatial dimension . On the other hand, STA offers ,
beyond such approaches, the ability to reason about time -
varying systems without having to compute and store the en -
tire space-time volume beforehand . STA allows for the ob-
servation and representation of events as they happen, a fea -
ture that might be useful for real-time systems . For instance ,
our diffusion-reaction application, as sketched in Figure 1 ,
records events such as the birth and death of spatial cluster s
in a diffusion-reaction field .

Aggregation and Persistenc e
Sophisticated techniques have been developed to address th e
problem of temporal tracking in fields (Silver and Wang

1997) . It would seem natural to find whether there is a gener -
alization of these tracking approaches, which would let the m
deal with not just one, but multiple abstraction layers, in the
SA style .

The main addition made to the SA standard vocabular y
by STA is the update operator, which takes a field or an ob-
ject space and applies a set of transformations correspondin g
to the passage of a time interval . This operation allows for
changes in an object's features, position and existence, an d
it affects all levels of conceptual entities : objects, neighbor -
hood graphs, equivalence classes and inter-layer mappings .
The notion of update implies the premise that these concep-
tual entities are persistent . Thus, a neighborhood graph on a
particular abstraction layer at time t + 1 should be conceive d
as a revision of the graph on that layer at time t, rather tha n
as a new construct built from scratch . For instance, the dark
areas in the fields seen in Figure 2 are objects, which may
change in shape or position, while preserving their identities .

• Updates on Neighborhood Graphs : For a set of objects S ,
a neighborhood graph is a relation R E S x S that does
not contain any elements of the identity relation . When
the objects in space come into existence, cease to exis t
or change positions, their adjacencies may be modified
(thus changing R by removing elements from or adding
elements to it) . The changes in the neighborhood grap h
due to a change in a single object may remain localized
in space, or may propagate everywhere, depending on th e
nature of the graph .

• Updates on Object Classes : Adjacency is a fundamental
criterion to establish object equivalence in STA . There -
fore, changes in adjacencies may cause objects to ceas e
to belong to a certain class or to start belonging to a new
class . Classes are connected sets of objects (for any two
elements in a class, there is a path between them mad e
of elements of R) ; therefore, changes in R may affect
classes . On the other hand, even if the adjacencies ar e
not altered, changes in the intrinsic properties of the ob-
jects may also affect the way they are classified . Change s
in classification are annotated as sets of objects added o r
removed from each class, as well as classes that are newl y
formed or newly deceased .

• Updates on Re-described Objects : Changes in classes of
objects may affect the way higher level objects are re -
described, depending on what features are kept in the
re-description process and which are abstracted away.
For example, if clusters of objects in space constitut e
classes and they are re-described as convex hulls, inter-
nal changes in the clusters do not affect the higher leve l
objects as long as they do not involve the hull . There-
fore it is necessary to have mechanisms that detect lower -
level changes that affect the structure of higher-level re-
described objects .

Kinetic Data Structures : Reasoning about
Change Detectio n

STA employs ideas from Kinetic Data Structures (KDS)
to maintain the consistency of neighborhood graphs, object
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classes and re-described objects . KDS have been developed
in robotics to maintain a set of geometric relations amon g
distributed data (Basch, Guibas and Hershberg 1997) . The
problem KDS address consists of determining under whic h
conditions the structure of certain geometric constructs is al-
tered given that the elements are subject to particular motio n
laws .

Structural failure in a KDS is detected by maintaining a
set of validity certificates, predicates that determine the con -
ditions under which the current conditions of the system are
valid . When a certificate is violated, an event is said to occur.
The event is then processed and the certificates are update d
to reflect the new conditions .

The existing corpus of research on finding and maintain-
ing good certificates for various data structures is rich an d
varied. We are much less concerned with the particular s
of each data structure and its maintenance algorithm than
with the fact that such algorithms exist, and that they all fit
within a single model of change as a violation of a certifi-
cate . Because STA addresses various levels of description ,
it is necessary to add conceptual mechanisms to determin e
the relevance of each certificate for the structure at the nex t
abstraction level .

Update Mechanisms

We enhance the static SA to include certificate-violatio n
based update mechanisms adapted from KDS . This is done
first at the neighborhood graph level, by associating the
graph (namely, its vertices and its adjacencies) with a set o f
certificates that establish how much deformation the grap h
can take without undergoing a structural change . The clas-
sifier operator now does not only map objects to classes via
the neighborhood graph, but it also maps graph changes du e
to certificate violations to class changes .

The certificate-violation mechanism is extended to in-
clude the detection of non-geometrical change, namely ,
change in intrinsic object properties and existential change .
The former kind of certificates exist at the classifier level ,
but not at the neighborhood graph level ; typically it wil l
consist of simple inequalities that test whether certain ob-
ject features are within certain ranges . The latter exists at
all levels . Also, detection at the re-description level require s
being able to determine what low-level objects are relevan t
to the structure of higher-level objects . Because we know
which objects are involved in which certificates, all certifi-
cates that contain relevant lower-level objects are needed fo r
re-description . Such a filtering scheme is general, and al -
lows for a unifying method to reason about abstraction o f
change .

Tracking Change in Time

We have developed a unifying reasoning scheme to deal wit h
the propagation of change through an aggregation chain . We
now focus on how to provide support for mechanisms tha t
seek to interpret this change .

Keeping track of change in a system may be useful i n
many applications . For example, when studying transitiona l
phases in self-organizing systems (such as the formation of

Figure 3 : The flow diagram of STA application to the anal-
ysis of diffusion-reaction systems . The field simulator gen-
erates system evolutions, which are sampled and tracked b y
the particle system engine . A chain of aggregation, classifi-
cation and re-description is maintained on top of the particl e
system, to identify and track high-level objects . Qualitative
changes are later detected, generating event histories . Th e
history aggregator and classifier take multiple histories and
identify behavioral classes .

convection rolls in boiling water), researchers need to de-
termine which kinds of events precede such transitions . We
need, thus, to have a generic methodology to represent a his -
tory . More specifically, we require the ability to register a
sequence of events that take place at various aggregation lev -
els, namely changes in spatial objects, neighborhood graph s
and object classes .

A history should register relevant change . The ease with
which this can be done depends on how well the update
mechanisms at various levels work . On one extreme, there
is no attempt at any updates, and all structures are recon-
structed from scratch at fixed intervals . In such conditions,
finding relevant change is very difficult, since there is n o
knowledge to start with to draw correspondences . On the
other extreme, there is a good update mechanism that oper-
ates on structures with a high degree of locality and that ex-
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plicitly generates all change events . Such approach require s
virtually no extra work from a history-tracking mechanism,
which only needs to log these changes with their respective
time stamps .

Application to Diffusion-Reaction System s
We present a structure-identification algorithm for describ-
ing and classifying instances of diffusion-reaction systems
that exhibit highly organized spatio-temporal structure . The
algorithm is based on the central idea that qualitative struc-
tures of a spatial field can be constructed from an adap-
tive spatial subdivision rather than directly from a regularly
discretized field . This adaptive subdivision changes as th e
field changes, but the identity of its structural components i s
persistent . The persistence of these components simplifie s
the correspondence between successive temporal snapshots .
Figure 3 illustrates the operation of the algorithm .

Tracking High-Level Structure s

The existence of coherent structures in a field implies that
there are regions of approximately uniform characteristics .
In the GS model, each region clearly belongs to one of tw o
classes, low or high pH . The fewer the number of classes ob-
served, and the larger the regions of uniform attributes are,
the higher the organization perceived by an observer . These
two global attributes of a field may vary with relative inde-
pendence of each other, and each contributes significantly t o
the perception of coherence . For these reasons, local unifor-
mity is one of the main features to look for when studyin g
patterns . Once regions of uniformity are identified, char-
acteristics such as topology and temporal behavior can b e
studied . The Field Simulation module (see Figure 3) gener-
ates the field and its changes, but is unaware of the existenc e
of high-level structures .

Sampling Through a Particle Syste m

Diffusion-reaction fields are sampled by the STA algorith m
using particle systems (see corresponding block in Figure 3) .
Particles have the advantage of being persistent : they hav e
discrete identities and hence whatever happens to them ca n
be tracked in time with ease . Furthermore, any structure s
constructed by aggregating particles can also be tracked, be -
cause the identities of such constructs can be established re -
cursively through a simple heuristic from the identities of its
components . For example, one such simple heuristic is the
following : if constructs A and B, existing at different tim e
instants, share a majority of their components, they can b e
said to be identical . The particles must behave in such a wa y
that they sample the field accurately . Therefore they mus t
exist in large densities wherever the field gradient is large,
and in low densities where it is small .

We consider a simple algorithm that allows the particl e
system to adapt itself to changes in the field, always main-
taining an adequate sampling . The algorithm is a modifica-
tion of a method introduced by Witkin and Heckbert (1994) .
It allows particles to move across the field, repelling eac h
other, thereby occupying space uniformly . For this purpose ,
a Gaussian energy function is used . For any two particles i

and j, their mutual energy is

_ Ir, ) l a
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where n is a global constant and r id is their distance . The
energy for each particle is given b y

E z = E Fzj + F~~•

	

(3 )

Particles are assigned a velocity that is negatively propor-
tional to the gradient of energy, such that their local energ y
(for particle i, the part of its energy that does not depen d
on rr) is minimized . Moreover, they modify their distribu-
tion and density to compensate for under or over-sampling ,
by adaptively changing each o-i to maintain the local energy
of each particle constant, and splitting or dying when thi s
parameter falls outside of a pre-defined range .

Aggregating a Particle System

The sampling particles are used to construct a spatial subdi-
vision . The subdivision is computed by dividing the spac e
into simplices whose vertices are the particles, and whos e
edges constitute a neighborhood relation for the particles .
The simplices need to be small and non-sharp, so a Delau-
nay triangulation is used . It offers the added advantage that
it can be computed efficiently in two dimensions . Also, thi s
triangulation is a superset of the closest-neighbor graph, an d
therefore it captures the notion of spatial locality : local vari-
ations in a particle's position cause changes in the triangula-
tion that do not propagate beyond its immediate vicinity .

As the field varies in time, so does the position of the par-
ticles . This, in turn, causes the spatial subdivision to change :
some edges cease to exist and some new ones arise at ever y
time step . However, given the assumption that the under -
lying field changes slowly, the vast majority of edges an d
triangles are preserved through successive time steps, eve n
though their shape is slightly changed. Because of the local
nature of the Delaunay triangulation, these updates do no t
propagate far .

The static construction of a neighborhood graph consti-
tutes the aggregation operator in SA . The corresponding
block in Figure 3 represents the enhanced STA aggregat e
operation, which maintains the neighborhood graph as th e
particle system changes .

Description through Iso-Lines

Cluster boundaries are associated with field regions of high
gradient . Those regions can be identified using iso-lines ,
continuous zones of uniform or near-uniform field value .
The ratio of field value change to the distance between
iso-lines gives an estimation of the gradient . Therefore, a
field that is characterized by near-uniform regions that var y
smoothly is well described by iso-lines that sample evenl y
spaced field values . Temporal variations in fields will be
studied through the examination of geometric and topologi-
cal change in iso-lines .

The particle placement algorithm previously described i s
used to approximate iso-line contours of uniform regions .
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Figure 4 : Subdivision generated from a particle system tha t
samples a diffusion-reaction system

This algorithm requires the ability to do two things : to deter -
mine class equivalence between particles (the classificatio n
block in Figure 3), and to evaluate distances between par-
ticles that take the field into consideration . Since this case
study is of two-dimensional diffusion-reaction systems, the
distances between particles can be computed by using the
field values as additional dimensions, with an appropriat e
scaling constant. Class equivalence for adjacent particles i s
computed by thresholding the distance between the particle s
in feature space, that is, by considering only the values o f
their properties . The extraction of structures from the spa-
tial subdivision is analogous to a pixel-based region growin g
algorithm, with the difference that the element of aggrega-
tion is not the pixel, but the sampling particle . The block tha t
does this in Figure 3 is labeled redescription . In Figure 4 the
result of carrying out this process is exemplified .

Keeping Track of Shape Change s

STA records not only catastrophic events (such as object col -
lisions), but also events that involve a single object modify-
ing its shape . We use a shape-recognition and classificatio n
method called the Multiple Curvature Segmentation Algo-
rithm, introduced by Dudek and Tsotsos (1997) . Objects are
placed in a shape space, and they are clustered by similarity .
When an objects moves from one shape cluster to another, a
qualitative shape transformation is said to have taken plac e
(see the Shape Space Aggregation block in Figure 3) .

Putting it All Together : Extracting Behaviora l
Descriptions

The STA algorithmic components we have described so far
take as input a time-evolving diffusion-reaction system an d
produce the following descriptions :

• A detailed history of qualitatively significant events, in-
cluding births, deaths, collisions and fusions of objects ,
and their changes in shape, specified as transitions from
one shape cluster to another, an d

• A summary of significant events that have taken place i n
the history, including records of the most common shape s
and the most common events .

The last two blocks of Figure 3 indicate the final summa-
rization process of the STA application : multiple histories as
generated above are compared, and then classified according
to behavioral similarity .

Figure 5 : Successive snapshots of the evolution of a Gray -
Scott diffusion-reaction system

At step 88 body 3 was born
At step 88 body 2 was bor n
At step 88 body 1 was bor n
At step 88 body 0 was bor n
At step 229 bodies 0 (born 88), 3

(born 88) fused into body 1
At step 237 body 2 (born 88) fuse d

into body 1

Table 1 : A segment of a history : each entry is a time -
stamped event . Notice that two fusion events are recorded .
In them, the larger object preserves its identity, and th e
smaller ones are said to have fused to it .

A Sample Session : Classifying Patterns According
to Behavior

We now present a short run of the history-generation part o f
the program.

The program records the events that take place in a n
evolving diffusion-reaction field . For instance, when a sys-
tem such as that shown in Figure 5 evolves, the program can
generate a history file such as that of Table 1 .

The program can also compare several histories and grou p
them into classes of similar behavior. For the systems on
Figure 6, the groups in Table 2 were discovered . Compare
these with the classes discovered by Pearson (1993), show n
in Figure 7 : cluster 4 corresponds to pattern (b) ; cluster 2 to
(c) and cluster (5) to (a) .

Conclusion s
This paper has described a novel computational system ,
STA, for reasoning about time-varying fields such as
diffusion-reaction systems . STA extends Spatial Aggrega -
tion to make explicit the representation of time and tem-
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Figure 6 : Snapshots for DR system evolutions . Histories
were later classified into groups of similarity .
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Table 2 : Behavioral classes discovered by the STA applica-
tion
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Figure 7 : Patterns discovered by Pearson (1993) on th e
Gray-Scott system. His classification is similar to that pro-
duced by the STA application presented in this paper.

poral change . For this purpose, various abstract operation s
were introduced to represent the notions of persistence and
change . Common qualitative events such as birth, death ,
collision, separation, acquisition or loss of components o r
properties were identified for objects in spatio-temporal do -
mains .

STA has been demonstrated on a complex dynamical sys-
tem that exhibits multiple, qualitatively different behaviors .
This demonstration accounts for approximately 83% of th e
observations meticulously carried out by Pearson as docu-
mented in his 1993 paper. Our STA application classified
multiple instances of this system using not only the appear-
ance of static snapshots, but also the full extension of the
behavior of the systems through a relatively long time inter -
val . What this research contributes that had not been don e
before is the automatic differentiation of pattern classes by
behavior .

STA makes use of various techniques, namely, operation s
of abstraction of change, kinetic data structures and geomet-
ric shape classification . How well would these technique s
do if applied outside of this domain? We expect that a
straightforward application of STA to problems that requir e
extensive contextual and non-geometric knowledge would
not work as well . For example, tracking objects for com-
puter vision requires solving problems such as that of ob-
ject occlusion and representation from incomplete informa-
tion, not to mention the existence of multiple perspectives ,
different levels of illumination and reflectance, etc . In or-
der to address those problems, STA needs to integrate ad-
ditional domain specific techniques from computer vision .
Similarly, the problem of examining weather patterns als o
requires extensive domain knowledge . While this problem
seems more amenable to treatment from a STA perspective ,
it would still require integrating specific techniques such as
those developed by Huang and Zhao (2000) with the STA
tracking mechanism .
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