Supporting Model Building Processes for Analysis with Prototypes

Takayuki Sekiya and Tetsuo Tomiyama
Research into Artifacts, Center for Engineering (RACE)
The University of Tokyo
Komaba 4-6-1, Meguro-ku, Tokyo 153-8904, JAPAN
e-mail: {sekiya,tomiyama}@race.u-tokyo.ac.jp

Abstract

In engineering design, a variety of computational
tools are utilized for analysis. Each tool has its
own model of a design object, such as an FEA (Fi-
nite Element Analysis) model. To user these mod-
els better and to realize better desgn quality, a sys-
tem computation should support designers to use
the tools in an integrated manner. For this pur-
pose, we are developing a system named Knowl-
edge Intensive Engineering Framework (KIEF),
with knowledge about physical world. KIEF offers
prototypes of analysis model components. The
prototypes help a designer to build a model by
providing an ontology of a modeling theory that
gives a clue to organize such models. This paper
discusses issues about the formalization of model-
ing processes needed for systematizing the ontol-
ogy. We also demonstrate how to build a beam
model on the KIEF system.

Introduction

Designers’ engineering activities include designing an
artifact that satisfies requirements, and analyzing if it
really does using a variety of tools. A good design solu-
tion is obtained only through balancing analysis results.
Therefore, it is necessary to develop a method to sup-
port designers in using a variety of design tools in an
integrated manner.

Recent most commercial CAE systems provide a
method to transfer CAD data to numerical analysis
tools such as FEA systems, based on product model-
ing technologies and STEP (Fowler 1995).

However, model construction is an intellectual pro-
cess and requires the designer's appropriate judgment,
including answering to questions like which part of a
product must be modeled and which kind of conditions
must be applied to the model. This signifies that sup-
porting data exchange is insufficient to develop a system
which integrates various design tools.

When building a model, the designer uses a wide
variety of engineering knowledge, from common sense

knowledge about the physical world to domain specific
knowledge about how to use tools. The Knowledge
Intensive Engineering Framework (KIEF) (Tomiyama,
Kiriyama, & Umeda 1994; Tomiyama et al. 1996) is
our attempt to provide designers with such modeling
knowledge in an integrated manner. However, our cur-
rent KIEF system does not have enough power to advise
designers in answering questions in the abovementioned
modeling process.

To solve this problem, we pursue systematization of
knowledge needed for modeling. For this purpose, this
paper investigates the possibility of formalizing mod-
eling processes. In particular, we focus on how infor-
mation about design objects is modeled and modified
during modeling processes.

We consider that a model consists of model fragments
like in compositional modeling approach (Falkenhainer
& Forbus 1991), and a modeling process is iterations of
mapping from a model composed of general concepts to
one composed of concepts specific to a modeling theory.

The rest of the paper is organized as follows. First,
we describe the KIEF system as a modeling support
tool. Then we discuss requirements to support mod-
eling processes with a computational tool, and how to
formalize modeling knowledge and modeling processes.
An example of a modeling process is also illustrated.
Finally, we discuss the results including related work,
and conclude the paper.

Modeling on KIEF

Knowledge Intensive Engineering
Framework

KIEF integrates existing design tools and supports the
designer’s activities on the tools, such as model build-
ing, model-based reasoning, and model validation.

The main features of KIEF are a pluggable metamodel
mechanism (Yoshioka et al. 1993) which is a mecha-
nism for integrating design tools and a Very Large-scale
Knowledge Base (VLKB) which supports the meta-
model mechanism by supplying primitive knowledge
about the physical world (Figure 1).

A VLEB of
The pluggable e
Metamodel Mechanism provde Physical Feature KB
™ building blocks Canceplusl models of
o, Metamodel mechanisms %

provids vocabulary

provida
Tabie @ Concept Base
Oniclogy. af Physical
- —— i - Wold @ ® ®
K

Beam FEM Solld
Modeler || Tool Modeler,

Design Object Modelers

Knowiecge abat Modees
Irsertace cf Modaters

Figure 1: Knowledge Intensive Engineering Framework

The pluggable metamodel mechanism has symbolic
representation of concepts about physical phenomena
and mechanical components. A metamodel of a de-
sign object is represented as a network of relationships
among concepts that appear in aspect models. Types of
relationships include causal dependency among physical
phenomena, arrangements of components, and quan-
titative relationships. An aspect model represents a
model of the design object from a particular viewpoint
and is usually dealt with by an existing external mod-
eler. These concepts and relationships constitute the
ontology of KIEF. The pluggable metamodel mecha-
nism allows easily plugging in external modelers into
KIEF.

VLKB for KIEF supplies fundamental knowledge
about. the physical world. VLKB consists of two pri-
mary knowledge bases, a concept base and model li-
braries. The concept base contains the fundamental
and general ontology of KIEF, which is used for building
a metamodel and representing engineering knowledge.
The model libraries store ontologies specific to external
modelers which correspond to general concepts in the
concept base.

Modeling on KIEF

Roughly speaking, a model building process on KIEF
has two steps. The first step is to extract a part of the
conceptual network in the metamodel that is related to
the tool the designer wants to use. The second step is
to convert each concept to a tool-specific concept. We
call the network of concepts extracted in the first step
an aspect model. The third step is to add quantitative
information to the aspect model, and then to prepare
data for further numerical analysis.

Through these modeling steps, the designer makes
decisions for modeling, while the system just suggests
possibilities (such as tool-specific concepts) to him/her
by automatically retrieving data from appropriate tools
and calculates the values of data after the designer spec-
ifies necessary data.

Modeling Process for Analysis
Model of Modeling Process

Before we propose a model of modeling processes, we
review two models of modeling processes previously in-

131

vestigated.

Tomiyama proposed synthesis/analysis oriented
thought process models (Tomiyama et al. 1997). Both
synthesis and analysis are basic thought processes re-
peatedly observed during a whole design process and
complementary to each other. A model building pro-
cess can be regarded as a synthesis thought process.

Chouiery proposed a practical framework for charac-
terizing, evaluating, and selecting reformulation tech-
niques, for reasoning about physical systems, which can
be regarded as a general model of automated model-
ing (Choueiry et al. 1998). According to their work,
there exists a process (called model building) to gener-
ate a model which contains knowledge of the physical
structure as well as knowledge of the relevant physical
phenomena,

Comparison of both Tomiyama's two models and
Choueiry’s model points out the following points to be
considered in formalizing modeling processes.

e Knowledge about a modeling theory.

e Assembling necessary knowledge and information for
modeling processes.

Taking these points into account, we propose a
thought process model of modeling as follows.

1. Derivation of Physical Phenomena
Before starting a model building process, it is neces-
sary to know what will occur to a modeling object.

2. Decision of the Modeling Task

The modeling goal is determined. The goal includes
what to be solved by building the model and what to
be paid attention to.

3. Selection of a Modeling Theory and a Tool

Next, we select an appropriate modeling theory to
arrive at the modeling goal. Then, an appropriate com-
putational tool is selected.

4. Setting up of Modeling Conditions

According to the selected modeling theory, we deter-
mine modeling conditions such as initial conditions and
boundary conditions.

5. Modeling

This process consists of two subprocesses. One ex-
tracts information related to the selected modeling the-
ory. The other translates them into concepts specific to
the theory.

6. Data Construction on a Tool

To prepare data for the modeling tool, quantitative
information, such as numerical value, is retrieved and
added to the generated model.

7. Analysis and Evaluation
Finally, the model is analyzed and analysis results
are evaluated with the tool.

Structure of Problems

We learn mathematics, physics, chemistry, etc, often
by solving typical examples in textbooks. Similarly, in

Figure 2: Cellular Automatic Warehouse

model building processes, the designer refers to existing
typical models and cases.

However during design processes, some information
of a design object has not yet been determined. There-
fore, model building is difficult even if there is enough
fragmentary knowledge about model components. t is
more synthetical process to build a model based on such
knowledge. Therefore, we have to develop methods to
arrange typical models (called prototypes), to find an
appropriate prototype from a knowledge base, and to
use them in building a model for analysis. This is simi-
lar to case based reasoning (CBR), and we will compare
our method with CBR in a later section.

Formalization of Modeling Knowledge
and Modeling Process
Fundamental Ontology

In this paper, we illustrate an example of building a
beam model of the turntable mechanism of a Cellular
Automatic Warehouse (Sakao et al. 1996). Figure 2a
shows the turntable mechanism, and Figure 2b depicts
its topological structure consisting of fundamental on-
tology in KIEF.

First, we formalize fundamental ontology O,eq and
a model M. O,qq is the fundamental ontology about
the physical world, and is independent of modeling the-
ories. Opeq consists ontology of the following six kinds
of concepts:

e “Entity”O.,: An entity represents an atomic, physi-
cal object. In the beam examples,
O¢n = {Shaft, Roller, TurningTable, ..}

e “Relation” O,.: A relation represents a relationship
among entities.
O,. = {Bolted, Inserted, Supported}

e “Attribute” O, An attribute is a concept attached
to entities and takes a value to indicate the state of
entities.

Out = {Length, Position, De formation..}

e “Physical property” O,,: A physical property is a
concept that describes generic characteristic of enti-
ties. Op, = {Stable, Strong..}

e “Physical phenomenon” Op,: A physical phe-
nomenon designates physical laws or rules that gov-

ern behaviors.

Opn = {BendingDe formation, Force, ..}
e “Physical rule” Op,.: A physical laws.

Oypr ={Hooke'sLaw,SecondM otionLaw..}

Oreat = Oen U Ore UOg U Oph u Opr u Opp (1)

Structure predicate set S defines relationships among
elements, such as OccurTo(ph, e, es,...) which means
that physical phenomenon ph occurs to entities
e1,es,..., and HasRelation(r, ey, ey, ...) which means
that there is a relationship r among entities e, es,

M consists of model elements Eyy = E(M) and pred-
icates Ppy = P(M) which define properties of elements
and relationships among elements.

M = (Eyp, Pm)y Em={21,..}, P COpear US (2)
For examf)le, the turntable mechanism (Figure 2b) is
expressed as follows:
P(M) = {Pallet(z,),On(z2), Roller(x3), Bolted(z4),
TurningTable(xs), HasRelation(zs, 2y, ©3),
HasRelation(z4,x3, 25), Inserted(zs), Shaft(z7),
HasRelation(xg, vs, x7), Supported(xs),
BallBearing(zo), HasRelation(xg, z7,4) },
E(M) = {z1,22,....,To }
We introduce a physical feature f that describes a

physical situation, and the designer constructs a meta-
model with physical features:

f = (Econd u Ed-rr.': Peona U Pd'r'-v) (4)
Peong C (Oen U Ore U Oy U {HasRelation,
OcecurTo}),

Piry C (Opn U {OccurTo, Causality})

To build a model, a model operation H, which
adds/removes elements/predicates in a model, is re-
peatedly evaluated. The following formula depicts
M4 is generated by applying H, to M,:

ﬂf,-;+| = Hn(ﬂ’fn.,) (5)

There may be other arguments in addition to M, if
they are required. For example, operation AddE re-
quires elements.

Ontology on Modeling Theory
A modeling theory 7' is a systematized knowledge re-
quired for model building, model operation, model-
based reasoning, model validation, etc. The ontology
of modeling theory O . is categorized into related
ontology O, available ontology O, , and derivable on-
tology OJ.. We use the ontology of Beam Modeler (a
simple tool we developed for analyzing strength of a
beam based on strength of materials) to explain the
theory (Table 1).

O'.rfnociet . O;}; U Og‘v U Oé'r (6)

Related ontology O, consists of concepts relevant
to building a model according to modeling theory T.

132

Table 1: Ontology of Beam Model
0rI Oav Odr

Force, Distributed | Deformation,

Oattribute — Area, Supported | Banding Moment
Point... Diagram..
Oenmy Entity Beam —

Distributed Force, Banding
Ophenomenon | Foree | concentrated Force Deformation

Hinged Support,
Oeaion | Belalon | Fixed Support, =
Free Support

Derivable ontology, O}; is a set of derivable concepts
when a.doptmg a modeling theory T to a model. Both
0, and OJ are defined as subsets of fundamental on-
tology Oyeqr. In case of Beam Modeler, “Force” be-
longs to related ontology, and “Deformation” belongs
to derivable ontology.

Od:) OEI c Orea! (?)

During a modeling process, O, is used to filter out in-
formation in the metamodel only relevant to the model
of interest for T'.

Available ontology Oa;, consists of concepts specific to
T and used for composing a model. A model buﬂdmg
process maps concepts in o? ;- into con(‘epts in OM, We
suppose that for each model element o, there exists
at least one feature f;":, which satisfies the following
formula:

Vozl, € O:{v! Hf:;[(Pcond(2:) C (OT
OT U S) A (0311; e P{f!’t‘(a‘il))] (8)
fT defines o, belonging to O ’ﬂv, and defines a re-
lationship between O,.,; and O, with regard to T.

When building a model, each part of the design object

which has the same structure as T can be converted
into of,. The following formula depu.ts_ the operation

FM to convert a fundamental concept into a modeling
element. AddE is a procedure to add elements to a
model, and AddP is a procedure to add predicates to a
model.

ﬂ’-!u-i—l _Ffldr(Mﬂ?fﬂ‘rJ) “
321, 70.. € E(Myp)3l,ls.. € Peona(f1) i (-2i..)
€ P(M,)] = VIi,.. € Pary(fL)IM' =
AddE(My, 2}, ..) A Mpyy = AddP(M',1},.)] (

The following set of formulae (10) describes an the

example of a feature fT,, which is a definition of o, =

“Beam,” and Figure 3 depicts that graphical represen-
tation of fI .

Ecand(f;f;r) = {3:1 s &L2,L3,Ty }
P.ona(fL,) = {Force(z,), Mechanical Parts(zs),

M echanical Parts(xs), Connection(as),
OccurTo(xy,z2), HasRelation(z4, 2, 71)}

Edru(fgz;) = @:Pdﬂ'(fz;) = {Bea"'n(m?)} (10)

133

rBeam

\

The definition of Beam: This figure depicts that
Mechanical Parts (the hatched rectangle node) can
be regarded as a Beam if it has such a structure.

Figure 3: Definition of “Beam”

Prototype

Effective and efficient problem solving requires both
knowledge about first principles and typical cases. In
this paper, we call a typical analysis model, a prototype.

Formalization of Prototype A prototype is a pair
of a conceptual network composed of model-specific on-
tology, and an analysis model. A conceptual network
of a prototype My, in modeling theory T' satisfies the
following formulas:

ng = EtyUP;y
By € 0L us
&,.,(My,) C OF (11)

System of Prototypes A prototype is a similar con-
cept to “case” of case-based reasoning (CBR). Proto-
types should be systematically arranged like cases in
CBR.

Generally speaking, it is not a simple task to catego-
rize cases. It requires heuristics according to modeling
theories, because originally the CBR technique is used
for tackling ill-structured problems that have a large
solution space. However, in building models often fun-
damental knowledge and model fragments are available
from the modeling theory. Accordingly, we can use the
ontology of a modeling theory to facilitate categorizing
prototypes and to propose appropriate prototypes for a
given problem by referring to the ontology.

In this research, we suppose that prototypes can be
arranged hierarchically. Figure 4 depicts some functions
to generate a prototype hierarchy.

In Figure 4, the function add-new-prototype, adds
a new prototype to the existing prototype hierar-
chy(a list of prototypes prototype-list, a list of relation-
ships among prototypes link-list). In Figure 4, when
My, , is-part-of My, , in other words PO (M, o, My)
holds, M, is obtained by mapping each element in
My, o to appropriate element in My, , satisfies the for-
mula:

P(nga) g P(Mtyb) (12)

The generated hierarchy by this method will have
a root prototype which consists of more abstract con-
cepts, and that has simpler structure than any other
prototypes. By referring to this hierarchy, it can be a
simpler task to extract some prototypes which follow a
certain condition (e.g. including a certain partial struc-
ture).

g dd M,

e fist , fink-ist)
nev-My, exisling-My, genevated-M,: protatype;
profolype-#si - A list of protoype; link-lsf: A list of link between prololypes;

bogin
add-link-lag = faise;
foreach existing-My, In protofype-iist do
begin

I ls-super(new-My, exisling-M, | then
begin register-new-link(new-My,., existing-My, link-ist); add-#ink-flag = true; end;
I Is-supar(existing-My, new-My, | then
bagin reglster-new-link{existing-My, new-My, . Nnk-ist). add-fnk-flag = Iree; snd;
snd;
wcdd new-My, to profotype-list ;
W {ackd-hnik-flag == lalse] then
begin
- My, = g My euisting-My,)
it not|generated-My, == nil) then add-] My

fist , link-list),
wnd;
and;
function is-super(My, ;. My)
My Myo: prototype; max-aiff = 3 : rumber;
A& maximum number of défferent pradicates/slements between models */
bagin return (My, is-part-of My) & (difference{My,;, My) emar-iff); end;
P YPo(by ;. Myz)
new-M,r M’M.MW: prototype; max-diff =3 : number,
bagin
new-bMy, « product{My, My ki
If (difterenca(new-My,, My) = max-diff | | (differencenew-My, . My) > max-dif |
than return nil alse return nN-Mn, +

end;

Figure 4: Algorithm to Generate Hierarchy of Proto-
types

Figure 5: Part of Hierarchy of Prototypes

Figure 5 depicts the part of the hierarchy of proto-
types obtained by applying the above-mentioned algo-
rithm to prototypes in the “Beam Model.” The root
prototype consists of one beam supported at the one
end, and that one phenomenon is applied to.

Modeling Processes

We here propose a formalized model of model building
processes with regard to prototypes. In the following
process model, we view modeling as mapping M into a
target model M,,.

To explain our model of model building processes,
first we built a model building mechanism based on
KIEF according to the formalized modeling knowledge
and modeling processes. Figure 6 depicts the system
architecture.

1. Derivation of Physical Phenomenon

Before starting the model building process, the sys-
tem reasons out what kind of phenomena will oceur to
the design object. As a result My,., which contains M
and the derived phenomena. A set of physical features,
Fy. is used for deriving possible phenomena.

M., = PhenomenonDerivation(M, Fy.,) (13)

Figure 7: Selection of Modeling Th:éory

In this case, some phenomena such as “Deformation”,
“Gravity Force,” “Transmitted Force,” and “External
Force” (represented as an oval node in Figure 2b) are
derived:

P(Mgry) = P(M) U {TransmittedForce(z1),
OccurTo(xyg, x3), BendingDe formation(z),

OcecurTo(zy1,24)...}
E(Mgyy) = E(M) U {210,} (14)

2. Decision of a Modeling Goal

In our formalized modeling process model, a model-
ing goal R.., contains phenomena and attributes that
can be reasoned and calculated with an analysis model.
Therefore at this step the designer decides R,., which
satisfies the following:

P(Ryeq) C (Oat U Opn) (15)

In this case, the designer selects “Bending Deforma-
tion”, which is a hatched node shown in Figure7.

P(R,.y) = {BendingDe formation(z1,)} (16)

3. Selection of the Modeling Theory and a Tool

At this step, the designer selects a theory 7. Ac-
cording to T', the designer can compute a modeling goal
R,cq. The designer selects one of the theories, the deriv-
able ontology of which, OF satisfies the following:

Vi € P(Ryeq)[l € OF] (17)

134

T has a set of prototypes Myy= {My1, Myy2..}.

In this case, the system proposes “Beam Modeler”
(a simple tool we developed for analyzing strength of a
beam based on strength of materials) as an appropri-
ate theory to analyze the selected modeling goals (see
Figure 7) because the derivable ontology O, of “Beam
Modeler” contains “Bending Deformation” (see Table
1). The designer selects “Beam Modeler” as T'. Some
prototypes of “Beam Modeler” are shown in Figure 4.
4. Setting Up Modeling Conditions

According to T, the designer sets up modeling con-
ditions Rassm. There is the following relationship be-
tween Rggem and T':

P(Rassm) C (OLU0T, U S) (18)

At this step of modeling process, the system exe-
cutes the operation ApplyCondition on Mgy, and fi-
nally M.onq is obtained.

M na = ApplyCondition(Mgry, Rossm) <
VI],Iz-.. € P(Russm)[ﬁ(‘!i € P(Md"ﬂ)) —
Mg = AddPredicate(Mgpy, 1y, 12...)] (19)
In this case the conditions R,ssm are to regard table

as “Beam” and to consider the “Beam” supported by
“Fized Support.™

P(R.ssm) = {FizedSupport(zg), Beam(zs)}
P(Mcnd) = P(Mdrv) UP(Rassm) (20)

5. Model Building

A set of prototypes Myy= {My1, Myys..} are hier-
archically arranged by the algorithm Figure 4 depicts.
a. Selection of Prototype

At this step, the system reasons out a set of proto-
types M;y(g My;y). Each of the element in M;y sat-

isfies modeling conditions Rgssm. The phrase, “Rgssm
satisfies My,” means that PO(Rassm, Mty) holds. The

system calculates an additional conditions Ry for
each prototype M;y (e M;g) to assist the designer to
select a theory. First the system selects a prototype
My, 4 Which satisfies the following:
VM,, € My, 3Myy, 1op € Muy[PO(Myy. 455, Myy) A
“"(PO(Mty-wp:Mty-top) A PO(Mty-tap:Mty))] (21)
Next assuming that M;y has hierarchically arrange-
ment, the system generates additional assumptions

Rl5sm for each prototype Méy, that satisfies the fol-
lowing formula:

3Ry, Ry € My, [PO(Ryssmy My,) A
~(PO(R, Riassm) A PO(Rx, 'M;y-mp)) A
~(PO(Rz2, Ryssm) N PO(Rmin; Rassm))] ~ (22)

The designer selects one prototype M;y by referring

I
to Rogsm-

135

FreedSupponedBeant
FispSupponecBeam! |
YaryingSectionBeamd i
VarylngSetlJm\aeaM]J

) 3
CantileverPralolype2 aren{PF y)
CanfileverProlotyped PrysicalF orce(
FdSupponecBaan

s

aocapl ! cancal

Figure 8: Presentation of Prototypes

In the Beam example, the system looks for proto-
types which contains “Beam” and “FixedSupport.” To
help the designer choose an appropriate prototype, the
system calculates additional conditions to distinguish
the prototypes (see (21), (22)).

Figure 8 depicts the dialog window to select a pro-
totype. The left part of the window shows that the
prototype named “Cantilever” is selected as M;y, and
the right part shows “Concentrated Force” which is the
additional information Rjgy, of “Cantilever”:

P(Miy) = {FizedSupport(y,), Beam(ys),
Support(ys). ConcentratedForce(yy),
HasRelation(yy,y2,y3), OccurTo(ys, y2)}

P(Rssm) = {ConcentratedForce(ys)} (23)

b. Application of Prototype

The system applies ng to Meoong. At this time, the
system checks if M.,nq has as substructure, a definition
fav of each model element [€ Miy:

T

Vi1, fr- € Faul \N(FM (Meond, f3)) # Meona) =

i=1
(Mah = Abstrac'tim(Mcond: .fl\f‘Z\ reny fr))](24)

In case there are some features with which the system
cannot associate a model M, with, they are regarded
as conditions required to use prototype M,,.

In this case, the designer selects “Cantilever” as ng
that consists of a cantilever to which a concentrated
force is applied, because there is no part which supports
the table, but some other prototypes requires that.

The system refers to the definition of each model el-
ement of which the prototype is composed (for exam-
ple, 11), and translates a part of the design object into
a model element. If the prototype can be generated,
the system analyzes the design object with an equation
set prepared for the selected prototype. In Figure 9,
the hatched nodes means each of them is successfully
translated into a model element the prototype contains.

6. Data Construction on a Tool
The system sets up all formula by referring to the pro-

totype Méy when the system successfully applied M;y
to the design object.

Filckypn fiaaiines) Satd an GRARModwnr i
2ora ol Saphrtar 1P 1190 40543

ha B PR i

h AT e 1 el

S m— T L
S e

bl I

In case of Beam Modeler, quantitative data such as
the length of the beam and Young's modulus, and an
equation to calculate deflection of the beam are required
for building an analysis model on the tool. They are
prepared together with a prototype beforehand. KIEF
supports assigning data to an analysis model by auto-
matically searching a value of each quantitative data
registered in KIEF.

7. Analysis and Evaluation

Finally, the system conducts the analysis to evaluate
the model M. Figure 10 shows a screen hardcopy of
Beam Modeler.

Discussions and Related Works

We proposed a framework that consists of prototypes
and model-specific concepts to describe knowledge re-
quired for modeling. This framework improves reusabil-
ity of knowledge, because the definition of a model-
specific concept can be commonly used across several
prototypes.

In this research, prototypes in a certain domain can
be hierarchically arranged by referring to modeling on-
tology. Each prototype gives information that is nec-
essary to build a model, and the prototype hierarchy
supports designers to understand difference among pro-
totypes.

However, currently there is no way to judge if a se-
lected prototype is adequate for a given situation. We
also have to develop algorithms to modify existing pro-
totypes in order to deal with various design objects and
situations.

Cases of CBR cannot be always arranged as elegantly
as prototypes in our research, because cases of CBR
are not based on well-structured ontologies. However,
there is an algorithm to calculate how problems and
cases resemble each other in CBR.

Our idea is influenced by Graph of Models (Addanki,
Cremonini, & Penberthy 1991). However prototypes
are hierarchically arranged automatically, while Graph
of Models assumes a well-structured model set prepared
beforehand. In our method, ontology should be pre-
pared, but it provides more flexible prototype structure
than Graph of Models.

In this research, each model-specific concept is de-
scribed with generic ontology. These relationships
among generic concepts and model-specific concepts
can enrich generic ontology. There is no research to
deal with ontology in this way.

While our method is most fundamental and allows
domain independent modeling processes, domain de-
pendent knowledge needs more careful treatment.

Conclusion

This paper formalized modeling processes and ontology
required during model building processes. We intro-
duced prototypes of model that represent typical frag-
mented knowledge for building models. According to
the formalized ontology and modeling processes, we de-
veloped a modeling support system based on KIEF. Our
method to support modeling can suggest to the designer
modeling theories and prototypes that are appropriate
for the modeling goal.
Future work includes the following:

¢ Improving a method to adopt prototypes to a design
object (e.g. combining existing prototypes).

e Developing a mechanism to support building ontol-
ogy.

e Collecting ontology in real design processes, including
domain dependent ontology.

Acknowledgment

This research was funded by the “Modeling of Synthe-
sis” project of the Japan Society of for the Promotion
of Science's Research for the Future Program under the
contract number, JSPS-RFTF 96P00701.

References

Addanki, S.; Cremonini, R.; and Penberthy, J. 1991.
Graphs of models. Artificial Intelligence 51(1-3):145-
177.

Choueiry, B. Y.; Mcllraith, S.; Iwasaki, Y.; Loeser,
T.; Neller, T.; Engelmore, R. S.; and Fikes, R. 1998.
Thoughts towards a practical theory of reformula-
tion for reasoning about physical systems. In Work-
ing notes of the Symposium on Abstraction, Reformu-
lation, and Approzimation (SARA’'98), 25-36. CA,
USA: Pacific Grove.

136

Falkenhainer, B., and Forbus, K. 1991, Compositional
modeling: finding the right model for the job. Artifi-
cial Intelligence 51(1-3):95-143.

Fowler, J. 1995. STEP for Data Management, Fa-
change and Sharing. Technology Appraisals Ltd, 1
edition.

Sakao, T.; Kondoh, S.; Umeda, Y.; and Tomiyama,
T. 1996. The development of a cellular automatic
warehouse. In IEEE/RSJ International Conference on
Intelligent Robots and Systems '96 (IROS '96), 324~
331.

Tomiyama, T.; Umeda, Y.; Ishii, M.; and Yoshioka,
M. 1996. Knowledge systematization for a knowledge
intensive engineering framework. In Tomiyama, T.;
Mintyld, M.; and Finger, S., eds., Knowledge Intensive
CAD Volume 1, 33-52. Chapman & Hall.

Tomiyama, T.; Murakami, T.; Washio, T.; Kubota,
A.: Takeda, H.; Kiriyama, T.; Umeda, Y.; and Yosh-
ioka, M. 1997. The modeling of synthesis — from the
viewpoint of design knowledge. In Riitahuhta, A., ed.,
Proceedings of the 11th International Conference on
Engineering Design, 97-100.

Tomiyama, T.; Kiriyama, T.; and Umeda, Y. 1994.
Toward knowledge intensive engineering. In Fuchi, K.,
and Yokoi, T., eds., Knowledge Building and Knowl-
edge Sharing. Tokyo, Osaka, and Kyoto: Ohmsha.
Yoshioka, M.; Nakamura, M.; Tomiyama, T.; and
Yoshikawa, H. 1993. A design process model with
multiple design object models. In Design Theory and
Methodology (DTM '93), 7-14. New York: ASME.

137

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8

