
A New Technique for Monte Carlo Generation of Monotonic Function s

A. C . Cem Say

Department of Computer Engineering
Bogazici Universit y

Bebek 80815, Istanbul, Turkey
say(ii)boun .edu .tr

Abstrac t

We propose using a different representation in current
techniques of random generation of monotonic functions fo r
Monte Carlo simulation of incompletely specified
differential equations . Our method extends the scope of th e
technique to cover cases in which no envelopes have bee n
specified for the function under consideration . Furthermore ,
the new representation does not entail unjustified implici t
assumptions about the shape of the function . The genera l
problem of "fair coverage" of the space of monotoni c
functions between two points is examined .

Introductio n

One interesting alternative to semiquantitative simulatio n
of incompletely known differential equations (Kuiper s
1994) is the use of the Monte Carlo technique (Kalos an d
Whitlock 1986) . In this approach, a large number of ODE' s
matching the given QDE are randomly generated making
use of the available semiquantitative information, each suc h
ODE is numerically integrated, and the family of results i s
treated as a representative sample of the infinite family of
behaviors that would be entailed by the QDE . This tech-
nique has been used for verifying the stability of closed -
loop nonlinear systems (Gazi et al. 1997) and assignin g
probabilities to alternative semiquantitative simulatio n
predictions (Brajnik 1997) . We propose using a differen t
representation for the randomly generated monotonic func-
tions matching the original incomplete specifications in th e
numerical integration phase of these techniques . Our
method extends the scope of the technique to cover cases i n
which no envelopes have been specified for the functio n
under consideration . Furthermore, our representation doe s
not entail unjustified implicit assumptions about the shape
of the function . The general problem of "fair coverage" o f
the space of monotonic functions between two points i s
examined .

Semiquantitative Reasoning with the Mont e
Carlo Approac h

Semiquantitative simulation methods (Kuipers 1994, Ka y
1996, Berleant and Kuipers 1998) take QDE's augmented
with two kinds of quantitative information as input : A

numerical interval can be specified for each landmar k
value, and a pair of quantitative envelope functions can b e
given for each monotonic (M' or M) relationship . The
output is a list of qualitative behavior predictions in whic h
numerical intervals have been associated with the landmar k
and time-point values . Semiquantitative simulation inherit s
the soundness guarantee and the incompleteness proble m
from qualitative simulation . Practical application of thi s
method to complicated systems is problematic, usuall y
because of the tendency of the underlying pure qualitativ e
simulation algorithm to produce behavior trees which
branch intractably .

Another method of solving such incompletely specifie d
differential equations employs the Monte Carlo approach .
This technique (Gazi et al . 1997) consists of the following
steps :

Algorithm : MONTE-CARLO
1. Let N (the number of ODE's to be generated) be a

sufficiently large integer (numbers like 10000 are
common in the literature )

2. Do the following N times :
2 .1 Create an initial value problem from the input a s

follows :
2 .1 .1 Create a vector of numerical values for th e

system variables at to by randomly choosin g
a number for each of them from th e
corresponding user-specified interva l

2 .1 .2 For each monotonic functional relationship i n
the QDE, randomly generate a matching
concrete monotonic function between th e
given quantitative envelopes

2 .2 Solve the initial value problem created in Step 2 .1 by
numerical integration ; this is an iterative proces s
whose cost and correctness depend on step size an d
number of steps

2 .3 Record the relevant results of the integratio n

Unlike qualitative simulation, the Monte Carlo approac h
has no soundness guarantee ; its coverage depends on the
computational budget one is willing to spend . If the numbe r
N is increased, the confidence that we would have about
not missing a rare type of behavior would correspondingl y
increase .



124

One other important factor on which the usefulness o f
the Monte Carlo technique depends is whether th e
underlying space is covered "fairly" or not . For instance, i f
a variable's initial value is given to be in the interva l
[0,10], but more than 75% of our simulations start with a
value less than 5 for this variable, there is something unfai r
going on. (We will be examining another sort of unfairnes s
related to monotonic function generation later in thi s
paper .) Fair coverage enhances the reliability of probabilit y
assignments for qualitative behaviors (Brajnik 1997) as
well as minimizing the risk of missing a qualitativel y
distinct type of behavior .

Let us examine Step 2 .1 .2 in the algorithm above i n
greater detail . Gazi, Seider and Ungar (1997) approach th e
problem of randomly generating a monotonic increasin g
function y f(x) such that fl(x) f(x) „(x), wheref(x) an d
f„(x) are the given quantitative envelope functions, (Figur e
1) as follows :

Algorithm : GENERATE-FUNCTION
1. Let G (the number of grid points to be selected in x) be a

sufficiently large intege r
2. Let x, and xG be the smallest and greatest possible x

values to be considered, respectively . The interva l
[x i , xo] will be divided by the grid points to G- 1
intervals of equal length

3. Choose y, randomly in [(x i ), „(x i )] from some
distribution

4. Choose yr, randomly in [max(f(xG), y i ), f„(xo)] from
some distribution

5. Do the following for all available (x,, y ;), (x,, y,) pairs
with remaining untouched grid points between them :

5 .1 Select a midpoint Xk in this interva l
5 .2 Randomly choose Yk in [max((xk ),y),min(f„(xk),yJ]

6. Connect the points (Xk, Yk), k 1, . . .,G, with straight lines

y =f(x)

xI x2 x3 x4 x5 x6

	

XG

Figure 1 : Generation off(x)

(Decreasing functions are treated in an analogous manner . )
The probability distribution to be used in Step 5 .2 of the

above algorithm to choose a Yk for a given xk is of crucial
importance from the point of view of fair coverage . Gazi ,
Seider and Ungar (1997) provide a careful analysis of thi s
problem and show that a uniform distribution is not alway s
the best answer . When one already has an (xk_ i , yk_ j ) pair,

and the "next" point (Xk, Yk) is to be determined by choos-
ing yk , the shape of the envelopes delimiting these choice s
play a crucial role in whether the coverage is fair or not . I f
the y intervals to be used in these consecutive choices d o
not overlap, as seen in Figure 2, making the selection usin g
a uniform distribution is nonproblematic . On the other
hand, if these intervals overlap as in Figure 3, a unifor m
distribution can be proven to cause the family of resultin g
functions to be unfairly "attracted" towards the upper enve-
lope . Gazi et al . solve this problem by using a distributio n
formula which is biased to favor points nearer the lower
envelope . In this formula, a parameter has to be selected b y
the user depending on the shape of the envelope and th e
number G . An essential feature of this approach is the as-
sumption that the number of grid points (equaling the num-
ber of random choices for y values that will be made) i s
fixed at the beginning of the algorithm and is a factor in th e
determination of the probability formula used for the ran-
dom choices . High values of G are good for the "quality "
of the generated functions, but they cause the computatio n
of the probability formula to be impractical .

Xk

Figure 2: y intervals do not overlap .

Figure 3: y intervals overlap completely .

Step 2.2 of the MONTE-CARLO algorithm perform s
numerical integration on the ODE prepared by the previou s
steps . There are several alternative methods (Press et al.
1988) that can be employed for this process . All of these
accept the ODE as a set of first order differential equation s
for the phase variables v,, each having the for m

dv, (t) _

dt

	

F,(v,,v2, . . .,vp )

where P is the order of the model . If we restrict ourselves
to systems that can be handled by QSIM, the F, are sup -
posed to be defined only in terms of addition, multiplica-
tion, negation, and functions of continuous and strictl y
nonzero derivative (Kuipers 1994) . It is these monotoni c
functions f among the QSIM variables (corresponding to
QSIM's M ' and M constraints) that we are interested in . At

fl(x )
Xk x k



125

•

every time-step tX of the numerical integration, the func-
tions F, are evaluated using the v, values at that time point .
During that computation, each monotonic function f(x )
appearing in F, will have to be evaluated to yield yf(x(tx )) .
(Note that, if a relationship represented by a QSIM
M r (x, y) constraint appears as a function f in the ODE ,
neither one of the QSIM variables x and y need to be phas e
variables of the ODE. For instance, the constraint s
add(x, y, z), M r(z, u), d/dt(w, u) translate to

dw =
.f(x + y)

dt
where only x, y, and w are the phase variables . We do kno w
the numerical values of all QSIM variables, including th e
"non-phase" ones, at the start of the integration . )

Brajnik (1997) presents an interesting application of thi s
approach to assign probability expectations to behaviora l
predictions outputted by semiquantitative simulation : The
incomplete differential equation is first solved by a semi-
quantitative simulator, and the list of predictions is ob-
tained . The equation is then solved with the Monte Carl o
approach of (Gazi et al. 1997) . The numbers of numerical
solutions which match the individual qualitative prediction s
are recorded, yielding a frequency distribution, which is a n
estimate of the probability expectation of each behavior .
One bonus of this method is that it provides a possible way
of showing that some qualitative predictions are not spuri-
ous : If even one numerical solution uniquely matches a
prediction, we can trust that it is a genuine possibility .

Problems

We identify three problems with the method of monotoni c
function generation described in the previous section :
1 . The method imposes an unjustified shape restriction

(piecewise linearity) on all the generated functions . If
the results of the Monte Carlo runs will be matched to
QSIM behaviors as in (Brajnik 1997), this creates a
theoretical problem because the QSIM monotoni c
functions are supposed to be differentiable throughout
their domains, and so none of the ODE's considere d
by the Monte Carlo method actually correspond to the
original QDE . Even if a differentiable spline is fitted t o
the generated points (as mentioned by Brajnik (1997), )
having to choose y values corresponding to non-grid-
point x values from the fitted curve leads to an unfai r
selection : Consider the function segment depicted i n
black in Figure 4 . xk and xk +i are two consecutive gri d

points, and Yk and yk+l are the corresponding function
values, as selected by Step 5 .2 of the GENERATE -
FUNCTION algorithm. For simplicity, we assume that
the envelope functions are separated widely enough i n
this interval so that they do not enter the picture . As-
sume that the numerical integration algorithm require s
several y values for x's within this interval . Although a
huge selection of points within this rectangle are con-
sistent with monotonicity and our knowledge of th e
endpoints, we are forced to use only the points which

are on the curve . Note that these intermediate y value s
would not be "random" in the sense that the yk's are se-
lected randomly in Step 5 .2 . Since we have no justifi-
cation that the real function in question has such a
form, and since (of course) only a finite amount o f
Monte Carlo runs and a finite resolution for the gri d
are allowed, this can be considered as a violation o f
the principle of fair coverage .

Figure 4 : Ally values corresponding to x's in the interva l
have to be on the dark curve . A few of the unconsidered

curves are also shown .

2 . The method may waste resources to generate parts of th e
function that will turn out to be unnecessary in th e
numerical integration phase . Suppose that the variable
x has a legal range of [0, 1000] . The GENERATE-
FUNCTION algorithm outputs a function over thi s
entire domain. If a particular numerical integration
from a particular set of initial values produces a
behavior in which x does not get out of the interva l
[30, 40], most of the resources (which could have bee n
used to provide a finer resolution within this interval)
will have been wasted .

3 . The method requires information about envelope func-
tions to begin with. If we have no quantitative clu e
about the shape of a relationship except for the fact
that it is monotonic, the algorithms described in th e
previous section would not work .

The Point-List Representation

Our proposed solution to the problems described in th e
previous section is based on generating the monotoni c
functions point by point as the need arises during integra-
tion, and representing them as lists of these points, without
committing to any shape about the intervals in between . In
our approach, the functions are not pregenerated to exclu-
sively cover a fixed interval between the legal range limit s
of the variables . If a variable crosses its legal range limi t
during integration, it is the simulator's responsibility t o
detect the problem and stop the integration .

The next subsection explains the changes to the curren t
algorithms necessitated by our approach .

Changes to the Algorith m

• Step 2 .1 .2 of the MONTE-CARLO algorithm will b e
modified as follows :



126

2 .1 .2 For each monotonic functional relationship y=f(x)
in the QDE, initialize the corresponding point-
list to the single-element list {(x(t„),y(t0))}, using
the initial values generated in Step 2 .1 .1, and se t
the variables leftmost(f) and rightmost(f) to the
point value (x(t0),y(t„)) .

•

	

In the zeroth time-step of numerical integration, there i s
no need for evaluating any monotonic function, sinc e
all system variables have already been assigned initia l
values by Step 2 .1 .1 of MONTE-CARLO. So, for any
invocation f(x(t„)), where Ax) =y is a monotonic
function, simply plug in the available y(to) value .

•

	

In subsequent time-steps of numerical integration, do th e
following whenever f(x) is supposed to be evaluated
for x= r :

IF the point (r,y) is a member offs point-lis t
THEN RETURN y,

ELSE IF r > rightmost(f) OR r < leftmost(f)
THEN EXTRAPOLAT E
ELSE INTERPOLATE

•

	

The routines EXTRAPOLATE and INTERPOLATE, a s
described below, will be incorporated to the algorithm .

We present the algorithm for calculating f for an x be-
yond the presently covered interval only for the case wher e
the current x value r is greater than rightmost(f), and f i s
increasing . The other cases are handled in an analogou s
manner .

Algorithm : EXTRAPOLAT E
1 . (maxx,maxy) := rightmost(f)
2 .dx : = r-maxi
3 .IFf(r)>maxy ANDf„(r)<oo

THEN Pick f(r) randomly from (f(r), f,(r)) using th e
uniform distribution

ELSE IFf(r) > maxy
THEN 13 := arctan((f(r) - maxy) / dx)
ELSE [3 := 0

IF f,(r) = co

THEN 0 := 7r/ 2
ELSE 0 := arctan((f,(r) - mazy) / Ax)

Pick the angle a randomly from ([3, 0) using
the uniform distributio n

f(r) := mazy + Ax .tan(a )
4. Append (r, f(r)) to the end offs point-list
5.rightmost(f) :_ (r, f(r) )
6. RETURN f(r )

Figures 5, 6 and 7 depict different cases that may aris e
during the extrapolation . Figure 5 corresponds to the "no -
overlap / two-envelopes" case where the y-coordinate o f
the current maximum point in the point-list is outside th e
finite y interval available for f(r) . In this case, we choos e
f(r) uniformly from f (r)f„(r)), as recommended by Gazi e t

al . In the other cases, we use the following idea : A straigh t
line between the last known point of f (that is ,
(maxx,maxy)) and the point that is to be generated no w
(that is, (r, f(r))) will have the slope tan(a), where a is an

angle that can take its values from the interval ((3, 0) . If w e
have an upper envelope at point r, the greatest possibl e
slope will be caused by picking f(r) = f,(r) . If no uppe r
envelope exists, a can be arbitrarily close to 7r,/2 . The algo-
rithm covers all these possibilities . See the next subsection
for a further discussion of the effect of this distribution on
fair coverage .

(maxx,maxy)

	

(r,maxy)

Figure 5 : The no-overlap / two-envelopes cas e

f(r)

(maxx,maxy)

	

(r,maxy)

Figure 6 : (3 > 0 if f;(r) > maxy

(maxx,maxy)

	

(r,maxy)

Figure 7 : 0 < 7r,/2 only if there is an upper envelope .

When a new function point is to be created between tw o
points that are currently in the point-list, we adopt a modi-
fied version of the method of (Gazi et al . 1997) :



127

Algorithm : INTERPOLATE
1 . Find the two points in f s point-list between which th e

point (r, fir)) that will be generated now will be in-
serted; let these points be called (lowx,lowy) and
(highx,highy), where lowx < r < highx

2.k := round((r - lowx) / (highx - lowx) * G)
3. Use the formula in (Gazi et al. 1997) for A, plugging i n

k to findf(r )
4 . Insert (r, fir)) in the place found in Step 1 in the point -

lis t
5. RETURNf(r)

The G value used in Step 2 and in writing the probability
distribution function for f(r) in Step 3 is predetermined
depending on the computational budget .

Discussion

Functions delimited by infinite (that is, nonexistent) enve-
lopes are handled by our technique, which enables us to
perform semiquantitative reasoning with a lower level o f
input information than allowed by the state-of-the-art tech-
niques .

We claim that our technique provides a better coverag e
than that of Gazi et al. when performing interpolation s
between two already obtained points of the function, since
we use the same distribution as Gazi et al., but without any
unnecessary commitment to function shape and with a
"free" random selection for each necessary f value .

When performing "extrapolations," that is, when extend-
ing the covered domain of the function beyond a present
maximum, there are three cases to examine :
•

	

If there is no envelope pair delimiting the function, a
performance comparison with other techniques is no t
possible, since they do not handle this case .

•

	

If the y-coordinate of the present maximum is outside of
the interval from which the new function value will b e
selected, we use a uniform distribution like Gazi et al . ,
so the coverage performance would be the same .

•

	

In the remaining case, that is, when the new functio n
value has to be selected from an interval between the
present maximum y-value and the upper envelope, th e
nonexistence of a fixed grid prevents us from usin g
Gazi et al .'s distribution . To try to avoid the envelope
attraction effect, which could arise if we picked the
function value from the available y-interval with a uni-
form distribution, we use a uniform distribution on the
angle of the line between the two points with respect t o
the x-axis . Table 1 shows that the angle picking
method produces points which are statistically furthe r
away from the upper envelope compared to the dis-
tance picking method, based on the situation in Figur e
8, where Ox is 1 .

A discontinuity is noticed when one examines the me-
dian of the generated f(r) values in the no-overlap case
(Figure 5) as the upper envelope is pushed to infinity . A
huge finite value, say, H, of f,(r) causes a median which is

(H-fi(r))/2 units away from the lower envelope, wherea s
that distance drops to the much smaller valu e

(r-maxx) .tan(((7t/2)-arctan(((r)-maxy)l(r-maxx)))/2)f(r)
when f„(r)=oo . When the y-interval becomes infinite, th e
only remaining interval that can be sampled fairly is th e
angle interval . The angle interval is not used in the finite -
envelope / no-overlap case, since it would cause an unfai r
attraction to the lower envelope .

(0,0)

	

(1,0 )

Figure 8 : f values chosen uniformly from (0, f,(r)) have a
greater median than those produced by choosing the angle

from (0, 8) .

6

median of unifor m
distance pickin g

(f,(r)/2 = tan(0)l2)

median of uniform
angle picking

(tan(0/2) )
0 .1 0 .05017 0 .0500 4

0 .2 0 .10136 0 .1003 4

0 .3 0 .15467 0 .1511 4

0 .4 0 .21140 0 .2027 1

0 .5 0 .27315 0 .2553 4
0 .6 0 .34207 0 .3093 4

0 .7 0 .42114 0 .3650 3

0 .8 0 .51482 0 .4227 9

0 .9 0 .63008 0 .4830 6

1 .0 0 .77870 0 .5463 0

1 .1 0 .98238 0 .6131 1

1 .2 1 .28608 0 .6841 4
1 .3 1 .80105 0 .7602 0

1 .4 2 .89894 0 .8422 9

1 .5 7 .05071 0 .93160

TABLE 1 . Medianf-values produced by the two method s
for different 0 values in Figure 8

Compared with Gazi et al.'s method, our techniqu e
clearly spends more time and memory for each monotoni c
function; the requirements increase linearly with the num-
ber of numerical simulation steps when a new point has t o
be created for each step and no search needs to be con-
ducted in the point-list to find the insertion place of the new
point. In the example given in (Gazi et al . 1997), G (the



128

number of generated points) is set to be only 11, wherea s
our method may result in as many points as the number o f
integration time-steps . When forced to generate an equa l
number of points as ours, their technique would waste som e
of this effort for x ranges that would not be visited durin g
the simulation, and a "less random" family of curves woul d
be used for the ranges that are visited, as explained above .

Distributions of Monotonic Functions in a
Bounding Rectangl e

In this section, we explore an alternative way of designing a
probability distribution for f(r), where the new point is t o
be between two already known points of the monotoni c
function. Figure 9 illustrates the idea : If we start in th e
lower left corner square, and are supposed to either mov e
up or right one square at a time, how many different path s
ending at the upper right corner are there? It is clear that, i f
we have i rows and j columns in our grid, the answer i s

xdiff +ydiff

x idiff

where xdiff is the number of "right" moves that we ar e
supposed to make, that is, j-1, and ydiff is i-1 .

(highx,highy)

(lowx,lowy )

Figure 9 : Some possible "monotonic" paths between th e
two corners

The probability distribution that we are looking for i s
supposed to tell us which fir) value is more likely for a
given r, which is, in the context of Figure 9, almost the
same question as asking which squares in the column corre-
sponding to r have more paths passing through them . (Se e
the end of this section for a discussion.) Using th e
combination formula given above, the number of paths
passing through a square S is the product of the number o f
paths from the lower left square to S and the number of
paths from S to the upper right square . Figure 10 shows a
grid with i=3 and j=5 for which this calculation has been
made for each square . It can be seen that the formula

number of paths through the square at (r, y )

number of all paths between the corners

is an approximation to the probability distribution we are
looking for .

Now consider increasing the resolution of the grid t o
infinity, that is, taking the limit of the formula above as

xdiff approaches infinity . (Note that we know the finite
value that xdiff / ydff is supposed to have, it is simpl y
(highx - lowx) / (highy - lowy) .) We can then use the ob-
tained formula to calculate the probability that a given Ay
interval contains f(r) for given r.

5

	

8

	

9

	

8

	

5

Figure 10 : "Path counts" of each square

We conclude this section by listing the problems abou t
this approach: First of all, the simple combination formul a
for the number of paths that we used in our example canno t
be used in the derivation of the distribution formula, sinc e
(allowing, as it does, paths with segments having a 90 °
angle with the horizontal,) it causes the same path to con-
tribute to the path counts of more than one square in th e
same colurnn . As the careful reader may have noticed, the
sum of the numbers in a column of Figure 10 does no t
equal the number of paths between the corner squares, as
given by the combination formula . An alternative (and les s
elegant) formula counting paths formed by line segment s
with angles in (0°, 90°) that connect the nodes of the grid ,
as shown in Figure 11, would have to be employed . Fur-
thermore, when the envelope structure causes the shape of
the area to be covered to be different than a rectangle, th e
formula gets even less elegant and harder to calculate .

Figure 11 : Some monotonic paths composed of non -
perpendicular segments between the two corner s

Conclusion

We presented a new technique for randomly generatin g
monotonic functions required in the Monte Carlo simula-
tion of incompletely specified differential equations . Unlike
other techniques, our method works even when envelope s
have not been specified for the function under considera-
tion . Furthermore, the new representation does not entai l
unjustified implicit assumptions about the shape of th e
function .

Ortega et al . (1999) present a semiquantitative Monte
Carlo reasoner in which the monotonicity constraint is not
imposed on the underlying functions . Our point-by-point
generation approach can be incorporated to their frame -
work as well .

J

6 10 1 5

31 015



129

We are currently working on a full implementation of the
techniques described here . Software products and other
results of this work will be put on the WWW at the UR L
http ://www.cmpe .boun .edu .tr/—say/files/montecarl o
as they become available .

Acknowledgements

I thank Nadir Yiicel, Can Ozturan, Zafer Barutpuoglu ,
Kutsi Nircan, Elton Ballhysa, Qigdem Gunduz, Ozle m
cetinoglu, and Halim Levent Bagcioglu for their help i n
various stages of this work . I also thank the anonymou s
referees for their helpful comments . This research was
partially supported by the Bogazigi University Researc h
Fund . (Grant no : OOA102)

References

Berleant, D ., and Kuipers, B . 1998 . Qualitative and Quanti-
tative Simulation : Bridging the Gap . Artificial Intelligence
95 : 215-255 .

Brajnik, G . 1997. Statistical Properties of Qualitative Be-
haviors . In Proc. Eleventh Int. Workshop on Qualitative
Reasoning, Cortona, Italy . 233-240 .

Gazi, E ., Seider, W. D., and Ungar, L . H. 1997. A Non-
parametric Monte Carlo Technique for Controller Verifica-
tion . Automatica 33 : 901-906 .

Kalos, M. H., and Whitlock, P . A . . 1986 . Monte Carlo
Methods Vol . 1 . New York, NY : John Wiley & Sons .

Kay, H. 1996. Refining Imprecise Models and Their Be-
haviors . Ph . D. Dissertation, The University of Texas at
Austin .

Kuipers, B . J . 1994 . Qualitative Reasoning : Modeling and
Simulation with Incomplete Knowledge . Cambridge, Mass . :
The MIT Press .

Ortega, J . A., Gasca R. M., and Toro, M. 1999. A Semi -
quantitative Methodology for Reasoning about Dynami c
Systems . In Proc. Thirteenth Int. Workshop on Qualitative
Reasoning, Loch Awe, Scotland . 169-177 .

Press, W . H ., Flannery, B . P ., Teukolsky, S . A., and Vetter-
ling, W. T . 1988 . Numerical Recipes in C . New York, NY :
Cambridge University Press .


	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7

