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Abstrac t

Modeling and simulation techniques developed within
qualitative reasoning might profitably be used for the
analysis of genetic regulatory systems . A major prob-
lem of current qualitative simulation methods is thei r
lack of upscalability. We describe a method that i s
able to deal with large and complex systems, and dis -
cuss its performance in simulation experiments with
random regulatory networks .

Introduction
In the last few years biologists have completed the se-
quencing of the entire genome of model organisms like
S. cerevisiae and E . coli, and the human genome is ex-
pected to follow without much delay . The analysis of
these huge amounts of data involves such tasks as the
identification of genes and regulatory signals, the pre-
diction of folding structures of proteins, and the con-
struction of phylogenetic trees . It is clear, however ,
that the structural analysis of sequence data needs t o
be complemented with a functional analysis to elucidat e
the role of genes in controlling fundamental biologica l
processes . One of the central problems to be addressed
by this functional genomics is the analysis of regulator y
systems controlling gene expression through a network
of interactions between DNA, RNA, and proteins . The
study of these networks will contribute to our under-
standing of complex processes like the development o f
a multicellular organism from a fertilized egg, and t o
applications ranging from drug discovery to biologica l
computing .

Computer tools will be indispensable for the analysi s
of genetic regulatory systems, as these usually involv e
many genes connected through regulatory cascades an d
feedback loops . Currently, only a few regulatory net -
works are well-understood on the molecular level, an d
quantitative knowledge about the interactions is seldo m
available . This has stimulated an interest in model-
ing and simulation techniques developed within qual-
itative reasoning (QR), most notably QSIM (Kuiper s
1994) and QPT (Forbus 1984) . QR methods have been
applied to the regulation of tryptophan synthesis (Kar p
1993) and A phage growth (Heidtke & Schulze-Kremer

1998) in E . coli, and to the regulation of the transcrip-
tion factor families AP-1 and NF-KB in different classes
of animals (Trelease, Henderson, & Park 1999) .

A major problem is the lack of upscalability of thes e
approaches . As a consequence of the weak nature of
qualitative constraints, and the difficulty to identify
implicit constraints, behavior trees and envisionments
quickly grow out of bounds . This causes the rang e
of application of the methods to be limited to regu-
latory systems of modest size and complexity . Systems
of even a few genes related by positive and negativ e
feedback loops cannot be handled, unless these system s
have been so well-studied already that behavior predic-
tions can be tightly constrained .

In this paper we will show that it is possible to qual-
itatively analyse genetic regulatory networks of large r
size and complexity. In order to achieve this, we de-
scribe the systems by a class of piece-wise linear dif-
ferential equations (PLDEs) putting strong constraint s
on possible trajectories in the phase space . Simulation
is carried out by an algorithm tailored to this class o f
models . The method has been implemented in Java
and used for the simulation of regulatory networks o f
currently up to 12 genes involved in complex feedbac k
loops . As improvements of the method and its imple-
mentation can be readily imagined, it seems possible t o
achieve further upscaling .

In the next two sections, we will introduce the clas s
of PLDEs by which genetic regulatory systems can b e
described and review its mathematical properties . The
subsequent sections introduce the qualitative simula-
tion algorithm and present the results of simulation
studies . The paper concludes with a discussion of th e
results and an outline of ideas for further work .

Modeling genetic regulatory system s
The regulation of gene expression is achieved by th e
interactions between proteins, DNA, RNA, and othe r
molecules taking place under a variety of cellular an d
environmental conditions (Lewin 1997) . The set of
genes involved in a particular process, their regulator y
sites, the products and the regulators of the genes, and
their mutual interactions constitute a genetic regula-
tory system . The structure of this system can be rep-
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Figure 1 : (a) Example regulatory network modeled by the state equations in (b) the threshold inequalities in (c) ,
and the nullcline inequalities in (d) . The symbols `+' and `—' in (a) denote activating and inhibitory interactions ,
respectively .

resented as a genetic regulatory network, composed of
the elements and their interactions . In Fig. 1(a) a sim-
ple example of a regulatory network is shown, involvin g
three genes and several activating and inhibiting inter -
actions .

Gene regulation is often modeled by differential equa-
tions expressing the rate of synthesis of a gene product
in terms of the balance of the amounts of product ap-
pearing and disappearing per unit time (Glass 1975 ;
Thomas & d'Ari 1990) . This leads to state equations
of the form

xi = fi(x) — 'yixi, x i > 0, 1 < i < n,

	

(1 )

where x is a vector of cellular concentrations of gen e
products, 'yi > 0 the decay rate of and fi a usu-
ally highly nonlinear function . The rate of synthesis of
the ith product is dependent upon the concentration s
x, possibly including x i . The term --yix i states tha t
the concentration x i decreases through spontaneous de-
struction processes, such as degradation, diffusion, an d
growth dilution, at a rate proportional to the concen-
tration itself.

The function fi in (1) can be further specified as th e
composition of a number of basic regulation functions .
A regulation function accounts for the variation in ex-
pression level of a gene i with the concentration x j o f
the product of another gene j . A regulation functio n
often found in the literature is the sigmoid Hill curve
(Fig . 2) :

h+ (xi, 8,0 ,m) — x3 /(x jn +

	

(2 )

where Biz > 0 denotes the threshold for the influ-
ence of j on i, and m > 1 a parameter determinin g
the steepness of the function around Big . The func-
tion ranges from 0 to 1, and increases as xi -4 00, so
that j positively regulates or induces i . In order to
express that j negatively regulates or represses i, the
regulation function h+ (xi , 9ii , m) must be replaced by
h+ (x i , B id , m) = 1 — h+ (xi , 9ij , m) .

Individual regulation functions can be combined t o
account for the fact that usually several regulator s
combine in determining the rate of synthesis of i .
In particular, regulation functions h+ (xi , , in) and
h+ (x k , B i g., m) are summed when either j or k is suf-
ficient for efficient synthesis, and they are multiplie d
when both j and k are necessary . In Fig . 1(b) the equa-
tions for the example network are shown, assuming tha t
the two interactions regulating gene 2 are multiplica-
tive and the two interactions regulating gene 3 additive .
The equations also contain positive rate constants s; ii ,
determining the maximum expression level of i under
the influence of j .
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Figure 2 : Examples of regulation functions : (a) Hil l
function and (b) step function .

Due to the nonlinear character of the functions fi ,
analytical solution of the state equations (1) is not pos-
sible . The nonlinear terms can be eliminated by replac-
ing the continuous Hill function by the discontinuous
step function (Fig . 2) :

The resulting equations are piecewise-linear differentia l
equations (PLDEs) of the form

xi = bi(x ) — 'yi xi, x i > 0, 1 < i < n,

	

(4 )
where b i is a piecewise-linear function composed of ad -
ditions and multiplications of step functions . The ap-
proximation of a continuous sigmoid by a discontinuou s

1 Bi zs+ (x i, Bid )

	

1, x i >
0, xi < Bi g

(3)
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step function has been justified on the ground of th e
switch-like character displayed by genes whose expres-
sion is regulated by steep sigmoid curves (e .g ., Glass
& Kauffman (1973)) . In what follows, we will assume
that genetic regulatory systems are modeled by PLDE s
of the form (4) .

Mathematical analysis
Eqs. (4) have been well-studied in mathematical bi-
ology (Glass 1975 ; Glass & Pasternack 1978 ; Thomas
& d'Ari 1990; Snoussi 1989 ; Snoussi & Thomas 1993 ;
Lewis & Glass 1991 ; Plahte, Mestl, & Omholt 1994 ;
Mestl, Plahte, & Omholt 1995a ; 1995b) . Consider an
n-dimensional (hyper)box of the phase space defined as
follows :

0 < xi < max i = max b i (x)/'yi , 1 < i < n .

	

(5 )
x>0

It can be shown that all trajectories starting inside th e
n-box will remain in it, while trajectories starting out -
side will enter the box at some time or approach i t
asymptotically as t —> co . We assume that Bpi < max i
for all genes j regulated by the product of gene i . The
n — 1-dimensional threshold (hyper)planes x i = Oj, di -
vide the n-box into volumes . The volumes of the n-box
are determined by the threshold inequalities

0 < az 'l < . . . < ~( p°)
< max i ,

	

(6 )

obtained by ordering and renaming the p i thresholds Bp i
of gene i . The threshold equations for the example o f
the previous section are shown in Fig. 1(c) . Since the
step function is not defined at its threshold, Eqs . (4 )
are not defined in the threshold planes separating the
volumes . Fig . 3(a) displays the phase space box corre-
sponding to the example network .

In each volume of the n-box, (4) reduces to volum e
state equations with a constant production term µ i
composed of rate parameters in b i :

x i =

	

— '-yix i , x i > 0, 1 < i < n .

	

(7 )

Notice that Eqs. (7) are linear and orthogonal .
Fig. 3(b) gives an example of the state equations corre-
sponding to the volume 0 < x 1 < 921, 012 < x 2 < max 2 i
and 033 < x 3 < max 3 . It can be easily shown that
within a volume all trajectories evolve towards the foca l
state ea/y . The focal state is the single, stable stead y
of (7) . It lies at the intersection of the nullcline (hy-
per)planes x i = µi/'yi defined by x i = O . As the null -
clines are assumed not to coincide with the threshol d
planes, the focal state will be located at some distanc e
from the threshold planes .

The focal state of a volume may lie inside or outsid e
that volume. Whether the focal state lies inside or out -
side the volume is determined by the nullcline inequali-
ties, which locate the nullclines x i = µi/-yi between two
" » bsequent thresholds of x i :

~(1) < µ i /ryi < vi1+ii , 1 < i i < pi,

	

( 8 )

and the special cases 0 < µ i /')'i < cr ii and ~(P`)
<

< maxi . If for every i, µ i/'y i lies between the
threshold boundaries of the volume, then the focal stat e
lies inside the volume . If not, it lies outside the volume
(Fig . 3(c)) . The nullcline inequalities for the exampl e
regulatory system are shown in Fig. 1(d) . Notice that
several nullcline inequalities have been specified for x 3 ,
as a consequence of the fact that µ3 changes between
different volumes . More generally, the set of possibl e
nullclines in the ith dimension is given by {bi (x)/ryi
0<x<max}.

If the focal state lies outside the volume, the trajec-
tories will tend towards one or several of the threshol d
planes bounding the volume . Since (4) is not defined i n
the threshold planes, special attention should be give n
to the behavior of the system as it approaches th e
threshold planes . Following Plahte, Mestl & Omhol t
(1998), the behavior of the piecewise-linear equation s
(4) at the threshold planes is defined as the behavior of
the original nonlinear equations (1) in the limit n —> 00

(see also Plahte, Mestl & Omholt (1994)) . The defini-
tion is motivated by the observation that, as n goes t o
co, the sigmoid function (2) approaches the step func-
tion (3) .

Given this definition, basically two different thing s
can happen when a trajectory approaches a threshold
plane x i = B, i . First, the trajectory may be contin-
ued by a trajectory in the neighbouring volume, which
moves towards a different focal state determined by th e
volume state equations of the new volume . In this case
a transition from the volume to its neighbouring vol-
ume takes place and the threshold plane is transparent .
Second, if the focal state of the neighbouring volum e
is such that the trajectories in that volume also ap-
proach the threshold plane x i = 0ji , no transition be-
tween the volumes is possible and the threshold plan e
is non-transparent .' Non-transparent threshold planes
may indicate additional steady states of the PLDEs
located in the threshold planes . Techniques to iden-
tify these steady states are presented by Snoussi &
Thomas (1993) and by Plahte, Mestl & Omholt (1994 ;
1998), and will not be considered here .

The global behavior of the PLDEs may be quite com-
plex and is not well understood . Continuations of tra-
jectories in several volumes may give rise to oscillation s
towards a steady state located at the intersection of
threshold planes, cycles, limit cycles, or even chaoti c
oscillations (for n > 4) (Glass & Pasternack 1978 ;
Lewis & Glass 1991 ; Mestl, Plahte, & Omholt 1995b ;
Mestl, Lemay, & Glass 1996) . Numerical simulatio n
studies have shown that in many cases the global be-
havior of the piecewise-linear systems (4) and non -
linear systems (1) with steep sigmoids exhibit th e

'Non-transparency of threshold planes is possible whe n
the regulatory system involves autoregulation, a regulatory
interaction of a gene with itself (like gene 3 in Fig . 1(a)) .
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Figure 3 : (a) The phase space box of the model in Fig . 1, divided into 2 . 3 . 3 = 18 volumes by the threshold planes .
(b) The state equations for volume 0 < x 1 < 0 21 , 0 12 < x 2 < max2i and 0 33 < X3 < max 3 (the volume demarcate d
by bold lines) . (c) The focal state of this volume projected on the x 1 — X3 plane . Depending on whether '31 /'Y3 > 03 3
or K31/73 < 0 33 , the focal state lies inside or outside the volume .

same qualitative properties (Glass & Kauffman 1973 ;
Thomas & d'Ari 1990 ; Plahte, Mestl, & Omholt 1994) .

Qualitative simulation metho d
Our method performs a qualitative simulation of regu-
latory systems described by state equations of the for m
(4) . The basic idea underlying the method is to deter -
mine, in an iterative way, all volumes that are reach-
able from an initial volume through successive volum e
transitions . Which volumes are reachable depends o n
the threshold inequalities (6) and nullcline inequalities
(8), as these parameter constraints determine the qual-
itative dynamics of the system. The state equations ,
threshold inequalities, nullcline inequalities, and initia l
volume together form a qualitative simulation problem
(QSP) . In what follows we assume that it has been pos-
sible to specify the elements of a QSP, on the basis of
prior knowledge or educated guesses . In the concluding
section we will reconsider this assumption .

Consider a volume defined in the ith dimension b y

two consecutive thresholds o-(i') and QT
'+1) The in -

equalities

Q ( ~ ') < xi < Q(~ ;+1)

	

(9 )x

	

a

form the qualitative value of x i , denoted by qvi . In
addition to the qualitative value for x i , we have a qual-
itative value for xi, being one of the following thre e
inequalities

xi > 0, xi < 0, or x i

	

0 .

	

(10 )

If the nullcline plane for xi lies outside the volume, i .e . ,

µz/-y2 <
crzl')

o r µ2/72 > i (l'+1) the qualitative value

will be x i > 0 or x i < 0, respectively, everywhere i n
the volume. If the nullcline runs through the volume ,
i .e ., cr(i+) < ui/7i < (1'+0 it holds that x i < 0 on one
side of the nullcline plane, x i > 0 on the other side, an d
xi = 0 in the nullcline plane . The qualitative value of
xi in the volume is then written as xi

	

0 .
Given a volume with a vector qv of qualitative value s

for x, q'v can be easily inferred from the equations an d
inequalities (5)-(9) by means of basic algebraic rules .
As a consequence of the orthogonality of the volum e
state equations, this can be done separately in eac h
dimension, thus requiring only 0(n) inferences . For the
volume emphasized in Fig . 3(a), for example, we find
the vector [x l 0,x 2 < 0,x3 < 0] . Take x 3 . From the
volume state equation x 3 = K31 — 73x3 and the nullcline
inequality K31/73 < 023 we obtain x 3 < 73023 — 73x 3 .
As x 3 > 0 33 in the volume, and 033 > 023 , it follow s
that 73 0 23 —'7 3x 3 < 0, and hence x 3 < 0 .

The trajectories in a volume move towards the fo-
cal state lying at the intersection of the nullclines x i =
[ti/7i• Knowing the qualitative values qv and q'v fo r
a volume allows one to determine the a priori possible
transitions to neighbouring volumes . The function succ
in Table 1 defines the possible successor qualitative val-
ues for x i . The successor relations are motivated b y
basic contuinity restrictions, as in Kuipers (1994) . By
combining the successor qualitative values for all x i ,
we obtain a set of candidate successor volumes. More
formally, a volume v' defined by qv' is a candidate suc-
cessor of v, if qv' 0 qv and qv 'i E succ(gv i ), 1 < i < n .

Concentrations of gene products may reach their
thresholds simultaneously, since more than one x i can
change its qualitative value in a transition . As a conse-
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quence, a volume may have as much as 2' — 1 candidat e
successors .

succ(gvi , qv i )
{U (li) < xi < U ( l + l )
Ui i+l) < x i < (1i+2) }
{U (ii) < xi < Q ( l a+ l )

tie' -1) < x i < 0- (,l ' ) }
{o•(l ' ) < x i <

2

Table 1 : The function succ maps qualitative values fo r
x i and x i to possible successor qualitative values for x i .
It is here assumed that 1 < l i < pi — 1, but generaliza-
tion of the table to other cases is straightforward .

For a candidate successor v' to be actually reachable
from v, the threshold plane separating v and v' must b e
transparent . This implies that the qualitative values o f
x i before and after the transition, q'v i and q'u i , shoul d
not be opposite for those x i changing their qualitative
value in the transition . That is, if qv qvi , then q'v'i =
q'v i , 1 < i < n . In order to test the reachability of a
candidate successor volume, it suffices to determine q'v '
and compare the qualitative values before and after the
transition .

A volume may thus have no reachable successors fo r
one of two reasons . It either contains a steady state ,
defined by x i 0 for all i, or the outgoing trajectorie s
approach non-transparent threshold plane(s) .

The simulation algorithm iteratively generates, in a
depth-first manner, all volumes that are reachable fro m
an initial volume vinit defined by qualitative value s

qv ini t

push( stack, v init )
determine q'v ini t
while not stack is empty do

current volume v <— pop(stack )
generate candidate successor volumes of v
for all candidate successors v' do

determine q'v '
if v' is reachabl e
then if not v' has been reached and

not v' on stack
then push(stack, v' )

The volumes and their reachable successors form a di-
rected transition graph . The graph may contain vol-
umes without successors and volume cycles, which wil l
be together referred to as attractors . In the worst case ,
the algorithm will generate O((p + 1)') reachable vol-
umes, where p is the maximum number of genes influ-
enced by a single gene .

An initial value problem (IVP), consisting of a mode l
of the form (4) with numerical values for the parame-
ters and initial values x(to), can be transformed int o
a QSP. In addition, the numerical solution of an IV P
on an interval [to, t] can be abstracted into a sequenc e
of volumes . These abstraction relations underlie the
following guarantee on the output of the algorithm .

Theorem 1 Given a QSP abstracted from an IVP, an d
a sequence of volumes abstracted from the solution of
the IVP. The sequence of volumes corresponds with a
path in the transition graph generated by the qualitativ e
simulation algorithm applied to the QSP .

The proof will be omitted, as it is much similar to th e
soundness proof of QSIM (Theor . 6 in Kuipers (1994)) .
As in qualitative reasoning more generally, complete-
ness cannot be guaranteed. That is, not every path i n
the transition graph generated by the algorithm corre-
sponds with a sequence of volumes abstracted from th e
solution of some IVP. In some cases, additional mathe-
matical constraints will rule out paths in the transitio n
graph as being impossible (Olivier Bernard, personal
communication) .

Experimental result s
The simulation algorithm predicts the attractors tha t
may be reached from an initial volume following a se-
quence of volume transitions . From a biological poin t
of view, this means that possible functional states o f
the regulatory system are predicted given certain ini-
tial gene expression levels (Kauffman 1993 ; Thomas &
d'Ari 1990) . As shown in the previous section, the num-
ber of reachable volumes theoretically grows in an ex-
ponential fashion. This compromises the objective to
deal with larger-scale regulatory systems . In order t o
test whether the dynamics of PLDEs of the form (4 )
exhibits more favorable average-case behavior, we have
performed a series of computer experiments .

The experiments have been carried out with an im-
plementation of the simulation method in Java 1 .2. The
program reads and parses input files with the equation s
and inequalities specifying a QSP. From this informa-
tion it produces tables containing all possible qualita-
tive values for x i and x i , and successor relations be-
tween qualitative values . The tables are employed i n
the generation of successor volumes in the main loo p
of the algorithm . The core of the program consists o f
an inequality reasoner for determining the qualitativ e
value of every xi in a volume . We have developed a ver-
sion of Simmons' (1986) Quantity Lattice, adapted t o
the particularities of the class of PLDEs we are dealin g
with . The output produced by the program consists of a
tabular representation of the volume transition graph ,
a list of attractors, and run-time statistics . The sim-
ulations reported below were run on a SUN Ultra 1 0
workstation with 128 Mb of RAM .

As a first test, we have simulated three genetic regula -
tory networks described in the literature . The networks
concern A phage growth control (Thieffry & Thomas
1995) and the regulation of arginine synthesis (Thomas ,
Thieffry, & Kaufman 1995) (n = 2,3,4) . (In fact, the
model in Fig . 1 is a slightly more complex variant o f
the latter model .) We have compared our results wit h
those obtained by the logical method of Thomas an d
colleagues and found good agreement, bearing in min d
the differences between the methods (see below) .

qv i andqv i
ca l ' ) < x i < 0T'+1) , x i > 0

o-i

	

< xi < Q (li+l )
2

	

>

(Ii)

	

(1 4 +1)

	

<v i < xi < ui

	

, x i 5 0

i<0
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Figure 4 : (a) The number of reachable volumes from an initial volume for models with k = 2 and n = 2, . . . , 12 .
Each dot in the plot represents a simulation. (b) An example regulatory network for n = 8 and k = 3 .

In order to study the upscaling properties of the
method in a systematic way, we have carried out sim-
ulation experiments with random regulation networks .
For each of the n genes in a network, k inputs were ran-
domly chosen among the other genes . Next, the func-
tions L were randomy selected from the set of possibl e
functions with k inputs . No restrictions were put on th e
form of the network, which allows complex and inter -
locking feedback structures to be generated . Further ,
a random order between the thresholds of the regula-
tion functions was generated, as well as a lower an d
upper threshold bound for the possible nullcline terms .
Each of the models thus obtained was simulated fro m
a randomly-selected initial volume in the phase space .

The results of experiments with 2 < n < 12 and
k = 2 are shown in Fig . 4(a) . For each n, 25 simulations
were carried out, each with a different model and initia l
volume . The number of volumes reachable from th e
initial volume is displayed as a function of the size o f
the network . The most important observation to b e
made is that the average-case behavior is much more
favorable than the worst-case behavior, shown as th e
drawn line in the figure (notice the logarithmic scale o f
the y-axis) . For n = 12, the median number of volume s
reachable is 4016, less than 1% of the total number o f
volumes in the phase space .

The figure shows a large spread in the simulation re-
sults . Simulations for n = 10 give results varying fro m
10 to 5840 reachable volumes, although most of the tim e
between 102 and 10 3 volumes are generated . A number
of factors contribute to these differences, in particula r
the distance of the initial volume to the reachable at-
tractors and the number and the size of the attractors .
The Number o'1 attractn r s reached also strongly varie s
between simulations . For n = 8, about 9 attractors

are reached on average, mostly cycles . This number is
somewhat misleading, though, as two simulations yiel d
102 and 42 cycles .

For n > 12, over one third of the simulations take
more than two hours to complete and some end with a
memory overflow due to the large number of successors
generated . This seldom happens when 9 < n < l2. and
never for lower n . We have also carried out simulations
for k = 3 and k = 4, that is, for more densely connecte d
networks. In these cases, the number of reachable vol-
umes theoretically grows as 0(4 n) and 0(5n ) . As for
k = 2, the average-case behavior tended to be mor e
favorable . However, for n > 9 simulations start to be-
come intractable with the current implementation .

Fig. 4(b) shows an example of a network with n = 8
and k = 3 and a large number of positive and negativ e
feedback loops . The model is defined by a total of 12 0
equations and inequalities . Simulated from a rando m
initial volume, 3892 volumes turn out to be reachable .
The trajectories either end in the single volume with a
steady state or in one of the 14 cycles .

Discussion

The method for qualitative simulation of genetic regu-
latory systems presented in this paper has been show n
capable of dealing with networks of larger size and com-
plexity than possible with existing QR methods . We
have modeled regulatory systems by a class of differ-
ential equations putting strong constraints on the be-
havior in volumes of the phase space, in combination
with a simulation algorithm adapted to these equa-
tions . Currently we are able to deal with networks o f
up to 12 genes with 2 to 4 regulators per gene an d
complicated feedback structures . Tne simiaLti6si7 j~uU=
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ies described here present one of the first attempts t o
systematically investigate upscaling of QR methods i n
the context of a realistic application (see also Strus s
(1997)) . The simulation method has been tailored t o
one class of models, relevant to genetic and other biolog -
ical regulatory systems (Plahte, Mestl, & Omholt 1995 ;
Muraille et al . 1996) . The principles underlying our ap-
proach, however, might be applicable in other domain s
as well .

Adaptation to a specific class of models is the prin-
cipal respect in which the approach presented in thi s
paper differs from well-known QR methods like QSI M
and QPT (Kuipers 1994 ; Forbus 1984) . The expressiv-
ity and generality of the formalism have been trade d
for the capability to deal with larger and more com-
plex systems . For instance, the description of the stat e
of a regulatory system is achieved on a higher leve l
of abstraction . The basic element in our formalis m
is a volume, defined by a vector of qualitative values
o• li`1 < x i < o i'+i) In QSIM one would have to distin-
guish individual states inside a volume as well, such a s
boundary states defined by x i = 0•i(1=) or x i = o-( i' +i )

and nullcline states defined by i z = 0 . The method
presented here thus abstracts from trajectories inside a
volume, which among other things allows a more com-
pact representation of the behavior of the system .

Qualitative methods for the analysis of genetic reg-
ulatory systems have been developed in mathematical
biology as well, the best-known example being Boolea n
networks (Kauffman 1993) . Simulation of Boolean net -
works rests on the assumption that a gene is either ac-
tive or inactive, and that genes change their activatio n
state synchronously. Translated to the formalism of
this paper, this means that there is only one threshol d
per gene and that thresholds are reached simultane-
ously . For many purposes these assumptions are to o
strong. The use of random networks to study the up -
scaling properties of the method has been stimulate d
by Kauffman's (1993) simulation studies with Boolea n
networks. The observation that trajectories remain lo-
calized in a small part of the phase space agrees wit h
the results obtained for Boolean networks .

Thomas and colleagues (Thomas & d'Ari 1990 ;
Thomas, Thieffry, & Kaufman 1995) have propose d
a generalized logical formalism that permits multival-
ued activation states and asynchronic transitions . In
fact, Snoussi has demonstrated that their formalis m
can be seen as an abstraction of a special case o f
(4), allowing additions but not multiplications of reg-
ulation functions . The logical method of Thomas fo-
cuses on the identification of steady states, includin g
those located on threshold planes, rather than on sim-
ulation from an initial volume. The use of logical
equations abstracting from differential equations make s
it difficult to integrate (semi-)quantitative informatio n
(Berleant & Kuipers 1997) . With the advent of cDNA
microarrays and other new measurement technologies ,
(semi = )quantitative gene expression data is becoming

available in large amounts (Brown & Botstein 1999) .
Further upscaling of our method might be achieve d

by optimizing the code of the implementation, some -
thing that has not been seriously undertaken thus far .
More fundamentally, additional simplifying assump-
tions could be introduced that reduce the complex-
ity of the algorithm . When synchronous transition s
of qualitative values are not allowed, for instance, th e
number of candidate successor volumes generated b y
the algorithm would be of the order C9(n) rather than
0(2n ) . This assumption implies that concentrations o f
gene products will never reach their threshold simulta-
neously.

In order to simulate a genetic regulatory system ,
parameter constraints in the form of threshold and
nullcline inequalities need to be available . The paucity
of information on model parameters may not permi t
such constraints to be specified . This brings a related ,
and in many cases more relevant problem to the fore :
given observed gene expression patterns, is it possibl e
to find threshold and nullcline inequalities such tha t
the model of a hypothesized regulatory network yield s
predictions consistent with expression data? Th e
simulation method presented in this paper forms th e
core of a system currently under development called
the Genetic Network Analyzer (GNA), which will
address such model validation questions .
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