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Abstract
System dynamics techniques, such as influence diagrams ,
are used to model poorly understood systems . Qualitative
analysis of these models is often extremely vague . More
rigorous analysis requires quantitative simulation and ca n
only occur after an additional conversion to a `stock an d
flow' model . In this paper we present some augmentation s
to influence diagrams that allow analysis and simulation to
proceed directly from influence diagrams . We describe a
new qualitative constraint that is required for this process .
In addition, we show how, in some limited situations, reli -
able and formal qualitative predictions of stability can be
drawn from such models using the notion of parametri c
variation .

Introduction
`System dynamics' is the term given to the study of th e
dynamic behaviour of a variety of complex systems, gen-
erally in the domain of human activity systems such a s
organisational management (Coyle, 1996 ; Goodman ,
1989) . These systems are characterised by a lack of ex-
plicit knowledge about the fundamental mechanisms a s
work in the systems, as well as a lack of quantitative in -
formation on how such mechanisms operate .

The main tool of system dynamics is representing th e
system being studied as an influence graph such as tha t
shown in figure 1 . The influence graph indicates the majo r
variables in a system and what influences these have o n
each other . Traditionally, this model is used solely as a
sense-making device, allowing an analyst to organise an d
communicate his understanding of a complex problem do -

main . The influence diagram is then manually converte d
into a `stock and flow' diagram (figure 2) that shows ho w
the system's components interact . Generally, the stock and
flow diagram is more complex than the influence diagra m
as it includes nodes for each of the model's parameters .
The stock and flow diagram is used to develop a set of
equations which is used in a numerical simulator to gener-
ate the behaviour of the system .

This process suffers from the problem that qualitativ e
reasoning was developed to solve : the system being ex-
amined is only known in the most general sense, while th e
numerical simulation can only accommodate strictly quan-
titative information . This paper shows a first step in re-
solving this dichotomy by applying qualitative reasonin g
techniques to system dynamics .

One existing approach to resolving the qualitative /
quantitative tension has been the development of 'qualita-
tive system dynamics' (Senge, 1990 ; Senge et al., 1994) .
The approach here is to compare the original influenc e
graph to a number of `archetypes' ; each archetype exhibit s
a specific qualitative behaviour . If a given influence dia-
gram resembles that of an archetype, the supposition is tha t
the model will exhibit similar behaviour . However, thi s
process is purely intuitive and has no formal basis, whic h
means that there can be no reliance on the results of quali-
tative system dynamics .

As a first step towards this goal, we present a method fo r
analysing these models in a more formal way, using som e
qualitative reasoning techniques . First, we show how som e
simple augmentations to the influence diagram notation

Figure 1 : Traditional system dynamics model of controlle d
population growth .
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Figure 2 : Stock and flow model derived from figure 1 .
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allow the simple and automated derivation of both quanti-
tative and qualitative state space equations for a model .
We also show how feedback caused by parametric varia-
tion can be represented in an influence diagram . Finally ,
we describe how, in some limited circumstances, to evalu-
ate whether this feedback is sufficient to stabilise th e
model .

Formalising Influence Diagram s
The traditional approach in system dynamics has been t o
develop an influence diagram model as a `sense making '
step, where an analyst identifies the major features of th e
problem situation . This influence diagram is then con-
verted to a `stock and flow' model, equations are manuall y
developed, and simulation is carried out . Indeed, Wol-
stenholme (1999) states that "no way has yet been estab-
lished to directly convert [an influence diagram] represen-
tation directly to a simulation model ." Figure 1 shows a n
influence diagram developed for a model of populatio n
growth limited by overcrowding and figure 2 shows th e
corresponding stock and flow model (there is a `stock' o f
population and flows caused by births and deaths) . The
equations used for simulation, derived from the stock an d
flow model, are shown in figure 3 . This process of con -
version, from influence diagram to stock and flow model t o
equations, is performed manually and intuitively . In this
section, we show how this process can be simplified and
formalised. This is done by augmenting the influence dia-
gram to allow state space equations to be derived auto-
matically from such a model . In this paper, we show how
this can be done for arbitrary qualitative systems ; we also
consider linear quantitative systems . In order to capture
the richness inherent in system dynamics influence dia-
grams, we do not require these models to be parametricall y
invariant .

The first extension of the influence diagram notation i s
to differentiate between direct and indirect influence s
(Forbus, 1984) . We do this by following the notation o f
Rickel & Porter (1994) (figure 4) . This allows the identifi-
cation of state variables in the model, as state variables ca n
only be affected by direct influences, while non-state vari-
ables can only be affected by indirect influences . Note that
figure 4 shows both the quantitative and qualitative equa-
tions that derive from the influence graph fragment shown .

carrying capacity = 500
effect of crowding on births lookup([(0,20) -

(10,0)], (0,20), (3,11), (6,6), (8,2 .5) ,
(10,0 .75) )

birth rate = 2
births = Population * birth rate * effect of

crowding on births lookup
crowding = Population/carrying capacity
deaths = Population / average life
Population = INTEG(births - deaths, population )

Figure 3 : Equations derived from figure 2
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Figure 4 : Direct and indirect influence s

Once this is done, the objective is to eliminate all non -
state variables and all indirect influences, combining thei r
effects into direct influences . This simplification is per -
formed directly on the graph, in a manner similar to signa l
flow diagrams (Wilson & Watkins, 1990; Richards, 1993) .
However, there are two complications to this approach :
some arcs will be annotated with a delay and parametri c
variation is represented by controlled arcs . Methods fo r
resolving these complications are given below . In addi-
tion, the qualitative treatment of controlled arcs requires
the development of a new qualitative constraint which i s
described in the next section . These simplification tech-
niques have been implemented in a program what will tak e
an influence graph and produce the corresponding minima l
set of either state space equations or QDEs .

Delay arc s

System dynamics influence diagrams often contain dela y
arcs (figure 5a), which represent an influence taking effec t
after some delay. This is used to represent such phenom-
ena as delays caused by the transportation of materials, or
organisational inertia in response to changes in manage-
ment policy. Such delays must be eliminated from th e
model if linear state space equations are to be derived .
This is easily done by realising that delayed effects effec-
tively represent effects via hidden state variables . Thi s
equivalence is exploited in a well-known identity (Coyle ,
1996) which allows delay arcs to be eliminated from an
influence graph (figure 5) . It is convenient to eliminate al l
delay arcs in this way before any other simplifications tak e
place .

Controlled Arcs

System dynamics influence graphs are traditionally de -
signed to show the `influences' that can affect a variable .
These influences can take many forms which are normall y
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5a: A delay arc with delay ti 5b: Its undelayed equivalen t

Figure 5 : Converting delayed arcs
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p = – a .b.p + c(d - e .p)p

Figure 6 : Population model with a controlled arc
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only resolved at the time of the production of the stock and
flow model . For instance, in the raw model of controlled
population growth (figure 1), two influences affect the
number of births. The positive influence represents the
notion that a larger population will have a greater numbe r
of sexually mature females ; as each such female will have
a certain probability of reproducing, the size of the popu-
lation will influence the number of births.

The negative influence on the number of births repre-
sents the reduction in fecundity due to population pres-
sures . Figure 1 suggests that this influence affects th e
number of births in the same manner as the size of th e
population . However, closer consideration shows tha t
population pressures act to reduce the fecundity of the fe-
males . It is this reduced fecundity that causes the lowe r
number of births. This is the relationship shown in th e
corresponding stock and flow diagram (figure 2) . The no-
tion of one influence mediating the effect of another
prompts the introduction of controlled arcs as a way o f
showing this on the influence diagram . The gain of a con -
trolled arc is mediated by the controlling arc or arcs . Thi s
extension allows parametric variation to be included in th e
model . A revised population model, including a controlle d
arc, is shown in figure 6 .

Modified Monotonic Function s
In order properly to discuss controlled arcs and their impli-
cations, it is necessary to introduce a new qualitative rela-
tionship, the modified monotonic function (M `" ) . This re-
lationship is a generalisation of the normal monotoni c
functions described by Kuipers (1986) . The modified
monotonic function has the following properties :

p > 0 - M"' (x , p) = M+(x )
p = 0 --* M"' (x, p) = const (y) for some y
p<0-*M"'(x,p)=M-(x)

However, the advantage of the Mn ' constraint is that it
allows values of Mm (x, p) to be ordered for different value s
of p . To allow this, we define the predicates right and left :

right (M "' , x, p, q) = T H
axo < x : Mm (xo, p) = Mm (xo, q )

vp > gAVy:M"' (xo, p)> Mm (xo,q )

left (M'" x, p, q ) = T H
3xo > x : M"' (xo, p) = Mm (xo, q )

vp > gAVy:M"' (xo,p)<M
"'

(xo,q)

(Informally, imagine a meeting point (xo) for whic h
M"' (xo, p) = Mm (xo, q) . The predicates left and right indi-
cate whether the current value of x is to the left or right o f
this point . The second disjunct is to allow the predicate t o
be used when xo does not exist . )

It follows that right (M m , x, p, q) = right (M ", x, q, p)
and left (M m , x, p, q) = left (M`" , x, q, p )

The use of the functions allows the values of M "' (x, p)
to be compared for different values of p :

p > q A right (M m , x, p, q) ---> M ' (x, p) > M"' (x, q)
p>gAleft (M',x,p,q)–~M"'(x,p)<Mm(x,q )

In addition, the following controller extension relation s
hold :

po > qo A right (Mm , x, po, qo) -*
Vp > po : right (MT", x, p , qo)

A Vq < qo : right Or, x, po, q )

Po > qo A left (M"' , x, po, qo) -
dp < po : left (M"' , x, p, qo )

A Vq > qo : left (M"' x, po, q )

These properties are used to assess how controlled arc s
can affect the stability of system dynamics models .

Formal Qualitative Analysis
of Influence Diagrams

As described above, there are two major strands of analysi s
within system dynamics . The quantitative approach can b e
supplemented with qualitative and semi-quantitativ e
simulation packages such as QSIM and its peers (Kuipers ,
1986 ; Kuipers & Berleant, 1988; Coghill, 1996). How-
ever, a more interesting avenue to explore is to use quali-
tative reasoning techniques to augment the qualitative sys-
tem dynamics of Senge (1990) . This requires forma l
analysis of the structure of the influence graph to deter -
mine, with some degree of rigour, the behaviour that wil l
be expected from the model .

The first and most basic behavioural question to be
asked is whether or not the model represents a stable sys-
tem . System dynamics models are generally autonomous
(i .e . without exogenous inputs) and do not necessarily hav e
globally conserved quantities such as energy . Stability is
defined as having a bounded behaviour in response to a
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sufficiently small perturbation ' . For instance, ignoring the
action of the controlling arc, the simple population mode l
of figure 6 is stable around the point p = 0 if a.b > c .d, but
unstable otherwise.

Puccia & Levens (1985) describe how the stability crite-
ria of a model can be determined by applying the Routh -
Hurwitz criteria . Each distinct cycle in an (fully simpli-
fied) influence graph is identified ; its gain is the product of
the gains of its constituent arcs . These loop gains can b e
combined to yield the graph determinant . If various sub -
graphs are taken, the various graph determinants can b e
combined to give an evaluation of the overall stability o f

the model . Such an analysis was performed to yield th e
stability condition for the population model of figure 6 .
While this approach is simple and easy to apply, it doe s
have several limitations . The most significant of these i s
that the Routh-Hurwitz criteria can only be applied to lin-
ear or linearised models . The means that a modeller mus t
identify the various equilibrium points and, for each point ,
linearise the model around that point and assess its stabil-
ity . The detection of such points is not trivial (Khalil ,
1996) . Also, the linearisation means that the stability crite-
ria cannot take account of possible changes in the loop
gains caused by controlled arcs as the system moves fro m
the equilibrium point .

Stability of Systems with Controlled Loop Gain s
Controlling arcs represent feedback mechanisms in th e
model, and it is well know that feedback of the correct
form is capable of ensuring the stability of an otherwis e
unstable system (D'Azzo & Houpis, 1960) . However, th e
complex systems generally addressed by systems dynamics
practitioners do not have clearly defined inputs and output s
and any feedback mechanisms only operate within smal l
regions of the model . These conditions prevent th e
straightforward application of traditional control theor y
techniques for determining if feedback stabilises a par-
ticular model .

Given that the stability of the uncontrolled model is de-
termined by loop analysis, and the action of controlled arc s

' Generally, the systems being modelled are non-linear and th e
models are linearised around an equilibrium point . If the initial
perturbation is too large, the linearisation approximation will not
hold and model will no longer be an accurate representation o f
the system .

is to alter the gains of these loops, a more promising ave-
nue of investigation is to examine the effects if feedbac k
from the point of view of loop gains . Unfortunately, the
gain of a controlled arc depends on the value of one or
more state variables, and loop analysis is silent on the tran -
sient response of these variables (Puccia & Levens, 1985) .
At present, no general solution to this problem has been
identified, but the effect of controlled arcs on the stability
of models has been determined when loops of only one or
two state variables contain arcs that are controlled by vari-
ables within those loops, such as the controlled populatio n
model (figure 6) . In self-controlled loops of length one or
two, the effect of the controlled arc on the loop gain is in -
dependent of the direction of movement of the controllin g
state variables . In such a case, the loop gain will change as
the model moves away from its original equilibrium point .
By extrapolating this change it is possible to determine i f
the system will reach another equilibrium point .

Figure 7 shows some self-controlled loops, and figure 8
shows the structure of the qualitative constraints of th e
controlled and controlling arcs . The gains of the loop s

x
shown in figure 7 is x .

y '
Assume some initial values xo, yo, zo . If zo > 0, then

M"' E M + . If we assume that x > xo, then right (M "' , x, zo ,
z) holds . If M, E M +, then M''(x, z) > zo) . Similarly ,
if x < xo, then left (M "' , x, zo, z) holds ; M, E M - — >
Mm (x, z) > zo) . In both of these cases, the effect of
the control arc is to increase the gain of the controlled arc .
Similarly, if M, E M + when left (Mt", x, zo, z) holds, or
M, E M- when right (M"' , x, zo, z) holds, the control arc
acts to decrease the gain of the controlled arc . These
situations are reversed if zo < 0 . The symmetric nature o f
the qualitative constraints allow these arguments to be ap-
plied to any of the controlled loops shown in figure 7 .

In particular, note that the controller extension relation s
ensure that however the controlling arc starts to act, it wil l

M ,

n

Figure 8 : Qualitative constraints on a controlled arc
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continue to act in the same manner so long as (x – xo )
keeps the same sign . In particular, if M 1 (x) reaches zero ,
the associated loop gain will also become zero .

These results are only applicable to self-controlled loop s
of length one or two because of the possibility of ambigu-
ity arising from the interaction of several variables on the
controlled arc, none of which may be the direct influence
on the variable in question. These results show that for
self-controlled loops of length one or two, the effect of a
controlling arc will increase over time. This allows the
effect of the parametric variation to be included in the sta-
bility analysis, and therefore show whether the system wil l
ever reach a stable point .

Referring back to the population model (figure 6), recal l
that the model is stable if the gain of the `deaths' loop i s
greater than the gain of the `births' loop (in the linear case ,
the model if stable if a .b > c.d) . If this is not the case, the
population will move from its equilibrium value of p = O .
As it does so, the controlling arc will act to reduce the gai n
of the births loop. This action will make the model mor e
stable . It is a reasonable assumption that controlling ar c
will eventually force the gain of the controlled arc to be-
come zero . The Intermediate Value Theorem then allow s
us to declare the existence of a value for the populatio n
where the gain of the births loop will equal the gain of th e
deaths loop . At this point, the model will become stable .
Note that the controlling arc will not cause the model t o
stabilise if the population were less than zero : however ,
populations are constrained to be positive . Quantitative
analysis of this model shows that an initially unstabl e
model

	

comes stable when the population reaches
p* = - - Again, this analysis process has been imple-
mented as'

a
program that will identify if the feedback pres-

ent in a model is sufficient to ensure the stability of a
model .

Further work
The work presented here represents the first steps in th e
formalisation of qualitative systems dynamics . This work
could progress down several avenues . The role of con-
trolled arcs in maintaining stability in more complex situa-
tions needs should be addressed ; however, this will require
an understanding of the transient response of state vari-
ables after a perturbation and how these responses interac t
within and between loops. Ishida (1989) has had som e
success in this area. More generally, qualitative syste m
dynamics depends on the identification of structural cliche s
to predict the behaviour exhibited by a model (Senge et al . ,
1994) . The limitations of this approach are obvious an d
well known (Lane & Smart, 1996) but qualitative reason-
ing approaches might provide appropriate tools for deriv-
ing useful results . For instance, the complexity of identifi-
cation problem could be reduced through the use of orde r
of magnitude reasoning (Raiman, 1991) to eliminate loop s
with insignificant gains . The easy identification of such

loops is hampered by the action of controlled arcs and th e
relationship between loop gains and delays .

Conclusions
The major contributions of this work apply to both quanti-
tative and qualitative system dynamics . Firstly, for quan-
titative system dynamics, we have described some simpl e
augmentations to the influence diagram notation an d
shown that these augmented diagrams contain all the in -
formation needed to produce a set of state equations . This
has been demonstrated by deriving such state equation s
without the need for the intervening stock and flow dia-
gram .

Secondly, we have introduced some rigour into the study
qualitative system dynamics . The objective of qualitativ e
system dynamics, to predict the qualitative behaviour of a
model from simply inspecting its structure (subject to som e
assumptions about the magnitude of effects) is an attractiv e
one . However, existing techniques are entirely withou t
rigour ; this paper has addressed this issue . We have intro-
duced the concept of controlled arcs to represent feedbac k
mechanisms acting in a model and we have described a
new qualitative constraint to represent the behaviour o f
these arcs . We have shown how the combination of thes e
augmentations can be used to predict qualitatively whethe r
the feedback present in a model is sufficient to ensure th e
model's stability .
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