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Abstract

Modeling and simulation techniques developed within
qualitative reasoning might profitably be used for the
analysis of genetic regulatory systems. A major prob-
lem of current qualitative simulation methods is their
lack of upscalability. We describe a method that is
able to deal with large and complex systems, and dis-
cuss its performance in simulation experiments with
random regulatory networks.

Introduction

In the last few years biologists have completed the se-
quencing of the entire genome of model organisms like
S. cerevisiae and E. coli, and the human genome is ex-
pected to follow without much delay. The analysis of
these huge amounts of data involves such tasks as the
identification of genes and regulatory signals, the pre-
diction of folding structures of proteins, and the con-
struction of phylogenetic trees. It is clear, however,
that the structural analysis of sequence data needs to
be complemented with a functional analysis to elucidate
the role of genes in controlling fundamental biological
processes. One of the central problems to be addressed
by this functional genomics is the analysis of regulatory
systems controlling gene expression through a network
of interactions between DNA, RNA, and proteins. The
study of these networks will contribute to our under-
standing of complex processes like the development of
a multicellular organism from a fertilized egg, and to
applications ranging from drug discovery to biological
computing.

Computer tools will be indispensable for the analysis
of genetic regulatory systems, as these usually involve
many genes connected through regulatory cascades and
feedback loops. Currently, only a few regulatory net-
works are well-understood on the molecular level, and
quantitative knowledge about the interactions is seldom
available. This has stimulated an interest in model-
ing and simulation techniques developed within qual-
itative reasoning (QR), most notably QSIM (Kuipers
1994) and QPT (Forbus 1984). QR methods have been
applied to the regulation of tryptophan synthesis (Karp
1993) and )\ phage growth (Heidtke & Schulze-Kremer

1998) in E. coli, and to the regulation of the transcrip-
tion factor families AP-1 and NF-«B in different classes
of animals (Trelease, Henderson, & Park 1999).

A major problem is the lack of upscalability of these
approaches. As a consequence of the weak nature of
qualitative constraints, and the difficulty to identify
implicit constraints, behavior trees and envisionments
quickly grow out of bounds. This causes the range
of application of the methods to be limited to regu-
latory systems of modest size and complexity. Systems
of even a few genes related by positive and negative
feedback loops cannot be handled, unless these systems
have been so well-studied already that behavior predic-
tions can be tightly constrained.

In this paper we will show that it is possible to qual-
itatively analyse genetic regulatory networks of larger
size and complexity. In order to achieve this, we de-
scribe the systems by a class of piece-wise linear dif-
ferential equations (PLDEs) putting strong constraints
on possible trajectories in the phase space. Simulation
is carried out by an algorithm tailored to this class of
models. The method has been implemented in Java
and used for the simulation of regulatory networks of
currently up to 12 genes involved in complex feedback
loops. As improvements of the method and its imple-
mentation can be readily imagined, it seems possible to
achieve further upscaling.

In the next two sections, we will introduce the class
of PLDEs by which genetic regulatory systems can be
described and review its mathematical properties. The
subsequent sections introduce the qualitative simula-
tion algorithm and present the results of simulation
studies. The paper concludes with a discussion of the
results and an outline of ideas for further work.

Modeling genetic regulatory systems

The regulation of gene expression is achieved by the
interactions between proteins, DNA, RNA, and other
molecules taking place under a variety of cellular and
environmental conditions (Lewin 1997). The set of
genes involved in a particular process, their regulatory
sites, the products and the regulators of the genes, and
their mutual interactions constitute a genetic regula-
tory system. The structure of this system can be rep-
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Figure 1: (a) Example regulatory network modeled by the state equations in (b) the threshold inequalities in (c),
and the nullcline inequalities in (d). The symbols ‘+” and ‘~' in (a) denote activating and inhibitory interactions,

respectively.

resented as a genetic regulatory network, composed of
the elements and their interactions. In Fig. 1(a) a sim-
ple example of a regulatory network is shown, involving
three genes and several activating and inhibiting inter-
actions.

Gene regulation is often modeled by differential equa-
tions expressing the rate of synthesis of a gene product
in terms of the balance of the amounts of product ap-
pearing and disappearing per unit time (Glass 1975;
Thomas & d’Ari 1990). This leads to state equations
of the form

m::fi{m)_‘?\ixis &y Zor 1 S?:Sﬂw (1)

where @ is a vector of cellular concentrations of gene
products, v; > 0 the decay rate of z;, and f; a usu-
ally highly nonlinear function. The rate of synthesis of
the ith product is dependent upon the concentrations
@, possibly including x;. The term —~;z; states that
the concentration z; decreases through spontaneous de-
struction processes, such as degradation, diffusion, and
growth dilution, at a rate proportional to the concen-
tration itself.

The function f; in (1) can be further specified as the
composition of a number of basic regulation functions.
A regulation function accounts for the variation in ex-
pression level of a gene ¢ with the concentration x; of
the product of another gene j. A regulation function
often found in the literature is the sigmoid Hill curve
(Fig. 2):

ht(zj,0i5,m) = =7 /(=] + 63F), (2)

where #;; > 0 denotes the threshold for the influ-
ence of j on 7, and m > 1 a parameter determining
the steepness of the function around #;;. The func-
tion ranges from 0 to 1, and increases as z; — o0, s0
that j positively regulates or induces #. In order to
express that j negatively regulates or represses 7, the
regulation function h*(z;,8;;, m) must be replaced by
h™(zj,8i5,m) = 1 — h* (z;,6;5,m).

Individual regulation functions can be combined to
account for the fact that usually several regulators
combine in determining the rate of synthesis of i.
In particular, regulation functions h*(z;,6;;,m) and
ht(zp, 0, m) are summed when either 7 or k is suf-
ficient for efficient synthesis, and they are multiplied
when both j and k are necessary. In Fig. 1(b) the equa-
tions for the example network are shown, assuming that
the two interactions regulating gene 2 are multiplica-
tive and the two interactions regulating gene 3 additive.
The equations also contain positive rate constants k;j,
determining the maximum expression level of ¢ under
the influence of j.
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Figure 2: Examples of regulation functions: (a) Hill
function and (b) step function.

Due to the nonlinear character of the functions f;,
analytical solution of the state equations (1) is not pos-
sible. The nonlinear terms can be eliminated by replac-
ing the continuous Hill function by the discontinuous
step function (Fig. 2):

L, @y >0y
o @)= d 1 T >
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The resulting equations are piecewise-linear differential
equations (PLDEs) of the form

&; = bi(z) —
where b; is a piecewise-linear function composed of ad-

ditions and multiplications of step functions. The ap-
proximation of a continuous sigmoid by a discontinuous

mity; oy 20, 1 <<, (4)
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step function has been justified on the ground of the
switch-like character displayed by genes whose expres-
sion is regulated by steep sigmoid curves (e.g., Glass
& Kauffman (1973)). In what follows, we will assume
that genetic regulatory systems are modeled by PLDEs
of the form (4).

Mathematical analysis

Eqs. (4) have been well-studied in mathematical bi-
ology (Glass 1975; Glass & Pasternack 1978; Thomas
& d’Ari 1990; Snoussi 1989; Snoussi & Thomas 1993,
Lewis & Glass 1991; Plahte, Mestl, & Ombholt 1994;
Mestl, Plahte, & Omholt 1995a; 1995b). Consider an
n-dimensional (hyper)box of the phase space defined as
follows:

0 < z; < maz; = max b(x)/v;, 1 <i<n. (5)
x>0

It can be shown that all trajectories starting inside the
n-box will remain in it, while trajectories starting out-
side will enter the box at some time or approach it
asymptotically as t — oco. We assume that 8;; < maz;
for all genes j regulated by the product of gene i. The
n — 1-dimensional threshold (hyper)planes z; = #;; di-
vide the n-box into volumes. The volumes of the n-box
are determined by the threshold inequalities

(1)

i

(

0<ol <...<o'” < maz, (6)

obtained by ordering and renaming the p; thresholds #;;
of gene i. The threshold equations for the example of
the previous section are shown in Fig. 1(c). Since the
step function is not defined at its threshold, Eqs. (4)
are not defined in the threshold planes separating the
volumes. Fig. 3(a) displays the phase space box corre-
sponding to the example network.

In each volume of the n-box, (4) reduces to volume
state equations with a constant production term g,
composed of rate parameters in b;:

:i:g=,u.3'—‘y¢z.;, 33:‘20: 1$%Sﬂ“ (7}

Notice that Eqs. (7) are linear and orthogonal.
Fig. 3(b) gives an example of the state equations corre-
sponding to the volume 0 < ; < 031, 812 < x2 < mazy,
and f43 < 23 < mazrs. It can be easily shown that
within a volume all trajectories evolve towards the focal
state p/~. The focal state is the single, stable steady
of (7). Tt lies at the intersection of the nullcline (hy-
per)planes x; = p;/v; defined by &; = 0. As the null-
clines are assumed not to coincide with the threshold
planes, the focal state will be located at some distance
from the threshold planes.

The focal state of a volume may lie inside or outside
that volume. Whether the focal state lies inside or out-
side the volume is determined by the nullcline inequali-
ties, which locate the nullclines z; = p;/v; between two
«nhsequent thresholds of «;:

oi¥ < pfm <o 1<l <, (8)

and the special cases 0 < p;/y; < o\ and 0P <
wi/vi < maz;. U for every i, p;/; lies between the
threshold boundaries of the volume, then the focal state
lies inside the volume. If not, it lies outside the volume
(Fig. 3(c)). The nullcline inequalities for the example
regulatory system are shown in Fig. 1(d). Notice that
several nullcline inequalities have been specified for x4,
as a consequence of the fact that ps changes between
different volumes. More generally, the set of possible
nullclines in the ith dimension is given by {b:(x)/v: |
0 <z <mazx}.

If the focal state lies outside the volume, the trajec-
tories will tend towards one or several of the threshold
planes bounding the volume. Since (4) is not defined in
the threshold planes, special attention should be given
to the behavior of the system as it approaches the
threshold planes. Following Plahte, Mestl & Omholt
(1998), the behavior of the piecewise-linear equations
(4) at the threshold planes is defined as the behavior of
the original nonlinear equations (1) in the limit n — oo
(see also Plahte, Mestl & Ombholt (1994)). The defini-
tion is motivated by the observation that, as n goes to
oo, the sigmoid function (2) approaches the step func-
tion (3).

Given this definition, basically two different things
can happen when a trajectory approaches a threshold
plane z; = 6;;. First, the trajectory may be contin-
ued by a trajectory in the neighbouring volume, which
moves towards a different focal state determined by the
volume state equations of the new volume. In this case
a transition from the volume to its neighbouring vol-
ume takes place and the threshold plane is transparent.
Second, if the focal state of the neighbouring volume
is such that the trajectories in that velume also ap-
proach the threshold plane x; = #;;, no transition be-
tween the volumes is possible and the threshold plane
is non-transparent." Non-transparent threshold planes
may indicate additional steady states of the PLDEs
located in the threshold planes. Techniques to iden-
tify these steady states are presented by Snoussi &
Thomas (1993) and by Plahte, Mestl & Ombholt (1994;
1998), and will not be considered here.

The global behavior of the PLDEs may be quite com-
plex and is not well understood. Continuations of tra-
jectories in several volumes may give rise to oscillations
towards a steady state located at the intersection of
threshold planes, cycles, limit cycles, or even chaotic
oscillations (for n > 4) (Glass & Pasternack 1978;
Lewis & Glass 1991; Mestl, Plahte, & Ombholt 1995b;
Mestl, Lemay, & Glass 1996). Numerical simulation
studies have shown that in many cases the global be-
havior of the piecewise-linear systems (4) and non-
linear systems (1) with steep sigmoids exhibit the

! Non-transparency of threshold planes is possible when
the regulatory system involves autoregulation, a regulatory
interaction of a gene with itself (like gene 3 in Fig. 1(a)).
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Figure 3: (a) The phase space box of the model in Fig. 1, divided into 2-3-3 = 18 volumes by the threshold planes.
(b) The state equations for volume 0 < 2y < 3, b2 < 22 < maz,y, and 33 < z3 < mazy (the volume demarcated
by beld lines). (c) The focal state of this volume projected on the @y — 3 plane. Depending on whether k31 /v3 > 633
or K31 /73 < P33, the focal state lies inside or outside the volume.

same qualitative properties (Glass & Kauffman 1973;
Thomas & d’Ari 1990; Plahte, Mestl, & Omholt 1994).

Qualitative simulation method

Our method performs a qualitative simulation of regu-
latory systems described by state equations of the form
(4). The basic idea underlying the method is to deter-
mine, in an iterative way, all volumes that are reach-
able from an initial volume through successive volume
transitions. Which volumes are reachable depends on
the threshold inequalities (6) and nullcline inequalities
(8), as these parameter constraints determine the qual-
itative dynamics of the system. The state equations,
threshold inequalities, nullcline inequalities, and initial
volume together form a qualitative simulation problem
(QSP). In what follows we assume that it has been pos-
sible to specify the elements of a QSP, on the basis of
prior knowledge or educated guesses. In the concluding
section we will reconsider this assumption.

Consider a volume defined in the i¢th dimension by
two consecutive thresholds JEI‘) and oY, The in-
equalities

e < m 2wl (9)
form the qualitative value of x;, denoted by qv;. In
addition to the qualitative value for z;, we have a qual-
itative value g, for &;, being one of the following three
inequalities

#; >0, & <0, or & S 0. (10)
If the nulleline plane for z; lies outside the volume, i.e.,
pilvi < cry"] or pi/vi > JE“H], the qualitative value

will be &; > 0 or &; < 0, respectively, everywhere in
the volume. If the nullcline runs through the volume,
ie., U&I‘} < pifvi < a§1‘+”, it holds that @; < 0 on one
side of the nullcline plane, £; > 0 on the other side, and
©; = 0 in the nullcline plane. The qualitative value of
&; in the volume is then written as @; < 0.

Given a volume with a vector gv of qualitative values
for &, gv can be easily inferred from the equations and
inequalities (5)-(9) by means of basic algebraic rules.
As a consequence of the orthogonality of the volume
state equations, this can be done separately in each
dimension, thus requiring only @(n) inferences. For the
volume emphasized in Fig. 3(a), for example, we find
the vector [& § 0,4 < 0,43 < 0]. Take &3. From the
volume state equation &3 = k31 — 9323 and the nullcline
inequality Ka1/v3 < #23 we obtain @3 < 3623 — yax3.
As m3 > B33 in the volume, and f33 > fs3, it follows
that v3623 — y373 < 0, and hence &3 < (.

The trajectories in a volume move towards the fo-
cal state lying at the intersection of the nullclines z; =
ui/7:. Knowing the qualitative values gv and gv for
a volume allows one to determine the a priori possible
transitions to neighbouring volumes. The function suce
in Table 1 defines the possible successor qualitative val-
ues for z;. The successor relations are motivated by
basic contuinity restrictions, as in Kuipers (1994). By
combining the successor qualitative values for all z;,
we obtain a set of candidate successor volumes. More
formally, a volume v’ defined by gv’ is a candidate suc-
cessor of v, if qv’ # quv and qu} € suce(qu;), 1 <i<n.

Concentrations of gene products may reach their
thresholds simultaneously, since more than one x; can
change its qualitative value in a transition. As a conse-
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quence, a volume may have as much as 2" — 1 candidate
SUCCEessOrs.

qu; and qu; | suce(qui,qv;)

crfi") <z < o'E“J'”, ;>0 {0“‘) <m < a'fi‘ﬂ},
a‘-“'H} <z < cr,-""H}}

o'fl‘) <1 < O'E!"H), £ <0 {ar?‘) <z < a}!i“),

o & 5y < o9
o < x; < Y g ; 0| {o!" <a; <ty
Table 1: The function suce maps qualitative values for
z; and &; to possible successor qualitative values for z;.
It is here assumed that 1 < [; < p; — 1, but generaliza-
tion of the table to other cases is straightforward.

For a candidate successor v’ to be actually reachable
from v, the threshold plane separating v and v’ must be
transparent. This implies that the qualitative values of
#; before and after the transition, gv; and qv}, should
not be opposite for those z; changing their qualitative
value in the transition. That is, if gv! # qu;, then gv} =
qu;, 1 <4 < n. In order to test the reachability of a
candidate successor volume, it suffices to determine gv’
and compare the qualitative values before and after the
transition.

A volume may thus have no reachable successors for
one of two reasons. It either contains a steady state,
defined by ; § 0 for all 7, or the outgoing trajectories
approach non-transparent threshold plane(s).

The simulation algorithm iteratively generates, in a
depth-first manner, all volumes that are reachable from
an initial volume vy, defined by qualitative values
qUinat-
push(stack, vinir)
determine qv,,;,
while not stack is empty do

current volume v «— pop(stack)
generate candidate successor volumes of v
for all candidate successors v’ do

determine qv’

if v' is reachable

then if not v’ has been reached and

not v’ on stack
then push(stack, v')

The volumes and their reachable successors form a di-
rected transition graph. The graph may contain vol-
umes without successors and volume cycles, which will
be together referred to as attractors. In the worst case,
the algorithm will generate O((p + 1)") reachable vol-
umes, where p is the maximum number of genes influ-
enced by a single gene.

An initial value problem (IVP), consisting of a model
of the form (4) with numerical values for the parame-
ters and initial values ®(fp), can be transformed into
a QSP. In addition, the numerical solution of an ITVP
on an interval [tn,t] can be abstracted into a sequence
of volumes. These abstraction relations underlie the
following guarantee on the output of the algorithm.

Theorem 1 Given a QSP abstracted from an IVP, and
a sequence of volumes abstracted from the solution of
the IVP. The sequence of volumes corresponds with a
path in the transition graph generated by the qualitative
simulation algorithm applied to the QSP.

The proof will be omitted, as it is much similar to the
soundness proof of QSIM (Theor. 6 in Kuipers (1994)).
As in qualitative reasoning more generally, complete-
ness cannot be guaranteed. That is, not every path in
the transition graph generated by the algorithm corre-
sponds with a sequence of volumes abstracted from the
solution of some IVP. In some cases, additional mathe-
matical constraints will rule out paths in the transition
graph as being impossible (Olivier Bernard, personal
communication).

Experimental results

The simulation algorithm predicts the attractors that
may be reached from an initial volume following a se-
quence of volume transitions. From a biological point
of view, this means that possible functional states of
the regulatory system are predicted given certain ini-
tial gene expression levels (Kauffman 1993; Thomas &
d’Ari 1990). Asshown in the previous section, the num-
ber of reachable volumes theoretically grows in an ex-
ponential fashion. This compromises the objective to
deal with larger-scale regulatory systems. In order to
test whether the dynamics of PLDEs of the form (4)
exhibits more favorable average-case behavior, we have
performed a series of computer experiments.

The experiments have been carried out with an im-
plementation of the simulation method in Java 1.2. The
program reads and parses input files with the equations
and inequalities specifying a QSP. From this informa-
tion it produces tables containing all possible qualita-
tive values for z; and ;, and successor relations be-
tween qualitative values. The tables are employed in
the generation of successor volumes in the main loop
of the algorithm. The core of the program consists of
an inequality reasoner for determining the qualitative
value of every &; in a volume. We have developed a ver-
sion of Simmons’ (1986) Quantity Lattice, adapted to
the particularities of the class of PLDEs we are dealing
with. The output produced by the program consists of a
tabular representation of the volume transition graph,
a list of attractors, and run-time statistics. The sim-
ulations reported below were run on a SUN Ultra 10
workstation with 128 Mb of RAM.

As a first test, we have simulated three genetic regula-
tory networks described in the literature. The networks
concern A phage growth control (Thieffry & Thomas
1995) and the regulation of arginine synthesis (Thomas,
Thieffry, & Kaufman 1995) (n = 2,3,4). (In fact, the
model in Fig. 1 is a slightly more complex variant of
the latter model.) We have compared our results with
those obtained by the logical method of Thomas and
colleagues and found good agreement, bearing in mind
the differences between the methods (see below).
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Figure 4: (a) The number of reachable volumes from an initial volume for models with k = 2 and n = 2,...,12.
Each dot in the plot represents a simulation. (b) An example regulatory network for n = 8 and k = 3.

In order to study the upscaling properties of the
method in a systematic way, we have carried out sim-
ulation experiments with random regulation networks.
For each of the n genes in a network, k& inputs were ran-
domly chosen among the other genes. Next, the func-
tions f; were randomy selected from the set of possible
functions with k inputs. No restrictions were put on the
form of the network, which allows complex and inter-
locking feedback structures to be generated. Further,
a random order between the thresholds of the regula-
tion functions was generated, as well as a lower and
upper threshold bound for the possible nullcline terms.
Each of the models thus obtained was simulated from
a randomly-selected initial volume in the phase space.

The results of experiments with 2 < n < 12 and
k = 2 are shown in Fig. 4(a). For each n, 25 simulations
were carried out, each with a different model and initial
volume. The number of volumes reachable from the
initial volume is displayed as a function of the size of
the network. The most important observation to be
made is that the average-case behavior is much more
favorable than the worst-case behavior, shown as the
drawn line in the figure (notice the logarithmic scale of
the y-axis). For n = 12, the median number of volumes
reachable is 4016, less than 1% of the total number of
volumes in the phase space.

The figure shows a large spread in the simulation re-
sults. Simulations for n = 10 give results varying from
10 to 5840 reachable volumes, although most of the time
between 102 and 10® volumes are generated. A number
of factors contribute to these differences, in particular
the distance of the initial volume to the reachable at-
tractors and the number and the size of the attractors.
The mamber of attractors reached also strongly varies
between simulations. For n = 8, about 9 attractors

are reached on average, mostly cycles. This number is
somewhat misleading, though, as two simulations yield
102 and 42 cycles.

For n > 12, over one third of the simulations take
more than two hours to complete and some end with a
memory overflow due to the large number of successorg
generated. This seldom happens when 9 < n < 12 and
never for lower n. We have also carried out simulations
for k = 3 and k = 4, that is, for more densely connected
networks. In these cases, the number of reachable vol-
umes theoretically grows as O(4") and O(5"). As for
k = 2, the average-case behavior tended to be more
favorable. However, for n > 9 simulations start to be-
come intractable with the current implementation.

Fig. 4(b) shows an example of a network with n = 8
and £ = 3 and a large number of positive and negative
feedback loops. The model is defined by a total of 120
equations and inequalities. Simulated from a random
initial volume, 3892 volumes turn out to be reachable.
The trajectories either end in the single volume with a
steady state or in one of the 14 cycles.

Discussion

The method for qualitative simulation of genetic regu-
latory systems presented in this paper has been shown
capable of dealing with networks of larger size and com-
plexity than possible with existing QR methods. We
have modeled regulatory systems by a class of differ-
ential equations putting strong constraints on the be-
havior in volumes of the phase space, in combination
with a simulation algorithm adapted to these equa-
tions. Currently we are able to deal with networks of
up to 12 genes with 2 to 4 regulators per gene and
complicated feedback structures. The stmmlation siuwd-
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ies described here present one of the first attempts to
systematically investigate upscaling of QR methods in
the context of a realistic application (see also Struss
(1997)). The simulation method has been tailored to
one class of models, relevant to genetic and other biolog-
ical regulatory systems (Plahte, Mestl, & Omholt 1995;
Muraille et al. 1996). The principles underlying our ap-
proach, however, might be applicable in other domains
as well.

Adaptation to a specific class of models is the prin-
cipal respect in which the approach presented in this
paper differs from well-known QR methods like QSIM
and QPT (Kuipers 1994; Forbus 1984). The expressiv-
ity and generality of the formalism have been traded
for the capability to deal with larger and more com-
plex systems. For instance, the description of the state
of a regulatory system is achieved on a higher level
of abstraction. The basic element in our formalism
is a volume, defined by a vector of qualitative values

U <z < EI ). In QSIM one would have to distin-
gulsh individual states inside a volume as well, such as

boundary states defined by z; = o’“ ) or ) Y — ar“ k)

and nullcline states defined by @; = 0. The mothod
presented here thus abstracts from trajectories inside a,
volume, which among other things allows a more com-

pact representation of the behavior of the system.

Qualitative methods for the analysis of genetic reg-
ulatory systems have been developed in mathematical
biology as well, the best-known example being Boolean
networks (Kauffman 1993). Simulation of Boolean net-
works rests on the assumption that a gene is either ac-
tive or inactive, and that genes change their activation
state synchronously. Translated to the formalism of
this paper, this means that there is only one threshold
per gene and that thresholds are reached simultane-
ously. For many purposes these assumptions are too
strong. The use of random networks to study the up-
scaling properties of the method has been stimulated
by Kauffman’s (1993) simulation studies with Boolean
networks. The observation that trajectories remain lo-
calized in a small part of the phase space agrees with
the results obtained for Boolean networks.

Thomas and colleagues (Thomas & d’Ari 1990;
Thomas, Thieffry, & Kaufman 1995) have proposed
a generalized logical formalism that permits multival-
ued activation states and asynchronic transitions. In
fact, Snoussi has demonstrated that their formalism
can be seen as an abstraction of a special case of
(4), allowing additions but not multiplications of reg-
ulation functions. The logical method of Thomas fo-
cuses on the identification of steady states, including
those located on threshold planes, rather than on sim-
ulation from an initial volume. The use of logical
equations abstracting from differential equations makes
it difficult to integrate (semi-)quantitative information
(Berleant & Kuipers 1997). With the advent of cDNA
microarrays and other new measurement technologies,
(semi-)quantitative gene expression data is becoming

available in large amounts (Brown & Botstein 1999).

Further upscaling of our method might be achieved
by optimizing the code of the implementation, some-
thing that has not been seriously undertaken thus far.
More fundamentally, additional simplifying assump-
tions could be introduced that reduce the complex-
ity of the algorithm. When synchronous transitions
of qualitative values are not allowed, for instance, the
number of candidate successor volumes generated by
the algorithm would be of the order O(n) rather than
O(2™). This assumption implies that concentrations of
gene products will never reach their threshold simulta-
neously.

In order to simulate a genetic regulatory system,
parameter constraints in the form of threshold and
nullcline inequalities need to be available. The paucity
of information on model parameters may not permit
such constraints to be specified. This brings a related,
and in many cases more relevant problem to the fore:
given observed gene expression patterns, is it possible
to find threshold and nullcline inequalities such that
the model of a hypothesized regulatory network yields
predictions consistent with expression data? The
simulation method presented in this paper forms the
core of a system currently under development called
the Genetic Network Analyzer (GNA), which will
address such model validation questions.
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