A New Technique for Monte Carlo Generation of Monotonic Functions

A. C. Cem Say

Department of Computer Engineering
Bogazig¢i University
Bebek 80815, Istanbul, Turkey
say(@boun.edu.tr

Abstract

We propose using a different representation in current
techniques of random generation of monotonic functions for
Monte Carlo simulation of incompletely specified
differential equations. Our method extends the scope of the
technique to cover cases in which no envelopes have been
specified for the function under consideration. Furthermore,
the new representation does not entail unjustified implicit
assumptions about the shape of the function. The general
problem of “fair coverage” of the space of monotonic
functions between two points is examined.

Introduction

One interesting alternative to semiquantitative simulation
of incompletely known differential equations (Kuipers
1994) is the use of the Monte Carlo technique (Kalos and
Whitlock 1986). In this approach, a large number of ODE’s
matching the given QDE are randomly generated making
use of the available semiquantitative information, each such
ODE is numerically integrated, and the family of results is
treated as a representative sample of the infinite family of
behaviors that would be entailed by the QDE. This tech-
nique has been used for verifying the stability of closed-
loop nonlinear systems (Gazi et al. 1997) and assigning
probabilities to alternative semiquantitative simulation
predictions (Brajnik 1997). We propose using a different
representation for the randomly generated monotonic func-
tions matching the original incomplete specifications in the
numerical integration phase of these techniques. Our
method extends the scope of the technique to cover cases in
which no envelopes have been specified for the function
under consideration. Furthermore, our representation does
not entail unjustified implicit assumptions about the shape
of the function. The general problem of “fair coverage” of
the space of monotonic functions between two points is
examined.

Semiquantitative Reasoning with the Monte
Carlo Approach
Semiquantitative simulation methods (Kuipers 1994, Kay

1996, Berleant and Kuipers 1998) take QDE’s augmented
with two kinds of quantitative information as input: A

numerical interval can be specified for each landmark
value, and a pair of quantitative envelope functions can be
given for each monotonic (M or M) relationship. The
output is a list of qualitative behavior predictions in which
numerical intervals have been associated with the landmark
and time-point values. Semiquantitative simulation inherits
the soundness guarantee and the incompleteness problem
from qualitative simulation. Practical application of this
method to complicated systems is problematic, usually
because of the tendency of the underlying pure qualitative
simulation algorithm to produce behavior trees which
branch intractably.

Another method of solving such incompletely specified
differential equations employs the Monte Carlo approach.
This technique (Gazi er al. 1997) consists of the following
steps:

Algorithm: MONTE-CARLO
1.Let N (the number of ODE’s to be generated) be a
sufficiently large integer (numbers like 10000 are
common in the literature)
2. Do the following N times:
2.1 Create an initial value problem from the input as
follows:
2.1.1 Create a vector of numerical values for the
system variables at ¢, by randomly choosing
a number for each of them from the
corresponding user-specified interval
2.1.2 For each monotonic functional relationship in
the QDE, randomly generate a matching
concrete monotonic function between the
given quantitative envelopes
2.2 Solve the initial value problem created in Step 2.1 by
numerical integration; this is an iterative process
whose cost and correctness depend on step size and
number of steps
2.3 Record the relevant results of the integration

Unlike qualitative simulation, the Monte Carlo approach
has no soundness guarantee; its coverage depends on the
computational budget one is willing to spend. If the number
N is increased, the confidence that we would have about
not missing a rare type of behavior would correspondingly
increase.

124

One other important factor on which the usefulness of
the Monte Carlo technique depends is whether the
underlying space is covered *“fairly” or not. For instance, if
a variable’s initial value is given to be in the interval
[0,10], but more than 75% of our simulations start with a
value less than 5 for this variable, there is something unfair
going on. (We will be examining another sort of unfairness
related to monotonic function generation later in this
paper.) Fair coverage enhances the reliability of probability
assignments for qualitative behaviors (Brajnik 1997) as
well as minimizing the risk of missing a qualitatively
distinct type of behavior.

Let us examine Step 2.1.2 in the algorithm above in
greater detail. Gazi, Seider and Ungar (1997) approach the
problem of randomly generating a monotonic increasing
function y=f{x) such that fi(x) < Ax) <f.(x), where fi(x) and
J.(x) are the given quantitative envelope functions, (Figure
1) as follows:

Algorithm: GENERATE-FUNCTION
1. Let G (the number of grid points to be selected in x) be a
sufficiently large integer
2. Let x; and xg be the smallest and greatest possible x
values to be considered, respectively. The interval
[xj, xg] will be divided by the grid points to G-I
intervals of equal length
3. Choose y; randomly in [fi(xy), f.(x))] from some
distribution
4. Choose yg randomly in [max(fixg), »), filxg)] from
some distribution
5. Do the following for all available (x;, y;), (x;, »,) pairs
with remaining untouched grid points between them:
5.1 Select a midpoint x; in this interval
5.2 Randomly choose yi in [max(fi(x;).y,),min(7,(xe).]
6. Connect the points (xg, v). &=1....,G, with straight lines

y=Ax)
N
—
/f"
/ /”'/
" __,...-—"""——_ Jix)
LT

Jux)

\

~
-~
X) X2 X3 Xy X5 Xg X

Figure 1: Generation of f{x)

(Decreasing functions are treated in an analogous manner.)

The probability distribution to be used in Step 5.2 of the
above algorithm to choose a y; for a given x; is of crucial
importance from the point of view of fair coverage. Gazi,
Seider and Ungar (1997) provide a careful analysis of this
problem and show that a uniform distribution is not always
the best answer. When one already has an (xy.,, };.,) pair,

and the “next” point (xy, y4) is to be determined by choos-
ing y, the shape of the envelopes delimiting these choices
play a crucial role in whether the coverage is fair or not. If
the y intervals to be used in these consecutive choices do
not overlap, as seen in Figure 2, making the selection using
a uniform distribution is nonproblematic. On the other
hand, if these intervals overlap as in Figure 3, a uniform
distribution can be proven to cause the family of resulting
functions to be unfairly “attracted” towards the upper enve-
lope. Gazi ef al. solve this problem by using a distribution
formula which is biased to favor points nearer the lower
envelope. In this formula, a parameter has to be selected by
the user depending on the shape of the envelope and the
number G. An essential feature of this approach is the as-
sumption that the number of grid points (equaling the num-
ber of random choices for y values that will be made) is
fixed at the beginning of the algorithm and is a factor in the
determination of the probability formula used for the ran-
dom choices. High values of G are good for the “quality”
of the generated functions, but they cause the computation
of the probability formula to be impractical.

Jux)

Jix)

Figure 2: y intervals do not overlap.

Jux)

Jix)

X Xt

Figure 3: y intervals overlap completely.

Step 2.2 of the MONTE-CARLO algorithm performs
numerical integration on the ODE prepared by the previous
steps. There are several alternative methods (Press e/ al.
1988) that can be employed for this process. All of these
accept the ODE as a set of first order differential equations
for the phase variables v;, each having the form

dv, (1)

dt

where P is the order of the model. If we restrict ourselves
to systems that can be handled by QSIM, the F, are sup-
posed to be defined only in terms of addition, multiplica-
tion, negation, and functions of continuous and strictly
nonzero derivative (Kuipers 1994). It is these monotonic
functions / among the QSIM variables (corresponding to
QSIM’s M" and M constraints) that we are interested in. At

= E("’iv":v--}"’f*)’

every time-step ¢ of the numerical integration, the func-
tions F; are evaluated using the v; values at that time point.
During that computation, each monotonic function f{x)
appearing in F, will have to be evaluated to yield y=f{x(£)).
(Note that, if a relationship represented by a QSIM
M (x, y) constraint appears as a function f in the ODE,
neither one of the QSIM variables x and y need to be phase
variables of the ODE. For instance, the constraints
add(x, y, z), M (z, u), d/dt(w, u) translate to

daw

a f(x + 3)~
where only x, y, and w are the phase variables. We do know
the numerical values of all QSIM variables, including the
“non-phase” ones, at the start of the integration.)

Brajnik (1997) presents an interesting application of this
approach to assign probability expectations to behavioral
predictions outputted by semiquantitative simulation: The
incomplete differential equation is first solved by a semi-
quantitative simulator, and the list of predictions is ob-
tained. The equation is then solved with the Monte Carlo
approach of (Gazi et al. 1997). The numbers of numerical
solutions which match the individual qualitative predictions
are recorded, yielding a frequency distribution, which is an
estimate of the probability expectation of each behavior.
One bonus of this method is that it provides a possible way
of showing that some qualitative predictions are not spuri-
ous: If even one numerical solution uniquely matches a
prediction, we can trust that it is a genuine possibility.

Problems

We identify three problems with the method of monotonic

function generation described in the previous section:

]. The method imposes an unjustified shape restriction
(piecewise linearity) on all the generated functions. If
the results of the Monte Carlo runs will be matched to
QSIM behaviors as in (Brajnik 1997), this creates a
theoretical problem because the QSIM monotonic
functions are supposed to be differentiable throughout
their domains, and so none of the ODE’s considered
by the Monte Carlo method actually correspond to the
original QDE. Even if a differentiable spline is fitted to
the generated points (as mentioned by Brajnik (1997),)
having to choose y values corresponding to non-grid-
point x values from the fitted curve leads to an unfair
selection: Consider the function segment depicted in
black in Figure 4. x; and x,, are two consecutive grid
points, and y, and yjs are the corresponding function
values, as selected by Step 5.2 of the GENERATE-
FUNCTION algorithm. For simplicity, we assume that
the envelope functions are separated widely enough in
this interval so that they do not enter the picture. As-
sume that the numerical integration algorithm requires
several y values for x’s within this interval. Although a
huge selection of points within this rectangle are con-
sistent with monotonicity and our knowledge of the
endpoints, we are forced to use only the points which

125

are on the curve. Note that these intermediate y values
would not be “random” in the sense that the y,’s are se-
lected randomly in Step 5.2. Since we have no justifi-
cation that the real function in question has such a
form, and since (of course) only a finite amount of
Monte Carlo runs and a finite resolution for the grid
are allowed, this can be considered as a violation of
the principle of fair coverage.

Figure 4: All y values corresponding to x’s in the interval
have to be on the dark curve. A few of the unconsidered
curves are also shown.

2. The method may waste resources to generate parts of the
function that will turn out to be unnecessary in the
numerical integration phase. Suppose that the variable
x has a legal range of [0, 1000]. The GENERATE-
FUNCTION algorithm outputs a function over this
entire domain. If a particular numerical integration
from a particular set of initial values produces a
behavior in which x does not get out of the interval
[30, 40], most of the resources (which could have been
used to provide a finer resolution within this interval)
will have been wasted.

3. The method requires information about envelope func-
tions to begin with. If we have no quantitative clue
about the shape of a relationship except for the fact
that it is monotonic, the algorithms described in the
previous section would not work.

The Point-List Representation

Our proposed solution to the problems described in the
previous section is based on generating the monotonic
functions point by point as the need arises during integra-
tion, and representing them as lists of these points, without
committing to any shape about the intervals in between. In
our approach, the functions are not pregenerated to exclu-
sively cover a fixed interval between the legal range limits
of the variables. If a variable crosses its legal range limit
during integration, it is the simulator’s responsibility to
detect the problem and stop the integration.

The next subsection explains the changes to the current
algorithms necessitated by our approach.

Changes to the Algorithm

o Step 2.1.2 of the MONTE-CARLO algorithm will be
modified as follows:

126

2.1.2 For each monotonic functional relationship y=f{x)
in the QDE, initialize the corresponding point-
list to the single-element list {(x(%,).v(1,))}, using
the initial values generated in Step 2.1.1, and set
the variables leftmost(f) and rightmost(f) to the
point value (x(7y).y(t)).

® In the zeroth time-step of numerical integration, there is
no need for evaluating any monotonic function, since
all system variables have already been assigned initial
values by Step 2.1.1 of MONTE-CARLO. So, for any
invocation f{x(t,)), where f{x)=y is a monotonic
function, simply plug in the available y(t,) value.

* In subsequent time-steps of numerical integration, do the
following whenever f{x) is supposed to be evaluated
for x=r:

IF the point () is a member of /s point-list
THEN RETURN y,
ELSE IF r > rightmost(f) OR r < leftmosi(f)
THEN EXTRAPOLATE
ELSE INTERPOLATE

¢ The routines EXTRAPOLATE and INTERPOLATE, as

described below, will be incorporated to the algorithm.

We present the algorithm for calculating f for an x be-
yond the presently covered interval only for the case where
the current x value r is greater than rightmost(f), and f is
increasing. The other cases are handled in an analogous
manner.

Algorithm: EXTRAPOLATE
1. (maxx,maxy) = rightmosi(f)
2. Ax == r—maxx
3. IF f{r) = maxy AND f(r) <ee
THEN Pick f{r) randomly from (fi(»), f.(r)) using the
uniform distribution
ELSE IF f{r) > maxy
THEN J := arctan((f{r) - maxy) / Ax)

ELSE B :=0
IF fi{r) = oo
THEN 6 := /2

ELSE 8 := arctan((f,(r) - maxy) / Ax)
Pick the angle o. randomly from (B, 6) using
the uniform distribution
Ar) := maxy + Ax.tan(a)
4. Append (r, f{r)) to the end of f’s point-list
5. rightmost(f) == (r, f(r))
6. RETURN fir)

Figures 5, 6 and 7 depict different cases that may arise
during the extrapolation. Figure 5 corresponds to the “no-
overlap / two-envelopes™ case where the y-coordinate of
the current maximum point in the point-list is outside the
finite p interval available for f{). In this case, we choose
Ar) uniformly from (f(r).f.(r)), as recommended by Gazi ef
al. In the other cases, we use the following idea: A straight
line between the last known point of f (that is,
(maxx,maxy)) and the point that is to be generated now
(that is, (r, f{r))) will have the slope tan(ct), where ¢ is an

angle that can take its values from the interval (B, 0). If we
have an upper envelope at point r, the greatest possible
slope will be caused by picking f{r) = f.(r). If no upper
envelope exists, o can be arbitrarily close to 7/2. The algo-
rithm covers all these possibilities. See the next subsection
for a further discussion of the effect of this distribution on
fair coverage.

F- N(r)
—
e °
(maxx,maxy) (r,maxy)

Figure 5: The no-overlap / two-envelopes case

—

(maxx,maxy)

(r.maxy)

Figure 6: p > 0 if f(r) > maxy

’l'-"—- .fl:l(“‘)

(maxx,maxy)

(rimaxy)

Figure 7: 8 < /2 only if there is an upper envelope.

When a new function point is to be created between two
points that are currently in the point-list, we adopt a modi-
fied version of the method of (Gazi er al. 1997):

Algorithm: INTERPOLATE

1. Find the two points in f's point-list between which the
point (r, f{¥)) that will be generated now will be in-
serted; let these points be called (lowx,/owy) and
(highx,highy), where lowx < r < highx

2. k = round((r - lowx) / (highx - lowx) * G)

3. Use the formula in (Gazi et al. 1997) for y;, plugging in
k to find f{r)

4. Insert (r, flr)) in the place found in Step 1 in the point-
list

5. RETURN f{r)

The G value used in Step 2 and in writing the probability
distribution function for f{r) in Step 3 is predetermined
depending on the computational budget.

Discussion

Functions delimited by infinite (that is, nonexistent) enve-
lopes are handled by our technique, which enables us to
perform semiquantitative reasoning with a lower level of
input information than allowed by the state-of-the-art tech-
niques.

We claim that our technique provides a better coverage
than that of Gazi et al. when performing interpolations
between two already obtained points of the function, since
we use the same distribution as Gazi ef al., but without any
unnecessary commitment to function shape and with a
“free” random selection for each necessary f'value.

When performing “extrapolations,” that is, when extend-
ing the covered domain of the function beyond a present
maximum, there are three cases to examine:

e [f there is no envelope pair delimiting the function, a
performance comparison with other techniques is not
possible, since they do not handle this case.

e If the y-coordinate of the present maximum is outside of
the interval from which the new function value will be
selected, we use a uniform distribution like Gazi et al.,
so the coverage performance would be the same.

o In the remaining case, that is, when the new function
value has to be selected from an interval between the
present maximum y-value and the upper envelope, the
nonexistence of a fixed grid prevents us from using
Gazi et al.’s distribution. To try to avoid the envelope
attraction effect, which could arise if we picked the
function value from the available y-interval with a uni-
form distribution, we use a uniform distribution on the
angle of the line between the two points with respect to
the x-axis. Table 1 shows that the angle picking
method produces points which are statistically further
away from the upper envelope compared to the dis-
tance picking method, based on the situation in Figure
8, where Ax is 1.

A discontinuity is noticed when one examines the me-
dian of the generated f{r) values in the no-overlap case
(Figure 5) as the upper envelope is pushed to infinity. A
huge finite value, say, H, of £,(+) causes a median which is

127

(H=£(r))/2 units away from the lower envelope, whereas
that distance drops to the much smaller value
(r—maxx).tan(((m/2)—arctan((f(r)—maxy)/ (r—maxx)))/2)—f(r)
when f,(r)=ec. When the y-interval becomes infinite, the
only remaining interval that can be sampled fairly is the
angle interval. The angle interval is not used in the finite-
envelope / no-overlap case, since it would cause an unfair
attraction to the /ower envelope.

— Skr)

g (1,./(r)2)
e (1,tan(8/2))

({.0)

Figure 8: f'values chosen uniformly from (0, £,(r)) have a
greater median than those produced by choosing the angle

from (0, ©).
median of uniform |median of uniform
0 distance picking angle picking

(fr)/2 = tan(B)/2) (tan(0/2))
0.1 0.05017 0.05004
0.2 0.10136 0.10034
0.3 0.15467 0.15114
0.4 0.21140 0.20271
0.5 0.27315 0.25534
0.6 0.34207 0.30934
0.7 0.42114 0.36503
0.8 0.51482 0.42279
0.9 0.63008 0.48306
1.0 0.77870 0.54630
1 0.98238 0.61311
1.2 1.28608 0.68414
1.3 1.80105 0.76020
1.4 2.89894 0.84229
1.5 7.05071 0.93160

TABLE 1. Median f~values produced by the two methods
for different 6 values in Figure 8

Compared with Gazi et al.’s method, our technique
clearly spends more time and memory for each monotonic
function; the requirements increase linearly with the num-
ber of numerical simulation steps when a new point has to
be created for each step and no search needs to be con-
ducted in the point-list to find the insertion place of the new
point. In the example given in (Gazi et al. 1997), G (the

128

number of generated points) is set to be only 11, whereas
our method may result in as many points as the number of
integration time-steps. When forced to generate an equal
number of points as ours, their technique would waste some
of this effort for x ranges that would not be visited during
the simulation, and a “less random™ family of curves would
be used for the ranges that are visited, as explained above.

Distributions of Monotonic Functions in a
Bounding Rectangle

In this section, we explore an alternative way of designing a
probability distribution for f{r). where the new point is to
be between two already known points of the monotonic
function. Figure 9 illustrates the idea: If we start in the
lower left corner square, and are supposed to either move
up or right one square at a time, how many different paths
ending at the upper right corner are there? It is clear that, if
we have / rows and j columns in our grid, the answer is

xdiff + yd{ﬂ]
[xdiff '

where xdiff is the number of “right” moves that we are
supposed to make, that is, j-1, and ydiff'is i-1.

(highx,highy)

LA RN A AR EER

-
.
.
"
.
L
a
.

|
iy
-

1

i

I

|

|

I

(lowx,lowy)

Figure 9: Some possible “monotonic” paths between the
two corners

The probability distribution that we are looking for is
supposed to tell us which f{r) value is more likely for a
given r, which is, in the context of Figure 9, almost the
same question as asking which squares in the column corre-
sponding to r have more paths passing through them. (See
the end of this section for a discussion.) Using the
combination formula given above, the number of paths
passing through a square S is the product of the number of
paths from the lower left square to S and the number of
paths from S to the upper right square. Figure 10 shows a
grid with /=3 and /=5 for which this calculation has been
made for each square. It can be seen that the formula

number of paths through the square at (r, y)

number of all paths between the corners

is an approximation to the probability distribution we are
looking for.

Now consider increasing the resolution of the grid to
infinity, that is, taking the limit of the formula above as

xdiff approaches infinity. (Note that we know the finite
value that xdiff / ydiff is supposed to have, it is simply
(highx - lowx) / (highy - lowy).) We can then use the ob-
tained formula to calculate the probability that a given Ay
interval contains f{r) for given r.

1 3 6 | 10 | 15
5 8 9 8 5
15110] 6 3 1

Figure 10: “Path counts” of each square

We conclude this section by listing the problems about
this approach: First of all, the simple combination formula
for the number of paths that we used in our example cannot
be used in the derivation of the distribution formula, since
(allowing, as it does, paths with segments having a 90°
angle with the horizontal,) it causes the same path to con-
tribute to the path counts of more than one square in the
same column. As the careful reader may have noticed, the
sum of the numbers in a column of Figure 10 does not
equal the number of paths between the corner squares, as
given by the combination formula. An alternative (and less
elegant) formula counting paths formed by line segments
with angles in (0°, 90°) that connect the nodes of the grid,
as shown in Figure 11, would have to be employed. Fur-
thermore, when the envelope structure causes the shape of
the area to be covered to be different than a rectangle, the
formula gets even less elegant and harder to calculate,

il |
o Y

4N
AL
\
\

e

Figure 11: Some monotonic paths composed of non-
perpendicular segments between the two corners

Conclusion

We presented a new technique for randomly generating
monotonic functions required in the Monte Carlo simula-
tion of incompletely specified differential equations. Unlike
other techniques, our method works even when envelopes
have not been specified for the function under considera-
tion. Furthermore, the new representation does not entail
unjustified implicit assumptions about the shape of the
function.

Ortega et al. (1999) present a semiquantitative Monte
Carlo reasoner in which the monotonicity constraint is not
imposed on the underlying functions. Our point-by-point
generation approach can be incorporated to their frame-
work as well.

We are currently working on a full implementation of the
techniques described here. Software products and other
results of this work will be put on the WWW at the URL
http://www.cmpe.boun.edu.tr/~say/files/montecarlo
as they become available.

Acknowledgements

[thank Nadir Yiicel, Can Ozturan, Zafer Barutguoglu,
Kutsi Nircan, Elton Ballhysa, Cigdem Giindiiz, Ozlem
Cetinoglu, and Halim Levent Bagcioglu for their help in
various stages of this work. I also thank the anonymous
referees for their helpful comments. This research was
partially supported by the Bogazigi University Research
Fund. (Grant no: 00A102)

References

Berleant, D., and Kuipers, B. 1998. Qualitative and Quanti-
tative Simulation: Bridging the Gap. Artificial Intelligence
95: 215-255.

Brajnik, G. 1997. Statistical Properties of Qualitative Be-
haviors. In Proc. Eleventh Int. Workshop on Qualitative
Reasoning, Cortona, Italy. 233-240.

Gazi, E., Seider, W. D., and Ungar, L. H. 1997. A Non-
parametric Monte Carlo Technique for Controller Verifica-
tion. Automatica 33: 901-906.

Kalos, M. H., and Whitlock, P. A.. 1986. Monte Carlo
Methods Vol. 1. New York, NY: John Wiley & Sons.

Kay, H. 1996. Refining Imprecise Models and Their Be-
haviors. Ph. D. Dissertation, The University of Texas at
Austin.

Kuipers, B. J. 1994. Qualitative Reasoning: Modeling and

Simulation with Incomplete Knowledge. Cambridge, Mass.:
The MIT Press.

Ortega, J. A., Gasca R. M., and Toro, M. 1999. A Semi-
quantitative Methodology for Reasoning about Dynamic
Systems. In Proc. Thirteenth Int. Workshop on Qualitative
Reasoning, Loch Awe, Scotland. 169-177.

Press, W. H., Flannery, B. P., Teukolsky, S. A, and Vetter-
ling, W. T. 1988. Numerical Recipes in C. New York, NY:
Cambridge University Press.

129

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7

